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ABSTRACT

Recent infectious disease outbreaks, such as Ebola in 2013, highlight the need for 

fast and accurate diagnostic tools to combat the global spread o f  the disease. Detection 

and identification o f the disease-causing viruses and bacteria at the genetic level is 

required for accurate diagnosis o f the disease. Nucleic acid analysis systems have shown 

promise in identifying diseases such as HIV, anthrax, and Ebola in the past. Conventional 

nucleic acid analysis systems are still time consuming, and are not suitable for point-of- 

care applications. Miniaturized nucleic acid systems has shown great promise for rapid 

analysis, but they have not been commercialized due to several factors such as footprint, 

complexity, portability, and power consumption.

This dissertation presents the development o f technologies and methods for a lab- 

on-a-chip nucleic acid analysis towards point-of-care applications. An oscillatory-flow 

PCR methodology in a thermal gradient is developed which provides real-time analysis 

o f  nucleic-acid samples. Oscillating flow PCR was performed in the microfluidic device 

under thermal gradient in 40 minutes. Reverse transcription PCR (RT-PCR) was achieved 

in the system without an additional heating element for incubation to perform reverse 

transcription step. A novel method is developed for the simultaneous pattering and 

bonding o f  all-glass microfluidic devices in a microwave oven. Glass microfluidic 

devices were fabricated in less than 4 minutes. Towards an integrated system for the 

detection o f amplified products, a thermal sensing method is studied for the optimization



o f the sensor output. Calorimetric sensing method is characterized to identify design 

considerations and optimal parameters such as placement o f the sensor, steady state 

response, and flow velocity for improved performance. An understanding o f these 

developed technologies and methods will facilitate the development o f lab-on-a-chip 

systems for point-of-care analysis.
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CHAPTER 1

INTRODUCTION

Infectious disease outbreaks have shaken the world many times over centuries. 

Even today, the world lacks powerful scientific tools to combat infectious disease 

outbreaks. Diagnosis is the first step in treating a disease. The need for a rapid and 

accurate diagnostic tool has become apparent in the recent Ebola outbreak in December 

2013 [1]. Almost a year later, in response to a call by the World Health Organization 

(WHO) for “rapid, sensitive, safe, and simple Ebola diagnostic tests,” four tests have 

been approved [2]. These tests include the detection o f Ebola-specific RNA, and Ebola 

virus (EBOV) VP40 antigen. The detection o f Ebola-specific RNA relies on the genetic 

assessment o f  virus infected patients based on the technology called reverse-transcription 

polymerase chain reaction (RT-PCR). The tests are slow (takes 2 to 6 hours to process), 

and usually require some specialized medical personnel to perform the analysis. Also, the 

tests require an appropriate PCR machine that are oftentimes bulky, limiting them for 

point-of-care applications. An ideal diagnostic tool must provide fast and sensitive 

diagnosis, and it must be capable o f  onsite detection in a limited resource setting [3]. 

WHO therefore still seeks rapid and diagnostic tools to contain Ebola outbreaks and other 

future epidemics in general [2].

Advances in genetic analysis in recent years have led to the development o f 

nucleic acid based diagnostics. Access to genetic analysis would improve disease

1
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diagnosis, infectious disease treatment and general health. The detection, identification 

and treatment o f  diseases have been a major focus o f biomedical research. Diagnosis is 

the first step in treating a disease. Gene expression measurement is an essential tool for 

molecular biology studies. Several techniques have been developed for quantitative gene 

expression analysis. With recent advances in microelectromechanical systems (MEMS)- 

based microfluidic techniques, several research groups have developed nucleic acid 

analysis. With the development o f  ‘Lab-on-a-chip’ systems, there has been a great focus 

towards developing miniaturized nucleic acid detection systems.

One major hurdle in nucleic acid analysis systems is that the nucleic acid samples 

collected for analysis from patients or subjects are very low in concentrations. 

Amplification o f  the initial sample must be performed to a minimum detection level for 

existing analysis systems. Polymerase chain reaction (PCR) is widely used for the 

amplification o f  the initial nucleic acid sample. Quantitative PCR (qPCR) techniques 

have become invaluable, high throughput tools to study gene expression. Although 

microfluidic PCR has been established, many optimizations are still required for 

successful commercialization o f  these systems for point-of-care applications. Lab-on-a- 

chip systems with automated sample handling, amplification and analysis without any 

post processing steps is desired for fast and accurate diagnosis. This dissertation discloses 

the optimization o f microfluidic PCR for DNA/RNA amplification, reports a new method 

rapid fabrication microfluidic devices, and investigates thermoelectric bio-sensing 

method for integrated on-chip detection.
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1.1 Polymerase Chain Reaction (PCR)

Deoxyribonucleic acid (DNA) carries genetic information used by all living 

organism for their development and functioning. DNA is composed o f nucleotides 

(dNTPs) that store genetic information. The genetic information is carried out in DNA 

segments called “genes” [4], The DNA molecules consist o f four different nucleotides 

that can contain one o f  the four nitrogen bases -  adenine (A), thymine (T), cytosine (C), 

and guanine (G). Each nucleotide consists o f  deoxyribose sugar, a phosphate group and a 

nitrogen base. A particular type o f  nucleotide on one strand reacts with just a particular 

type o f nucleotide on the other strand. Adenine (A) bonds only to thymine (T), and 

cytosine (C) bonds only to guanine (G) [4]. Like DNA, ribonucleic acid (RNA) is 

composed o f  nucleotides adenine (A), uracil (U), cytosine (C), and guanine (G) (Figure 

1- 1).

C ytosine C ytosine
N u d e o b a se s

G uan ine G uan ine

A denine A den ine

Thym ineUracil

helix of 
su q a r-p h o sp h a tr

N u d e o b a se s  
of RNA

RNA
Ribonucleic acid

DNA
D eoxyribonucleic acid

Figure 1-1: Structure o f nucleic acids [5].



4

Polymerase chain reaction (PCR) is a technique used to amplify DNA. DNA 

polymerase is an enzyme, which inserts the complementary nucleotide on the single 

stranded template DNA, thus extending the complementary DNA strand. DNA 

polymerase is responsible for DNA replication. When a complementary nucleotide is 

attached to the template, the polymerase enzyme undergoes conformational change that 

locks the nucleotide within the polymerase and promotes the formation o f bonds.

PCR requires cycling between three temperature regions, and reagents such as 

primers, dNTPs, polymerase enzyme, and buffers for successful amplification o f target 

sequence from a long DNA strand. The three temperature regions enable the following 

mechanisms in the PCR, 1) denaturation at 94°C to 96°C, 2) annealing at ~68°C, and 3) 

extension at 72°C. The temperature o f  the PCR sample is increased to 95°C to reach the 

denaturation stage, due to the high temperature, the long double stranded DNA separates 

into single strands. Now the temperature o f  the PCR sample is decreased to 68°C to reach 

the annealing stage, the primers (specially designed for target) bind to the 3 ’ (three 

prime) and 5’ (five prime) ends o f the target sequence. After this, the temperature o f the 

sample is increased to 72°C to reach to extension stage. At extension, the polymerase 

enzyme incorporates the complementary nucleotides on both primer ends in forward and 

reverse, and copies the target sequence (Figure 1-2). This thermal cycling process is 

repeated for about 40 times to obtain multiple copies o f the target DNA. Amplification 

achieved in the PCR cycling is exponential, resulting in 2 copies in the first cycle, 4 

copies in the second, and finally 2n copies in the nth cycle.



5

Polymerase chain reaction - PCR

orig inal DNA 
to be replicated

Q  D cnatu ra tton  at 94 96'C 

Q  AniMraiing at -6 8  C 

O  H **9 «tf© «atca. 72 C

Figure 1-2: Schematic o f  polymerase chain reaction (PCR) thermal cycling 
mechanism [6].

Reverse transcription polymerase chain reaction (RT-PCR) is a technique used to 

amplify segments o f RNA and detect RNA expression levels. In RT-PCR, first the RNA 

is converted to complimentary DNA (cDNA) by an enzyme reverse transcriptase.

Reverse transcription o f RNA to cDNA by transcriptase enzyme requires incubation at 

42°C for 5 minutes. Transcriptase transcribes RNA to cDNA by inserting complementary 

nucleotides in RNA and also replacing uracil (U) with thymine (T) (Figure 1-3). The 

converted cDNA is amplified using standard PCR technique (Figure 1-2). RT-PCR is 

generally carried out in two different protocols, one-step RT-PCR and two-step RT-PCR 

[7], In one-step RT-PCR, all the reagents required for the RT-PCR is mixed in a single 

vial and the process is initiated. Regents such as reverse transcriptase enzyme, RNA 

primers, dNTPs, DNA polymerase, and DNA primers are all mixed in a single vial, and 

the RT-PCR is performed. In two-step RT-PCR, first the RNA is mixed with RNA
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primers, dNTPs and reverse transcriptase enzyme. Reverse transcriptase enzyme coverts 

RNA to cDNA. The obtained cDNA is added with DNA polymerase enzyme, dNTPs and 

DNA primers for PCR.

IMIII.IMIIH
i r m n r llll

dT primer

'n"nHUl
sc I<arsa«p(*ie

m m w w
Figure 1-3: Mechanism o f reverse transcription o f  RNA to cDNA [8],

These biochemical reactions (PCR/RT-PCR) need strict temperature control in 

order to perform efficiently. Laboratory instruments for performing these biochemical 

reactions have been standardized for research use. These instruments are generally bulky 

and require several hours to achieve results, so they are not suited for point-of-care 

applications. With the advancement o f  MEMS, miniaturized PCR systems have been 

developed for performing lab-on-a-chip. Microfluidics has shown great promise in the 

lab-on-a-chip field for small sample volumes, efficient heat transfer rates to the sample, 

and other advantages.
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1.2 Microfluidics

Microfluidic devices are used in an increasing number o f  applications in the fields 

o f biochemistry, molecular biology, genomics, microelectronics, and biodefense. These 

microfluidic systems typically have one or more features with micrometer length scales. 

Flow in these systems is highly laminar because inertial forces are very low relative to 

viscous forces. The high degree o f  laminar flow makes it possible for two fluids to flow 

parallel without mixing. Microfluidic devices characterized by large surface-to-volume 

ratios have increased heat and mass transfer efficiencies.

Different techniques were used to create microfluidic devices for biological 

applications. Techniques such as soft lithography [9], xurography [10], polymer chip 

development [11], and paper microfluidics [12] has contributed for the simple and rapid 

fabrication o f microfluidic chips for lab-on-chip applications. Recently, researchers have 

developed shrinky dink microfluidics [10,11] and PDMS prototyping using a razor blade 

to fabricate glass microfluidic channels [15], thus eliminating time consuming and 

complex processes.

Polydimethylsiloxane (PDMS) is widely used in soft lithography for the 

fabrication o f  microfluidic devices. PDMS is a soft polymer with inorganic siloxane and 

organic methyl group attached to silicon [16]. Microfluidic devices with PDMS can be 

easily cast; the liquid polymer is mixed with the cross linker into a mold with micro-scale 

features and then bonded it to the glass or plain PDMS sheet. Researchers have exploited 

this advantage and have used PDMS for fabricating microfluidic devices. PDMS, an 

elastomer has enabled microfluidic techniques that rely on its inherent flexibility, such as 

passive valves and integrated peristaltic pumping. However, PDMS does not support
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applications that require a rigid substrate, as the PDMS has tendency to collapse. High 

aspect ratio structures are difficult to fabricate using PDMS and several solvents reacts 

and swell or dissolve PDMS [17]. The surface o f  PDMS is hydrophobic and requires 

passivation for biological applications, high oxygen and water permeability is not desired 

in some applications, and micro-scale molds are needed initially, which are fabricated 

using complex lithography procedures. Polymer/thermoplastic and paper microfluidics 

has shown great promise in the development o f  lab-on-chip devices for point o f care 

applications. They are flexible and simple to fabricate through a process that does not 

require complex fabrication techniques. Although these devices are ideal for many 

biochemical applications, they suffer from limitations such as solvent compatibility and 

electrode integration [11].

Glass bonding is also used to create microfluidic channels. The surface o f the 

glass is etched according to from the patterns. Patterns are formed using a standard 

lithography procedure using resist on the glass surface. Then, the glass is placed in 

hydrofluoric acid (HF) solution to etch the areas in the pattern and another glass is 

bonded using anodic bonding which requires high temperatures. This technique also 

requires sophisticated equipment and is expensive. Since the patterns are formed by 

etching, the surfaces o f  the channels are not perfectly flat, and might not be suitable when 

dealing with flow dynamics in the micro channels. Glass microfluidic devices are ideal 

choice for applications demanding high temperature stability, solvent compatibility, high- 

pressure flows, and ease o f  surface passivation [18]. Common methods to fabricate glass 

microfluidic channels are surface micromachining, buried-channel micromachining, and 

bulk micromachining [18]. These methods use complex lithography techniques to pattern,
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etch, and bond the glass substrates to form microfluidic devices. These processes require 

harsh chemicals, and technical skill, and they are time consuming. A great deal o f 

optimization is also required to obtain desired specifications.

Traditional techniques widely used for fabricating glass microfluidic devices are 

glass fusion bonding, anodic bonding o f glass to silicon, adhesive bonding and assembly, 

and plasma treatment o f  PDMS and glass substrate for bonding [18]. In glass fusion 

bonding, two glass wafers were pressed tightly which enables them to attach each other 

by Van der Waals forces. The glass stack is then heated at high temperatures (>600°C) 

for long durations, which partially melts the glass at the interface and creates a permanent 

bond. Anodic bonding involves high temperatures (>400 °C) and high electric fields (kV) 

to bond glass to silicon. Sodium ions in the borosilicate glass migrate to the interface and 

to the silicon under high electric fields and fuse to form a solid chemical bond. Adhesive 

bonding generally involves use o f  polymers as adhesives to bond to glass substrates. 

Polymer materials such as paralyne C, UV cure epoxies, and polyimides.

Applying the adhesive materials as an interfacial layer and heating creates a solid 

bond between glass substrates. Oxygen or air plasma treatment o f  PDMS and glass is 

widely used to fabricate PDMS-glass microdevices. Plasma activates the PDMS and glass 

surfaces and when in contact creates an irreversible bond. Recently, Kitamori et al. 

developed a technique for room temperature glass-glass bonding using 

oxygen/tetrafluoromethane (CF4) reactive ion etching (RIE) plasma treatment [19], These 

techniques provide excellent bond strength suitable for high pressure microfluidic 

applications. M icro-channel fabrication in the substrates in the above techniques still 

require standard lithography procedures.
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Xurography is a simple fabrication technique that uses a cutter to form patterns on 

a tape. The tape is sandwiched between the glass slides to form micro channels [10]. 

Double sided adhesive tape is used to form the channels. The glass slides are drilled with 

holes to introduce fluids into the micro channels. This technique is simple, fast and 

inexpensive to create microfluidic devices. Xurography uses an adhesive as a sandwich 

layer between glass or polymer substrates to form microfluidic channels [10]. So the 

microfluidic devices fabricated using xurography are limited by high pressure flows due 

to leaking, solvent compatibility-as the acidic or basic solutions will dissolve the 

adhesive tape, and temperature stability.

1.3 Microfluidic PCR

Several research groups have developed miniaturized lab-on-chip PCR devices, 

which can be broadly categorized into three groups: 1) stationary chamber-based PCR, 2) 

continuous-flow PCR, and 3) oscillating-flow PCR (Figure 1-4).
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Figure 1-4: Microfluidic PCR. (a) stationary chamber-based PCR, (b) continuous- 
flow PCR, and (c) oscillating-flow PCR [20].

1.3.1 Stationary Chamber-based PCR

In stationary chamber-based PCR [17, 18], standard photolithography is generally 

used to fabricate a micro well that is filed with the sample. The sample in a micro well is 

heated and cooled to achieve the three temperature zones (denaturation, annealing, and 

extension) required for PCR. The small wells can hold very low sample volumes, which 

is advantageous when the sample availability is low. Limitation o f  this technology is 

heating and cooling o f  the entire micro well chip and sample with thermal mass increases 

the thermal cycling time [20].



1.3.2 Continuous-flow PCR

In continuous-flow PCR, the sample is continuously flown through a 

microchannel that is placed over three thermal blocks maintained at three temperatures. 

Continuous-flow PCR in a microfluidic chip was first demonstrated by Kopp et., al in 

1998 [23]. This microchip includes serpentine flow channels positioned on heater blocks 

to produce three temperature zones (denaturation, annealing, and extension). Since this 

invention, several researchers have developed different techniques to perform 

continuous-flow PCR [21, 22]. Major limitations o f this technique is the thermal cross 

talk between the temperature regions contributing for inefficient PCR amplification. 

Crews et al., [26] developed a thermal gradient continuous-flow PCR system by 

generating a thermal gradient across a glass microfluidic device with serpentine flow 

channels. When the PCR sample is introduced, the sample undergoes thermocycling by 

the gradient. This approach eliminates the need for the three thermal regions stringent 

temperature control. This approach uses a fluorescent intercalating dye which enables 

spatial analysis o f  the amplification and melting at the same time without the need for 

post processing. Since the thermal gradient system depends on the gradient generation on 

the microfluidic device, generation o f a linear gradient and maintaining stable isotherms 

along the length o f the microfluidic device is difficult to achieve. Due to natural 

convection, the isotherms parabolic in nature indicating the gradient is more linear in the 

center compared to the edges o f  the microfluidic device.

Other challenges in continuous-flow PCR related to PCR chemistry also exist 

such as adsorption o f  PCR reagents to the microchannel surfaces due to large surface to 

volume ratio, and cross-contamination o f  adsorbed reagents [15, 24], Different surface
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coatings were investigated to reduce the adsorption o f PCR reagents and the 

biocompatibility o f the micro channels. In addition to the adsorption o f  PCR reagents, 

continuous-flow PCR also suffers from the thermal variations on the PCR sample due to 

the parabolic flow in the micro channels. As the velocity profile is parabolic, the PCR 

components at the channel surface experience different times for processing compared to 

the ones in the center.

1.3.3 Oscillating-flow PCR

In oscillatory-flow PCR, the sample is shuttled between the three thermal regions 

for thermocycling [27]. Oscillatory flow PCR devices have obtained increasing attention 

in the recent years, due to cycle number flexibility, large footprint reduction, and ability 

to process multiple samples in parallel [28]. On-chip detection o f the amplified products 

has gained major focus as offline detection is usually time-consuming, labor intensive, 

and prone to cross-contamination during manual sample loading. Oscillating-flow PCR 

was first demonstrated by Chiou et a l ,  [29] in a 1 mm inner diameter capillary by 

shuttling PCR sample plug between three thermocycling zones. Capillary-based 

oscillating-flow PCR has been employed extensively in the research community for real

time identification o f human genomic sample [30], simultaneous detection o f bacteria 

such as Salmonella, E-coli, and listeria [31], and multiplex detection o f  food borne 

bacterial pathogens [28].

Glass capillaries were widely used for oscillating-flow PCR, in the recent year’s 

materials such as PTFE, PMMA, COC and PDMS were explored. Apart from the 

capillary-based method, several microfluidic chip configurations were developed to 

facilitate oscillating-flow PCR. Furutani et al. [32] developed a chip with distinct
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serpentine channels connected for shuttling the flow between denature and annealing 

temperatures using micro blowers instead o f  syringe pumps for precise handling o f the 

fluid. Similarly, Brunklas et al. [33] developed a microfluidic chip with distinct 

serpentine channels connected for different thermal regions. The microfluidic chip does 

not contain a vented channel at ambient pressure. Instead, a closed end channel is used. 

The sample is pushed used a syringe pump against the closed end channel, and is released 

for flow in the backward direction. The authors reported an ultrafast PCR using this 

approach achieving amplification in 6 min. Sciancalepore et al. [34] developed a 

microchannel with integrated heaters for thermal regions. Nested PCR was demonstrated 

in this device in less than 50 min. Cheng et al. [35] developed a radial temperature 

gradient in a disc type microfluidic device. Early oscillating-flow PCR devices required 

offline detection o f the amplified products such as gel electrophoresis. Although several 

groups have incorporated online florescence detection, amplification efficiency o f the 

sample could only be determined. Quantitative real-time analysis o f  PCR and melting 

detection is still not possible in oscillating-flow PCR methodology.

In this dissertation, oscillatory-flow PCR with in a thermal gradient system is 

proposed. The design o f  the microfluidic channel and the thermal gradient setup system 

facilitates the thermocycling via temperature gradient. Intercalating dye-based 

florescence detection enables real-time detection o f  amplification and melting. This 

system offers quantitative real-time nucleic acid analysis. As the thermocycling is 

achieved by thermal gradient, additional temperature blocks are not required for the RT- 

PCR for the reverse transcription step. Design o f  the microfluidic device and control o f 

the gradient set temperatures allows for flexibility for both PCR and RT-PCR.
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1.4 Spatial Gradient Microfluidic Thermal Reactors

Commercially-available instruments require high power (-5 0 0 W) and complex 

feedback control in order to maintain the required temperature cycling within acceptable 

limits. Niel Crews has developed microfluidic methods that circumvent the 

typical challenges o f  creating rapid and high-precision temperature histories. In this 

method, heating and cooling occurs spatially instead o f temporally. Temperature is a 

function o f position so the temperature distribution is passive (naturally occurring) rather 

than active (modulating power to increase or decrease temperature). In this approach, 

spatial temperature control (stable or cycling) is achieved by: A) creating a 

stable temperature gradient across a small glass substrate containing a microfluidic 

channel, and B) flowing samples through the channel at a constant volumetric flow rate. 

As aqueous samples flow through the microchannel they are heated and cooled by the 

channel walls through which they pass. Because o f the high surface-to-volume ratio 

inherent in such microfluidic structures, each sample reaches the temperature o f the glass 

in less than 100 ms [23]. As depicted in Figure 1-5, the temperature profile experienced 

by the sample is simply a function o f the channel geometry, the constant flow rate, and 

the local orientation o f the channel with respect to the temperature distribution in the 

substrate.
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Figure 1-5: A steady fluid flow through a steady-state temperature gradient will heat 
or cool as controlled by the microchannel dimensions and its flow direction within the 
temperature gradient.

1.5 Quantitative PCR (qPCR) and M elting Detection

In order to fluorescently interrogate the amplification o f  DNA during the PCR, 

any one o f a special family o f dyes, called DNA intercalating dyes, are included in the 

PCR reagent mixture. When in the presence o f double-stranded DNA, the dye fluoresces. 

During amplification, as the quantity o f long DNA molecules increases above its 

detectable threshold, the intensity o f  the dye increases (Figure l-6a). Additionally, when 

concentrated DNA and dye is heated above its denaturing temperature, the fluorescence 

quickly fades ( Figure 2-1 lb).
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Figure 1-6: a) During qPCR, the increasing concentration o f DNA in the presence o f 
the intercalating dye produces an increased fluorescence, b) As DNA thermally 
denatures, the intercalating dye is released from the DNA, causing the intensity o f the 
fluorescence to drop. This decrease is proportional to the transition as the double 
stranded DNA (dsDNA) dissociates into single stranded DNA (ssDNA).

1.6 Spatial PCR and M elting Curve Analysis (MCA)

Conventional qPCR and MCA instrumentation operates on the temporal 

distribution o f  temperature, heating and cooling over time. If the microchannel is full o f a 

given sample as it flows, it can be said that the sample is at all temperatures 

simultaneously. In a situation where the sample contains an intercalating dye and dsDNA, 

a single photograph captures all the fluorescence data for the temperature span o f  interest. 

Figure l-7a  shows a spatial qPCR on a microfluidic device [26]. The fluorescence o f  

each cycle can be extracted from the image (Figure l-7b), as can the DNA melting curve 

at any cycle (Figure l-7c). This technique generates data that is comparable to the HR-1 

instrument from BioFire Diagnostics, the gold standard for MCA. However, even a 40- 

cycle qPCR takes only about 15 minutes in the microfluidic device (at 5 W power 

consumption), and the data for this spatial analysis was obtained essentially
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instantaneously with the click o f a camera shutter. The sensitivity o f  this approach has 

been highlighted through the demonstration o f single nucleotide polymorphism (SNP) 

genotyping. In a blinded study o f 36 clinical DNA samples, point mutations were 

detected with 100% accuracy [36]. While MCA at the end o f PCR has limited value, 

MCA during the PCR can be used to replicate the amplification curve o f  each target.
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Figure 1-7: (a) Fluorescent image o f  spatial qPCR. (b) An evaluation o f the 
fluorescence from each cycle reveals the amplification history o f the reaction, (c) An 
evaluate o f the fluorescence as a function o f temperature within any cycle reveals the 
sequence-specific melting signature o f the PCR product.

1.7 Calorimetric Bio-sensing

Calorimetric biosensors have been used to detect various analytes such as 

glucose and urea. The calorimetric approach takes advantage o f  the universal nature o f
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heat power production o f  chemical reactions. These sensors have many advantages over 

amperometric and optical detection methods such as label-free detection, relatively easy 

fabrication and less complex detection systems using voltage detectors. Thermopiles are 

widely used in calorimetric biosensors because they have high common mode thermal 

noise rejection ratio and can be used with miniaturized devices. Reference junctions o f 

the thermopiles in calorimetric biosensors are controlled either by a constant heat source, 

heat sink or by vacuum encapsulation. Controlling reference temperature adds 

complexity to the system and requires additional components. The therm opiles' high 

common mode rejection o f thermal signals enables development o f  a label-free, highly- 

sensitive, interferent-free device without need to control reference junction temperature.

A thermopile is a temperature or radiation sensor that is formed by placing 

multiple thermocouples in a series. The result is a series o f  wires or traces with 

alternating material properties. In the presence o f  a temperature gradient, an electric 

potential (AF) forms in each trace that is a function o f the temperature difference (AT) 

between interconnects and the Seebeck coefficient (5) o f  the material itself:

* V = S * T  Eq. 1-1

The total voltage transduced in a circuit will be the sum o f all these individual 

voltages:

When materials with dissimilar Seebeck coefficients are selected, alternating 

positive and negative temperature differences (Figure 1-8) can transduce a cumulative 

voltage. Common thermopile material pairs include antimony (S=48.9 pV/K) with

Eq. 1-2
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bismuth (5 =  - 7 3 .4  (iV/K) [11], Consider the thermopile o f Figure 1-8, but with an 

arbitrary (n) number o f  traces o f  each material. The cumulative voltage in the circuit 

would be given by:

Al/ =  n (S„ (T 2 -  T.) +  W ,  -  T2))

Figure 1-8: Diagram o f a thermopile consisting o f eight traces o f alternating material, 
placed between two temperatures. If the Seebeck coefficients o f the two materials are 
unequal, a voltage will be transduced in the circuit. Because o f  the alternating 
arrangement o f  junctions, they can be divided into two groups, the measuring junctions 
(M) and the reference junctions (R).

Since voltage is transduced according to the temperature differential (AT) across 

the thermopile, an isothermal condition (7^ = T2) would result in no voltage change, 

regardless o f  the temperature o f  the thermopile. Therefore, temperature differences, NOT 

absolute temperatures, are measured. This characteristic, a type o f  common mode signal 

rejection, is the basis o f virtually all current and historical implementations o f  thermopile 

sensing. Another sensor arrangement that is commonly used to achieve this common
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mode filtering used for calorimetry applications is an RTD (resistive thermal detector) 

placed in a Wheatstone bridge configuration.

1.8 Dissertation Overview

Chapter 2 introduces the feasibility o f thermal gradient oscillating-flow PCR 

system. The design and fabrication o f  simple device is presented that can be used for both 

DNA and RNA amplification. The system was used to perform RT-PCR by maintaining 

the microfluidic chip at reverse transcription temperature, without any additional 

modifications to the chip design. The entirety o f Chapter 2 is currently in the preparation 

for submission to a peer-reviewed journal. Chapter 3 reports a new method for the 

fabrication o f all-glass microfluidic devices using a conventional microwave oven. A 

simple technique has been developed for simultaneous patterning and bonding o f glass 

microchannels in under 2 minutes to 4 minutes depending the type and thickness o f  the 

glass used. This technique is believed to be transformative in the field o f  microfluidics 

for rapid fabrication o f all-glass microfluidic devices. The entirety o f Chapter 3 has been 

submitted to the peer-reviewed journal Lab on a Chip, and is currently under review. 

Chapter 4 discusses the critical design parameters and optimization o f thermoelectric 

sensor for bio-sensing. Specific emphasis is given to the positioning o f the sensor, and 

understanding the steady state response o f  the system for maximum output. The results in 

this study will be useful for integrated on-chip detection o f  the amplified PCR products 

using a thermoelectric sensor. The entirety o f  Chapter 4 is currently in preparation for 

submission to a peer-reviewed journal. Chapter 5 summarizes the results o f this 

dissertation work, and Chapter 6 discusses the future work towards the lab-on-a-chip 

integration for point-of-care applications.



CHAPTER 2 

MICROFLUIDIC THERMAL GRADIENT 

OSCILLATING-FLOW PCR

2.1 Introduction

PCR is a technique used to amplify DNA, which carries genetic information used 

by all living organism for their development and functioning. It is a powerful diagnostic 

tool to obtain information about the DNA. Oftentimes, the DNA sample obtained from 

organisms is very low in concentration, making it difficult to analyze by any detection 

system. PCR is performed to increase the concentration o f  the initial DNA. PCR is 

analogous to an electronic amplifier [23] that amplifies a weak signal to a strong one; in 

PCR the low concentration (weak) DNA is amplified to a higher concentration (strong). 

Unlike electronic amplifier, PCR is non-linear, and it amplifying in an exponential 

fashion. PCR amplification is performed by an enzyme, DNA polymerase, which extends 

the DNA strands by incorporating the nucleotide bases. This reaction requires three 

temperature regions for denaturation (95°C), annealing (60°C), and extension (72°C) 

phases. Conventional PCR is a laboratory technique that is time-consuming and has many 

limitations for point-of-care applications where the diagnosis needs to be readily 

available. Substantial recent research has focused on developing miniaturized lab-on-a- 

chip devices for PCR and analysis.

22
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To address the cross contamination in the continuous-flow PCR, researchers have 

developed droplet PCR technology with small droplets o f PCR sample in a carrier fluid 

such as oil. In addition to decreasing the cross contamination and PCR inhibition, droplet 

PCR also has faster thermocycling times as the thermal mass o f the sample is low. As the 

sample volumes are low, the entire sample is subjected to heating and cooling at the same 

time, unlike continuous-flow PCR. Droplet PCR also facilitates to multiple sample 

analysis as different samples can be used as droplets in a single flow channel, providing a 

platform for parallel sample analysis. Also, water-in-oil droplets are stable at 

temperatures greater than 90°C, which improves thermocycling at higher temperature and 

decreases the formation o f bubbles.

Although droplet PCR has several above mentioned advantages over continuous- 

flow PCR, the droplets are generally passed through long channels over the temperature 

regions to achieve PCR. Although adsorption o f PCR reagents to the channel walls still 

exist and loss o f PCR components from a small droplet can result in inefficient PCR or 

PCR inhibition. Effective surface coatings to prevent this adsorption are needed.

To address the effective surface to sample volume ratio issue, maintain isotherms 

in the thermal gradient PCR, and take advantage o f the droplet technology, we propose a 

new channel geometry and programmed flow to infuse (PUSH) and withdraw (PULL) the 

sample in the channel. Since the sample is pushed and pulled in a definite channel, the 

surface to volume ratio is low, thereby reducing the adoption o f  PCR components to the 

channel surface. The PCR sample is filled as a droplet plug with oil on both ends to 

reduce the cross contamination and diffusional dilution o f  the sample. As the proposed 

channel geometry is a single vertical channel, it can be located in the center o f the
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thermal gradient system where the isotherms are straight and the gradient is 

approximately linear. This eliminated the need for thermal optimization o f the gradient 

system.

2.2 State-of-the-Art RT-PCR

Various groups have attempted the detection o f RT-PCR in microfluidic devices 

involving a post processing step for analysis. Some groups have demonstrated RT-PCR 

in microfluidic devices and have analyzed the amplified product separately using gel 

electrophoresis [37], [38] and capillary electrophoresis [39], [40]. Some have 

demonstrated a two-step approach in a single microfluidic device, first performing 

reverse transcription step and moving the sample into another chamber for PCR. Obeid et 

al. were the first group to integrate RT-PCR in a single microfluidic device [37]. They 

developed a single monolithic device that can perform RT-PCR with a cycle selection 

feature [37]. Later, their research group also integrated a laser induced fluorescence 

detection o f  the amplified product by moving the amplified product into a fused silica 

capillary [41]. Problems with these studies were the need for a constant time ratio o f 

4:4:9 in the PCR and the need for an additional capillary system for amplified product 

detection.

Lee et al. developed a microfluidic MEMS chip for the RT-PCR and integrated 

micro heaters and micro pumps in the chip, thus eliminating the need for external heaters 

and pumps [38]. This system lacks on chip detection o f  the amplified products, and is 

complex to fabricate and operate. Toriello et al. developed a MEMS chip for RT-PCR 

and used a laser-induced florescence technique integrated it with the capillary 

electrophoresis detection o f RNA [39]. Xing et al. developed a compact continuous flow
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RT-PCR system that used two heated cylinders with spiral tubes for reverse transcription 

and PCR reactions [42]. Their system also incorporated inline fluorescent detection o f  the 

amplified products.

Tamiya et al. reported a PDMS microfluidic chip for reverse transcription and a 

disposable electrical printed (DEP) chip for fast amplification and detection o f  the 

amplified products [43], This method requires additional reagents for electrochemical 

detection and additional components for voltammetry detection. Recently, Phaneuf et al. 

reported a polymer microfluidic chip with infrared radiation-mediated thermocycling for 

RT-PCR [44]. This system is complex to fabricate. A rapid on-chip real time RT-PCR 

system for the fast and accurate analysis o f gene expression still needs to be developed.

2.3 Materials and Methods

2.3.1 Microfluidic Device Design and Fabrication

To fabricate the microfluidic devices, patterned double sided adhesive tape, a 

poly-dimethyl siloxane (PDMS) sheet, and another double sided adhesive polyimide tape 

were bonded between two aminosilane-coated glass slides (S4615, Sigma-Aldrich, MO, 

USA). A cutting plotter (Craft Robo Pro, Graphtech, USA) was used to pattern 100 pm 

double sided adhesive polyimide tape (PPTDE 1112,  Kaptontape.com, CA, USA) and a 

250 pm thick PDMS sheet in the shape o f the channel. A fine tip drill bit ((850-0 IOC, 

NTI, Kahla, Germany) was used to drill holes on a glass slide for fluid inlet and outlet in 

to the microchannel. The assembly o f  the microfluidic device with inlets is shown in 

Figure 2-1. Nanports (Upchurch scientific, WA, USA) were attached with superglue over 

the drilled holes. To clean the glass slide prior to the device fabrication, it was rinsed with 

1% solution o f detergent (Alconox, NY, USA), followed by distilled water, and dried
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with compressed air. PDMS sheet was rinsed with ethanol and dried with compressed air 

to improve bonding to the double sided polyimide tape. Placing the device in a vice and 

tightening ensures strong bonding to the glass slides and reduces air bubbles when it is 

heated for PCR.

Inlet and outlet 
ports

31.5 mm

1 mm *

1.5 mm

Figure 2-1: Schematic o f the components o f microfluidic device fabrication, (a) shows 
exploded view o f microfluidic device showing glass slides, tape and inlet port s, (b) 
shows push-pull PCR channel dimensions showing annealing (blue dotted lines), 
extension (green dotted lines) and denaturation (red dotted lines) regions.

2.3.2 PCR Reagents

The PCR mixture contained 108 copies/pl o f  a viral phage DNA template (4>XI74, 

New England Biolabs, MA, USA), and 0.5 pM o f each o f  the forward and reverse 

primers (Integrated DNA Technologies, 1A, USA). Primers are 110 bp (F- 

GGTTCGTCAAGGACTGGTTT, R-TTGAACAGCATCGGACTCAG). A PCR kit 

(Takara Biosciences, USA) was used to prepare the PCR mixture. A 2X one-step buffer 

containing deoxynucleotide triphosphate (dNTP), and hot start polymerase enzyme was 

used from the kit. 2.5 mg/ml bovine serum albumin (BSA) (Sigma-Aldrich MO, USA) 

was used in the mixture. Intercalating dye, LC Green (LC Green Plus, Idaho Technology,
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UT, USA) was used to observe the fluorescence in PCR amplification in both the 

commercial system (Light scanner system LS-32, Idaho Technology, UT, USA) and the 

proposed push-pull PCR system. The amplification protocol for the LS-32 consisted o f  a 

1 min initial denaturation at 95 °C, followed by 30 cycles o f 95 °C for 1 s, 60 °C for 1 s, 

and 75 °C for 3s. All temperature ramping on the LS-32 was at a rate o f  5 °C/s. At the 

conclusion o f  the PCR, a high resolution melting analysis o f each amplified sample was 

performed serially by monitoring the fluorescence during a steady ramp o f 0.3 °C/s from 

60 °C to 90 °C.

Human RNA (Integrated DNA Technologies, 1A, USA), gene specific primers 

such as B2M, GADH, and GUSB were used for the PCR mixture. Reverse transcriptase 

enzyme (Takara Biosciences, USA) was used in one-step protocol for RT-PCR. Reverse 

transcription o f RNA to cDNA requires an incubation at 42 °C for 5 min.

2.3.3 Microfluidic Chip Loading

The fabricated microfluidic chip is prepared for testing by flowing 100 pi BSA 

through the chip at a flow rate o f 2 pl/min. BSA binds to the amino saline channel walls 

and prevents the binding o f  the intercalating dye, L.C. Green. The chip was rinsed with 

DI water to remove excess BSA from the chip and is loaded with PCR mixture without 

any heating for passivating the channel surface. The chip is then emptied and loaded with 

the PCR sample with fluorinert oil (FC40, Sigma Aldrich MO, USA) making the sample 

a droplet.

2.3.4 Experimental Setup

The thermal gradient system used in this study is previously described as in 

PjeSCic et al. [45]. Briefly, a syringe pump (Pump Elite 11, Harvard Apparatus, USA) is
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programmed to oscillate the sample at a flow rate o f  10 pl/min between denaturing and 

annealing temperatures in the microfluidic channel. A schematic o f  the experimental 

setup is as shown in the Figure 2-2. An in-house fabricated controller and heater system 

is used to generate thermal gradient across the microfluidic chip. The temperatures on the 

chip were maintained at 60°C and 90°C for denature and annealing. An infrared camera 

(A320, FLIR, OR, USA) with a 320* 240 pixel array was used to calibrate and validate 

the temperatures and gradient on chip. A monochrome 1392x 1040 (1.4 MP) resolution 

camera (Pixel Link PL-B957U, ON, Canada) was used to capture images o f the chip 

while the sample is pushed and pulled in the channel. Blue LED lights, 470 nm (Luxeon 

Star LEDs, USA, MR-B0030-20T) were used as an excitation source for the fluorescence 

dye. A dichromatic mirror is used to allow excitation and emission in the same line o f the 

camera. Filter sets were used to filter the LED wavelength and the emission wavelength 

to obtain a sharper quality image. The filter set and dichromatic mirror (Chroma 

Technology Corporation, USA) were selected based on the spectrum properties: LED 

filter 425-475 nm (HQ450/50x); camera filter 485-535 nm (HQ510/50nm). Adding a 

dichromatic mirror 380-750 nm (Q480LP) intensified the LED output on the microfluidic 

chip, improving the melting analysis image o f the channels. Images were recorded for 

every 45 seconds with an exposure time o f 1 second. Recorded images provide the PCR 

amplification curve and melting analysis simultaneously. Images were analyzed using 

MATLAB (The MathWorks, MA, USA) to obtain the amplification and melting curves.



29

To C om puter

H n ti r  Controller

Figure 2-2: Experimental setup o f the thermal gradient oscillating-flow PCR system.

2.4 Results and Discussion

2.4.1 Thermal Calibration

The PCR is based on thermocycling o f the sample; thermal performance o f the 

device must be characterized to determine the thermal variations. The IR camera is used 

to characterize the thermal gradient on the chip. Isotherms on the device under no flow 

and flow conditions are evaluated. The device is loaded with a sample plug (water with 

10% BSA) in flourinert oil. The sample is shuttled between the cold and hot temperatures 

using the syringe pump. Infrared images o f the temperature in the microfluidic chip under 

no flow, and flow conditions are shown in Figure 2-3.



30

Figure 2-3: Infrared Images o f  the thermal gradient on the microfluidic device, (a) no
flow, (b) flow from annealing to denature temperatures, and (c) flow from denature to 
annealing temperatures. Channel geometry is shown in black dotted line. Arrow in 
white represents the direction o f  fluid flow.

Temperatures can be extracted from the pixel values along the X-direction on the 

IR images. Three different lines in the Y direction are extracted and plotted to see 

temperature perturbations in all three conditions. Temperature values are plotted for 

comparison in Figure 2-4. The isotherms observed are straight when there is no flow in 

the microfluidic device. When the sample is shuttled between the annealing and denature 

temperatures, the flow causes a shift in the isotherms. Temperature perturbations o f < 

1.5°C, and < 3°C are observed when the sample is moving from annealing to denaturing 

temperature, and from denaturing to annealing temperature, respectively.
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Figure 2-4: Temperature perturbation plots extracted from IR images for (a) no-flow, 
(b) flow from annealing to denature temperatures, and (c) flow from denature to 
annealing temperature conditions.

2.4.2 Oscillating-flow PCR

When the PCR sample is oscillated in the microfluidic channel, fluorescence 

images (Figure 2-5) were recorded and analyzed to extract amplification and melt 

curves. Images recorded during the annealing stages provide the amplification curve, and 

images at the extension stage; when the sample is flown through the gradient, reveals the 

melting analysis. Increase in the fluorescence intensity is seen in the recorded images, 

indicating the amplification process.



Figure 2-5: Fluorescence images o f melts at various cycles in the PCR. Analysis o f 
the fluorescence in the channel along the dotted green line provides a standard melt 
curves.

Extracting the fluorescence data and plotting against cycle number provides 

amplification curves. Fluorescence values obtained from the dotted green line o f Figure 

2-5 are plotted against temperature to provide melt curves. Figure 2-6 shows the standard 

melt curves extracted from the obtained fluorescence images. First order derivative o f the 

standard melt produces melt peaks.
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Figure 2-6: (a) melt curves obtained from analyzing the fluorescence images. The melt 
curves are separated for better visualization, (b) melt peaks obtained by the first 
derivative o f  the standard melt curves.

Figure 2-7 compares data from the proposed microfluidic oscillating-flow PCR 

system and the commercially available Light Scanner (LS-32) system. The fluorescent 

image from the proposed system provides amplification and melting simultaneously. 

Unlike the LS-32 system, the oscillating-flow system provides the melting analysis at 

every stage, which is useful when multiple targets are amplified at the same time. Melting 

analysis provides the cycle at which the individual targets start to amplify.
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Figure 2-7: (a,b,c) are the amplification curve, standard melting curve, and melting 
peak o f  the phage DNA PCR using LS-32 system. (d,e,f) are the amplification curve, 
standard melt curve and the melting peak o f  the phage DNA PCR using the oscillating- 
flow system.

2.4.3 Optimization o f RT-PCR for On-chip Detection

Reverse transcription PCR (RT-PCR) involves reverse transcription o f RNA to 

complementary DNA (cDNA), followed by amplification with PCR. Critical factors that 

must be optimized for fast and quantitative analysis o f  RNA via RT-PCR in lab-on-chip 

devices are:

1) Speed o f  analysis: Reverse transcription requires an incubation time o f 5 min for 

successful conversion to cDNA. PCR o f cDNA also adds time to the analysis.

2) Sample lower limit: Concentration o f  initial sample needed for successful 

amplification.

3) Multiplex amplification for quantitative analysis.
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These parameters must first be optimized in a standard real-time PCR instrument to 

determine the performance limits o f the RT-PCR.

Three individual primers for gene segments GAPDH, GUSB, B2M were used to 

amplify the commercial human RNA. 40 ng/pl o f RNA concentration was used with the 

Takara kit protocol (Table A -l)  in the Light Scanner system. Themocycling protocols 

(Table A-2, Table A-3) for real-time PCR was determined based on the reaction type. 

Figure 2-8 shows the amplification, standard melt, and melt peak curves for the three 

gene-specific primers. Melting temperatures obtained from a single experiment for 

individual primers B2M, GAPDH, and GUSB are 83.08°C, 85.87°C, and 86.95°C, 

respectively.
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Figure 2-8: Amplification o f RNA using individual primers (B2M, GAPDH and 
GUSB) and melt curve analysis in LS32 system, (a) Amplification curves, b) Standard 
melt curves, c) Melt peaks. Concentration o f  RNA used is 40 ng/pl. Reverse 
transcription time is 5 min and PCR hold times are 20 sec.

B2M and GUSB primers were amplified together in a single reaction mixture 

(Multiplex amplification). B2M and GUSB primers are chosen because their melting 

temperatures are 3.87°C apart. Figure 2-9 shows the analysis o f the B2M and GUSB 

multiplex amplification. Another combination o f primer sets (B2M and GAPDH) was 

used to determine if  they can be identified in a single RT-PCR process (Figure 2-10).
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Cycles

Figure 2-9: Amplification o f RNA using multiple primers (B2M and GUSB) and melt 
curve analysis in LS32 system, (a) Amplification curves, b) Standard melt curves, c) 
Melt peaks. Concentration o f  RNA used is 40 ng/pl. Reverse transcription time is 5 
min and PCR hold times are 20 sec.

Figure 2-10: Amplification o f RNA using multiple primers (B2M and GAPDH) and 
melt curve analysis in LS32 system, (a) amplification curve, b) standard melt curve, c) 
melt peaks. Concentration o f RNA used is 40 ng. Reverse transcription time is 1 min 
and PCR hold times are 0 sec.
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Effect o f RNA sample concentration on RT-PCR was determined by decreasing 

the concentration o f RNA three orders o f magnitude. When the concentration o f  RNA 

sample was decreased, amplification cycle was shifted, and GUSB gene target was not 

amplified. This effect is caused by the lower expression o f the GUSB gene in the human 

RNA sample. Multiplex amplification using 1 ng/pl RNA sample concentration amplified 

both gene targets for analysis. RT hold time was also decreased to 1 min along with 0 sec 

PCR hold times ( Figure 2-11).

t o -

60Cycles 100

-05

Figure 2-11: Amplification o f RNA using multiple primers (B2M and GAPDH) and 
melt curve analysis in LS32 system, (a) Amplification curves, b) Standard melt curves, 
c) Melt peaks. Reverse transcription time is 1 min and PCR hold times are 0 sec.
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In conclusion, RT-PCR performed with Takara’s one-step SYBR PrimeScript kit 

using the Light Scanner system was successful. A lower detection limit o f  10 pg RNA 

was detected with 5 min reverse transcription hold time and 20 sec PCR hold times. A 

lower o f  1 ng RNA was detected with 1 min reverse transcription hold time and 0 sec 

PCR hold times. Combinations o f two primer sets (B2M+GUSB and B2M+GAPD) were 

used together to perform RT-PCR successfully.

2.4.4 Oscillating-flow RT-PCR

Reverse transcription PCR (RT-PCR) was also performed using the thermal 

gradient oscillating-flow PCR. Handling RNA for microfluidic PCR is difficult, as RNA 

is subjected to degradation easily. As the sample is subjected to many preprocessing steps 

such as sample preparation and loading, strict care must be taken in performing RT-PCR. 

After loading the microfluidic channel surfaces with RT-PCR sample reagents, RT on- 

chip is evaluated by determining the amplification efficiency.

2.4.4.1 Demonstration o f  on-chip reverse transcription

For successful on-chip reverse transcription, RNA must not degrade during the 

preparation and sample loading into the microfluidic device. To evaluate degradation, the 

RNA in the sample is examined, after it has passed through the microfluidic device, with 

the Nanodrop instrument. The ratio o f absorbances at 260 nm and 280 nm is a good 

indicator o f RNA quality. The absorbance ratio (A260/A 280) o f ~2 is considered as 

standard quality measure for pure RNA. RNA diluted in water (40 ng/pl final 

concentration) is passed through the microfluidic device and is collected for measuring 

absorbance. Several 20 pi sample runs were performed to determine the saturation and 

integrity o f  RNA after passage through the chip. Figure 2-12 shows the RNA quality for
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pure sample passed through the microfluidic chip. This indicated that several runs o f 

RNA sample are required to saturate and obtain good quality RNA.

2

Pure RNA Run 1 Run 2 Run 3 Run 4 Run 5 
sample

Figure 2-12: Effect o f sample flow in the microfluidic device on A260/A 280 ratio for 
RNA quality.

Once the RNA quality is determined, the RT-PCR sample is passed through the 

microfluidic device and collected at the end to determine the saturation o f RT-PCR 

reagents to the channel surface. Loss o f reagents to the channel surface results in 

inefficient RT-PCR. The RT-PCR sample is passed through the chip and is collected. The 

collected samples are amplified in a real-time PCR instrument to determine amplification 

efficiency. Figure 2-13 shows the amplification efficiency after several runs o f the 

sample collected from the microfluidic device.
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Figure 2-13: Effect o f sample loading in the microfluidic device on RT-PCR 
efficiency.

In the oscillating-flow methodology, a sample plug was used within flourinert oil. 

The effect o f  oil on RT-PCR efficiency was also determined. After ensuring that all steps 

are compatible for RT-PCR in the microfluidic device, the sample is filled in the channel 

for reverse transcription. The temperature o f the microfluidic device is set at 50°C to 

perform reverse transcription on-chip. The sample is left at this temperature for 5 minutes 

and collected to perform PCR in the real-time instrument. Figure 2-14 shows the 

amplification curves for control sample that is amplified with reverse transcription and 

PCR steps in a real time instrument, and the sample with reverse transcription step 

performed on-chip (Figure 2-15) and PCR performed in real-time instrument.
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Figure 2-14: Effect o f sample interaction with flourinert oil on RT-PCR efficiency.
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Figure 2-15: Comparison o f  on-chip reverse transcription to real-time PCR 
instrument. Incubation time for reverse transcription is 5 min in both cases. PCR is 
performed in the real-time instrument after on-chip reverse transcription.
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2.4.4.2 On-chin RT-PCR

Reverse transcription PCR was performed in the oscillating-flow PCR system 

(Figure 2-2). The RT-PCR sample is first loaded into the microfluidic device, and the 

controller is used to raise the temperature o f  the device to 50°C. The sample is incubated 

for 5 min for reverse transcription o f RNA to cDNA. Then the sample is oscillated 

between the denaturing and annealing temperatures for performing PCR. After 

thermocycling for 40 cycles, the sample is collected from the microfluidic device and is 

melted in the light scanner LS32 system. Figure 2-16 shows the standard melts when 

compared to sample amplification in LS32. High resolution melts are also compared for 

both the standard LS32 system and the developed oscillating-flow system (Figure 2-17).
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RT-PCR orvchip
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Figure 2-16: (a) Standard melt curves after RT-PCR in LS32 and in the developed 
oscillating-flow system, (b) First order derivatives o f the standard melts for melting 
temperature analysis.
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Figure 2-17: (a) High-resolution melt curves after RT-PCR in LS32 and in the 
developed oscillating-flow system, (b) First order derivatives o f the high-resolution 
melts for melting temperature analysis.

2.5 Conclusion

Oscillating-flow thermal gradient system for nucleic acid amplification is 

developed for simultaneous amplification and melting analysis. Both DNA and RNA 

were amplified and analyzed using the developed system. Oscillating-flow methodology 

was implemented in the thermal gradient system to achieve nucleic acid amplification. 

The developed thermal gradient oscillating-flow system has many advantages over the 

current methods, such as cycle number flexibility, reduced cross contamination, and 

effective surface to volume ratio for reagent loss.



CHAPTER 3 

MICROFAB IN A MICROWAVE OVEN: SIMULTANEOUS 

PATTERNING AND BONDING OF GLASS 

MICROFLUIDIC DEVICES

3.1 Introduction

For the past few decades, microfluidics has revolutionized the fields o f 

biochemistry and biotechnology. Advances in the field have led to the development o f 

lab-on-chip technology, which is aimed at combining several laboratory processes into a 

single chip. Historically, these devices were created from conventional microelectronics 

fabrication processes; therefore, silicon and glass substrates were most common. Such 

techniques generally required a cleanroom infrastructure, complex instruments, and harsh 

chemicals.

In recent years, effort has been made to develop less complex microfluidics 

fabrication methods. This has led to the emergence o f  polymers such as 

polydimethylsiloxane (PDMS) [9], cyclic olefin polymers (COP) or copolymers (COC) 

[46], [47], and polymethylmethacrylate (PMMA) [48] as microfluidic device materials 

[11]. While the primary thrust has always been cutting-edge research, there is significant 

interest in moving away from highly specialized materials, equipment, and infrastructure 

to manufacture or prototype microfluidics. For example, the Khine research group at 

University o f  California, Irvine made significant advances in microfluidics and

45
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nanotechnology using a children’s toy, Shrinky Dink [13], [14], [49]; the Andrade 

research lab at University o f  Utah demonstrated how a hobby-grade vinyl sign cutting 

plotter could be used to make high-precision microscale structures and microchannels 

[10]; and the Whitesides lab at Harvard pioneered the use o f ordinary paper as a platform 

for microfluidic assays [12]. This article presents a microfabrication development in this 

same vein. A microwave kiln, marketed as a hobby-grade tool for jewelry making, is 

used here to fabricate all-glass microfluidic devices. Internal temperatures rise above 

800°C in less than 3 minutes and microchannel fabrication and fusion bonding is 

performed nearly two orders o f magnitude faster than conventional methods.

Conventional methods to fabricate glass microfluidic channels include surface 

micromachining, buried-channel micromachining, and bulk micromachining[18]. These 

methods use complex lithography techniques to pattern and etch glass substrates to form 

microfluidic structures and channels. Regardless o f  the fabrication method used, the last 

process in the fabrication sequence involves some type o f  laminate bonding to yield 

closed fluidic paths. Traditional techniques widely used to seal glass microchannels to 

either glass or other substrates are glass fusion bonding and anodic bonding o f glass to 

silicon[18].

Alternatives have been explored, and some room temperature bonding techniques 

have been invented. For example, Qun Fang et al. [50] have developed a method for 

room temperature bonding o f  glass substrates that can be achieved by soaking the 

substrates in concentrated sulphuric acid (H2S 0 4) for 12 hours and squeezing the 

substrates together with high pressure. Also, Luo et al. [51 ] improved the process o f 

bonding glass substrates using H2S 0 4 cleaning by an additional HF stream to form a thin
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hydrolyzed water layer between the surfaces, which provides enhanced bonding strength 

and quality. Furthermore, a combination o f reactive ion etching (RIE) plasma treatment 

with a variety o f  gas sources such as oxygen/tetrafluoromethane (CF4) has been 

investigated for room temperature bonding o f  glass substrates with micro and nano 

channels [19], [52], [53]. Such next-generation bonding methods have decreased process 

times and improved feature resolution. However, they generally require advanced 

equipment and infrastructure.

To overcome some o f  the complexity in conventional fabricating all-glass 

microfluidic devices, glass composite devices have been developed. Composite devices 

gained popularity because o f  they are simple to fabricate and do not require a cleanroom 

environment. For example, xurography [10] has been used to pattern double-sided tapes 

which serve as both a bonding and channel layer between un-pattemed glass blanks [45], 

[54]. Also, PDMS bonding to glass with plasma treatment [15] has shown promise for the 

wide adaptation o f  composite devices. Although glass composite devices have 

advantages over their polymer counterparts (e.g. broad spectrum optical transparency), 

fused-glass microfluidic devices have added versatility, such as high temperature 

stability, pressure rating, solvent compatibility, and well-established surface modification 

methods for immobilization or passivation.

In this article, we present a new method for the simple and rapid fabrication o f 

glass microfluidic devices. The proposed method is based around a one-step technique 

that simultaneously forms the microchannels in the glass and bonds the layers together. 

Glass fusing is a common crafting technique for artists and hobbyists, which involves 

melting two or more compatible glass pieces at high temperatures in a kiln. Compatible
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glass pieces with the same coefficient o f  expansion (COE) and viscosity are generally 

used in glass fusing and which are melted at temperatures typically in the range o f 590°C 

to 870°C. We report the rapid fabrication o f glass microfluidic devices by glass fusing 

technique in a microwave oven using a commercially available kiln.

3.2 Materials and Methods

Fabrication o f  microfluidic devices (Figure 3-1) using the proposed study 

involves the following steps. (1) Positioning o f the template between the glass slides, (2) 

Placement o f the slides in the kiln, (3) Heating o f  the kiln in the microwave oven, (4) 

post-processing o f the microdevice.

Selection o f  glass for this technique requires matching the coefficient o f 

expansion (COE). Glass with identical COE is used for fusing in this study. Glass types 

such as fusible glass (D iam ond Tech, FL, USA., 90 COE; thickness -  2 mm), Spectrum® 

glass (Spectrum® Glass Company, USA., 96 COE; thickness -  2 mm), soda lime glass 

(Fisher Scientific, MA, USA., 104 COE; thickness -  1 mm), and borosilicate glass 

(Bullen Ultrasonics, OH, USA., 33 COE; thickness -  2 mm) were used to evaluate the

Fabricated mkroflukHc davfca

Figure 3-1: Schematic o f the fabrication process.

3.2.1 Glass Preparation
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fabrication technique. Glass sheet is cut into 25 mm * 75 mm pieces using diamond 

tipped glass cutter. A Drem el tool is used  to  drill holes into th e  glass according to  the  

channel geom etry  for in le t and outlets, as described  previously  [45]. Cleaning o f the 

glass pieces prior to the device fabrication was performed by washing with 1% solution 

o f detergent (Alconox, NY, USA), then with distilled water and were dried with 

compressed air.

3.2.2 Channel Design

The microfluidic channel design can consist o f  high-aspect ratio regions with a 

rectangular cross-section and thin channel regions with a circular cross-section. Channel 

geometries for rectangular cross-sections were designed to fit the glass pieces and were 

drawn in Adobe Illustrator (Adobe Systems, CA, USA). Since the technique is based on 

glass fusing at high temperatures, the sacrificial layer between the glass pieces (around 

which the softened glass will mold) should withstand high temperatures. Ceramic- 

impregnated fiber paper is ideal for this application. It is commonly used to protect kiln 

walls from molten glass and dust. The fiber paper is ceramic-impregnated with an organic 

rigidizer which, when fired, turns black and then white again when the binder bums off. 

For this project, a cutting plotter (Graphtec America Inc., USA) was used to cut kiln fiber 

shelf paper (Bullseye Glass Company, USA., thickness -130 pm) into the desired channel 

geometry, according to the method described previously [45]. To obtain channels with 

circular cross-section, the design was laid out in kiln thread (diameter -800 pm), which 

was obtained by separating the strands o f  kiln rope (DelphiGlass, USA).
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3.2.3 Assembly and Fusing

Holes drilled in the top glass piece are plugged using kiln rope. The channel cut 

out o f the kiln paper was sandwiched between a plain glass piece and glass piece with 

holes plugged with fiber rope. This sandwich is placed inside the Fuseworks™

Microwave Kiln (Diamond Tech, USA) which is placed within a household-style 

microwave oven. For the testing conducted as part o f  this work, an 1100 W microwave 

oven was used at full power. Firing time in the microwave oven must be optimized for 

glass thickness and microwave power output. The manufacturer provides a suggested 

starting point for the firing time for a [A inch thick glass for different microwave power 

wattage (Table 3-1). When bombarded with microwave radiation, the proprietary coating

• Tli

on the inner surface o f  the Fuseworks Microwave Kiln reaches temperatures between 

760°C to 870°C. When softened, the glass pieces mold around the patterned paper (as it 

oxidizes) and fuses together, thereby forming the designed flow channel.

Table 3-1 : Dependence o f firing time on microwave power.

M icrowave Power (Watts) Firing time (minutes)

800 3 to 4

1100 2 to 3.5

1200 2 to 3.5
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3.3 Experimental Preparation

After firing, the kiln is then removed from the microwave and is placed on a heat 

resistant surface to cool for at least 45 minutes. The microfluidic device is cleaned with a 

pressurized air gun and placed in an ultrasonicator (B200, Branson Ultrasonics Corp, 

USA) for 5 min to 20 min, depending on the geometry, until the fired kiln paper is 

removed (Figure 3-2). After the glass is cleaned and dried, blunt tip luer-lock needles 

(NicVape, SC, USA) is attached with instant adhesive (Loctite® 460, OH, USA) to the 

inlet and outlet ports on the microfluidic devices. Tubing is connected to the access ports 

through fluidic interconnects (IDEX Health & Science, WA, USA) to allow fluid flow 

into the fabricated microfluidic devices. Syringe pumps (Pum pl 1 Elite, Harvard 

Apparatus, USA) were used to introduce fluids into the devices. An optical microscope 

was utilized to image the flow in the devices.

\ 7

\ 7

Microwave kiln 
for about 2 min

Removal of 
ceramic paper

■  Glass su b s tra te  ■  •  C eram ic p a p e r p a tte rn s  

□  Fired ceram ic p a p e r □  O M icro-channels

Figure 3-2: Schematic showing the simultaneous fabrication o f  glass microchannels 
and fusing with ceramic impregnated paper.
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3.4 Results and Discussion

3.4.1 Firing Time

Tim e in th e  m icrow ave oven, firing tim e, is key. A difference o f  just a few 

seconds can have a significant impact. If the firing time is too long, the glass will lose its 

form, and the sacrificial material for the channel may even migrate through the liquefied 

glass. If the firing time is too short the glass pieces do not adequately fuse. The firing 

time was optimized for several glass types and dimensions by examining the glass 

bonding interface and the channel distortion after fusion. Table 3-2 gives these optimum 

firing times for an 1100-watt microwave for different types o f  COE glass and 

thicknesses.

Table 3-2: Firing time for different COE glass.

Glass type / thickness COE Firing time (min:sec)

Borosilicate / 2mm 33 3:30

Fusible glass / 2mm 90 3:00

Spectrum clear / 2 mm 96 2:00

Soda lime glass / 1mm 104 1:45

3.4.2 Microfluidic Channels

Microchannels with rectangular and circular cross-sections (Figure 3-3) were 

fabricated using the method explained above. The patterned kiln paper was used as the 

sacrificial layer to produce the rectangular cross-section channels, and kiln thread for the 

circular cross-sections. The microchannel walls in these devices possessed a unique
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texture caused by the roughness o f  the sacrificial material. The ability to create high- 

aspect ratio rectangular and circular channels with a simple process is a strong advantage 

o f this technique. Fabrication o f the microchannels and bonding is achieved in 2 minutes 

to under 4 minutes (Table 3-2), depending on the glass type and thickness. The entire 

fabrication process from concept to device takes about an hour, estimating 5 minutes for 

cutting the paper pattern, 4 minutes for firing in the kiln (assuming 2 mm thick 

borosilicate glass), 45 minutes for cooling in the kiln after the firing in the microwave 

oven, and 5 minutes for ultrasonication and cleaning. Channel widths as small as 500 pm 

were successfully produced in this study.

Figure 3-3: SEM micrographs o f  the fabricated microfluidic channels a) cross-section 
o f a straight rectangular channel, b) surface roughness o f the channels, c) cross-section 
o f a circular channel, d) surface roughness o f  the fired ceramic impregnated paper.
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In general, feature size is limited by the sacrificial material used for patterning by 

cutting plotter. Features that are taller than their width are difficult to cut using the cutting 

plotter, and generally widths twice the height o f  the material are preferred. This technique 

is similar to soft-lithography, which uses a mold -  patterned in the negative shape o f the 

desired feature -  to form the shape o f the substrate material. In this work, though, it is 

softened glass that forms around the paper template (Figure 3-2). However, soft 

lithography has separate processes for the patterning o f the material and the subsequent 

bonding o f the layers to form the channels. In contrast, using this technique, the channels 

are formed around the paper mold and the glass layers are fused together in a single 

process. Since the glass is melted and fused in this technique, the pressure resistance for 

fabricated microfluidics devices is only limited by the fluidic connects. The microfluidic 

devices produced using this technique are all-glass. They are compatible with most 

chemicals. We have demonstrated the fabrication o f  different channel geometries using 

the proposed technique (Figure 3-4). The developed technique is believed to be used by 

the research community to demonstrate a quick and proof-of-concept o f their research 

that require glass microfluidics. Microfluidic devices were fabricated using different 

channel geometries and are tested for performance.
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Figure 3-4: Microfluidic devices with different flow geometries, a) S-shaped channel, 
b) straight channel, c) Y-shaped channel, d) smallest feature size channel fabricated 
using this study. Red and green dyes are used for flow demonstration.

3.5 Conclusion

The article presents a simple technique for the rapid fabrication o f glass 

microfluidic devices. A hobby-grade kiln is used in a conventional microwave oven to 

soften the glass layers such that they mold around a sacrificial layer and fuse together. 

This technique has been demonstrated here for both rectangular and circular cross-section 

channels, and for dimensions as small as 350 pm. For the glasses evaluated in this study, 

formation o f the channels was achieved within 4 minutes or less. Both the rapidity o f  the 

process and the simultaneous nature o f the patterning and bonding that occurs represent a 

significant improvement beyond conventional methods for all-glass microfluidic device 

fabrication.



CHAPTER 4 

MICROSCALE THERMAL BIOSENSOR: CRITICAL DESIGN 

CONSIDERATIONS AND OPTIMIZATION

4.1 Introduction

Calorimetric biosensors have been used to detect various bioprocesses such as 

enzyme-substrate activity, protein binding activity, DNA reactions, and cell metabolism. 

Microscale calorimeters were developed in recent years for their advantages in sample 

handling, speed o f  detection, and sensitivity. Several thermal sensors such as thermistors, 

thermopiles and RTD’s were used in calorimetric biosensors to convert the universal 

nature o f  heat power production o f biochemical reactions to a measurable output. 

Thermopiles are versatile thermal sensors for microscale chemical detectors because they 

have high common mode thermal noise rejection ratio and can be easily miniaturized. 

They have been used for biological reagent detection and chemical analysis. For example, 

Baier et al. developed a microcalorimeter with bismuth (Bi)-antimony (Sb) thin film 

thermopiles to detect the exothermic reaction o f oxidation o f ascorbic acid by ascorbate 

oxidase [55]. Lerchner and colleagues appliled the same method for the measurement o f 

oxidation o f glucose by glucose oxidase/catalase [56], metabolic dynamics o f biofilms in 

real-time [57], and hybridization o f single stranded DNA strands [58]. More recently, 

Guilbeau et al developed thermopile-based sensors for the detection o f  glucose [59], L- 

glutamate [60], and DNA sequencing [61]. The majority o f the microcalorimeter
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applications were proof-of-concept in nature, but they have strong potential for 

development for clinical, scientific, or commercial need. Success o f  these emerging 

experimental methodologies will be determined by such factors as the sensitivity and 

speed o f  these analyses when compared with existing technologies. These performance 

metrics are fundamentally related to the thermal transport through the microsystems.

A critical element o f  thermopile function is the thermal separation between the 

measuring and reference junctions. One common method has been to divide the devices 

into separate reaction chambers [62] or flow streams [63]. While this configuration 

thermally isolates the two regimes from each other effectively, it also sacrifices some o f 

the common mode rejection potential o f  thermopiles. For example, ambient temperature 

gradients will impact measuring and reference areas that are spaced far apart. Other 

unavoidable experimental inconsistencies, such as variations in pressure drop or flow 

control within the two regions, can create artifacts in measured signals. In response, 

researchers have created measuring and reference regions within the same flow channel

[64] or sample chamber [65]. In such systems, two approaches can be used to direct the 

heat signal to the measuring junctions and isolate the measuring and reference junctions:

1. Controlled symmetry o f  heat generation by virtue o f  selective surface preparation. 

A promising example o f this approach is the localized immobilization o f reactants 

within a single flow channel.

2. Heat generation at the interface o f  two fluid streams. In such a configuration, the 

location o f the fluidic interface is used to direct the heat flow. In this latter 

method, the isolation o f  the heat and the resultant sensitivity o f the thermopile
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measurements are heavily determined by such factors as flow rate and fluidic

positioning within the microchannel.

In this study, we characterize the impact o f such critical parameters and provide 

some essential guidelines for the optimization o f continuous flow systems in general. We 

have characterized the impact o f flow velocity on the thermal time constant o f  the micro 

calorimeter, steady state response o f  the system, and the location o f  the sensor in the flow 

stream and provide essential guidelines for the optimization o f single-stream thermopile 

systems.

4.2 Experimental Methods

The experimental setup for performance testing consists o f  a microfluidic chip 

with integrated thermal sensor, syringe pumps, nanovoltmeter and a computer for data 

analysis. Syringe pumps are used to drive the analytes through the microfluidic 

calorimeter. The exothermic reaction generated by the mixing o f  analytes in the 

microfluidic calorimeter is detected by the thermopile and a proportional voltage is 

recorded.

A micro-calorimeter is fabricated using a rapid prototyping technique called 

xurography [10]. The calorimeter consists o f  a 100 pm deep Y-shaped channel 

microfluidic device, which is made by sandwiching a microscope glass slide (thickness-

1.2 mm and thermal conductiv ity-1.05 W (m°C)_l, Electron Microscopy Sciences, 

Hatfield, USA), dual side adhesive Kapton® tape (KaptonTape.com), cut in the form o f 

channel using a cutting plotter (Graphtec America Inc., USA) and a microscope glass 

coverslip o f  thickness-0.13-0.17 mm and thermal conductivity-1.14 W (m°C)~l 

(Electron M icroscopy Sciences, USA). Bismuth (Bi)- antimony (Sb) thin film thermopile
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is integrated on the outer wall o f the microscope glass coverslip. Figure 4 -la  shows the 

schematic o f the microfluidic device assembly. The thin film thermopile is fabricated on 

a 50 pm polyimide (Dupont, USA) support using a thermal evaporation technique 

detailed by Guilbeau et al. [61]. Two shadow masks with complementary patterns are 

used to deposit bismuth and antimony metal layers on the polyimide support. First, a 0.8 

pm thick bismuth film is deposited onto the polyimide support using a shadow mask, and

1.2 pm thick antimony film was evaporated onto Kapton using the shadow mask with a 

complementary design. Figure 4 -lb  shows the fabricated thermopile on a polyimide 

support. The thermopile is 3 mm wide by 6 mm long and has 50 thermocouple junctions 

with a theoretical Seebeck coefficient o f 5.95 pV (m K )'1. The thin film thermopile 

fabricated on polyimide support is integrated on to the microfluidic device using 

superglue. Conductive silverprint (GC Electronics, USA) was placed on the thermopile 

contacts and thin copper sheet (3M™ VHB™  Tape, 3M, USA) to provide electrical 

contact to the thermopile. The fabricated micro-calorimeter is shown in Figure 4-1 c.

Figure 4-1: Fabrication o f  the micro-calorimeter, a) Schematic showing the fabrication 
o f  microfluidic device (not drawn to scale), b) Bismuth (Bi)- antimony (Sb) thin film 
thermopile fabricated on a 50 um polyimide support, c) Micro-calorimeter: 
microfluidic device with integrated thermopile.
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4.3 Experimental Setup

Experimental setup used in this charactarization study is shown in Figure 4-2.

The entire setup is placed in a Faraday cage to reduce the noise interference with the 

recording system. To isolate the temperature field within the microcalorimeter from the 

surroundings, the device was placed within an enclosure. Two syringe pumps (Pum pl 1 

Elite, Harvard Apparatus, USA) are used to introduce water (house Deionized (DI) 

source) and ethanol (Ethyl Alcohol Pure 200 Proof, EMD Chemicals Inc., USA) 

continuously into the experimental device. A voltmeter (Nano-voltmeter 34420A,

Agilent, USA) measures the thermopile output, which is recorded into a computer 

through a LabView SignalExpress interface (National Instruments, USA).

Sample Loop

□ □ □  □ □  
O Q  □  □  □  □

Mlcrofluldic chip 
with th«rmopi« Mnsor

Figure 4-2: Schematic o f  the experimental setup.

4.4 Experimental Procedure

Two categories o f  experiments were performed: continuous and bolus mixing o f 

water and ethanol.
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4.4.1 Continuous Mixing/Steady State Response

Continuous mixing o f  ethanol and DI water is used to characterize the steady state 

performance o f  the system. Syringe pumps are programmed to change the ratio o f flow 

rates in inlet 1 and 2, respectively. The ratios are changed to move the mixing interface 

from the center to the edges o f  the channel where the thermopile junctions underneath are 

located. Several volumetric flow rates with varying flow ratios were used to characterize 

the steady state response. The microfluidic device at the different flow rate ratios 

indicates the mixing interface as shown in Figure 4-3.

(a) (b) (c)

Figure 4-3: Fluid flow in the micro-calorimeter showing mixing interface for different 
flow rate ratios. Dashed white lines represent the walls o f the microfluidic device. The 
dashed red line represents the interface between the fluids driven through inlet 1 and 2. 
DI water is driven into one inlet, and DI water mixed with green dye is driven into the 
other inlet, a) Flow rate ratio 1 :1b) flow rate ratio 2:1 and c) flow rate ratio 4:1.

4.4.2 Bolus Mixing

Mixing o f a bolus sample is also studied, as in practical applications; the sample 

used for detection is limited by volume and cost. An injection valve (Rheodyne® Model
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9725 Injector, Chrom Tech, Inc., USA) is used to inject a 5 pal ethanol sample as a bolus 

into one o f the inlets, while continuously pumping DI water in both the inlets. The 

mixing interface is adjusted so that it is positioned on one o f  the junctions o f  the 

thermopile. Several volumetric flow rates were used to study the response o f the 

thermopile.

4.5 Results and Discussion

4.5.1 Experimental

4.5.1.1 Continuous mixing/steady state response

To characterize the performance o f  the micro-calorimeter, the heat released 

during the mixing reaction between water and ethanol was measured. The flow rates for 

the water and the ethanol streams were adjusted to change the location o f the reaction 

zone relative to the measuring or reference junctions o f the thermopile. The location o f 

the fluid interface between the flow streams is a function o f only the ratio o f  the flow 

rates. The nature o f  the mixing reaction, though, is additionally affected by the magnitude 

o f  those flow rates. The thermopile voltage responded sharply to changes in the reaction 

zone location. Flow rate ratios are programmed to move the interface from the center o f 

the channel to either side o f the channel. Three volumetric flow rates are used and the 

thermopile output is recorded. A typical recording o f  the thermopile output for the 

different ratios o f the flow rates for a total volumetric flow rate o f  200 pl/min is shown in 

Figure 4-4. When the mixing layer is equidistant from the measuring and reference 

thermopile junctions, nearly zero voltage is transduced. The non-zero voltage indicated in 

Figure 4-4 for a 1:1 ratio is from a slight thermal asymmetry caused by the unequal 

thermal conductivities o f  the two flow streams.
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Figure 4-4: Thermopile output for different flow rate ratios for a total volumetric flow 
rate o f 200 pl/min. Syringe pumps are programmed to change the flow rate ratios from 
1:1, 2:1, and 4:1.

Three total volumetric flow rates such as 100 pl/min, 200 pl/min and 400 pl/min 

are imposed at different flow rate ratios. The thermopile outputs are plotted for different 

volumetric flow rates Figure 4-5. Analysis o f  steady state response provides the thermal 

time constant o f  the micro-calorimeter. First order derivatives represent the time constant 

analysis o f  the micro-calorimeter. The rise o f the first derivate indicates how fast a 

steady state is achieved, and the fall indicates the thermal time constant o f the system.
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Figure 4-5: Steady state response o f micro-calorimeter for different volumetric flow 
rates a) 100 pl/min, b) 200 pl/min and c) 400 pl/min.

4.5.1.2 Bolus m ix im

Thermopile output for injection o f a 5 pi ethanol sample was recorded (Figure 

4-6) for total volumetric flow rates o f 100, 200, and 400 pl/min in the microfluidic 

calorimeter. A flow rate ratio o f 1:4 in the inlets is used for different total volumetric 

flow rates. When the ethanol sample is perfused over the thermopile junctions, the 

thermopile output changes because o f  the heats o f mixing o f  ethanol and water. As the 

bolus sample passes over the thermopile junctions, the thermopile output reaches the 

baseline. The peak height o f  the signal represents the maximum change in the 

temperature detected by the thermopile, and the area under the curve represents the total 

heat detected for the bolus injection.
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Figure 4-6: Thermopile output for a bolus injection o f ethanol sample using an 
injection valve.

4.6 Conclusion

The performance o f  the micro calorimeter was characterized by measuring the 

heat released during the mixing reaction between water and ethanol. The ratio o f flow 

rates is adjusted to change the location o f  the reaction zone relative to the measuring or 

reference junctions o f the thermopile. Analysis o f steady state response provides the 

thermal time constant o f  microcalorimeter. As the flow velocity increases, the time 

constant to reach steady state response decreases.



CHAPTER 5

CONCLUSIONS

This research work focused on realizing technologies and methods towards an 

integrated lab-on-a-chip system for automated nucleic-acid analysis. This work has led to 

the development o f novel microscale nucleic-acid amplification technique, a new simple 

method for the fabrication o f all-glass microfluidic devices, and design considerations 

involved in the calorimetric sensing technology for a potential integration into lab-on-a- 

chip system for point-of-care applications. Each o f  these developments were 

demonstrated and characterized in this work.

Significant scientific research findings that have resulted from this work include 

the following:

1. O scillatory-flow  the rm al g rad ien t PC R : oscillatory-flow methodology was adopted 

to the thermal gradient system for spatial amplification o f nucleic acid sample. This 

technique overcomes many existing limitations related to microscale continuous-flow 

PCR such as cycle number limitation, cross contamination. The method was suitable 

for the amplification o f DNA and RNA without any additional temperature 

requirement for reverse transcription step in RNA amplification. Real-time analysis 

o f  nucleic acid sample for amplification and melting detection was performed using 

this system by recording and analyzing fluorescence images. Nucleic-acid 

amplification demonstrated in this work was achieved in 40 minutes.
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2. Simultaneous pattering and bonding o f glass microfluidic devices in a 

microwave oven: a novel and simple method was developed fabricated for the 

fabrication o f microchannels and bonding to achieve microfluidic devices. A hobby- 

grade microwave kiln is used to obtain temperatures above 900°C for meting and 

fusing glass. A sacrificial layer (kiln paper) acts as a pattern and forms the channels in 

the glass-fusing stage. Rectangular and circular cross-section glass microchannels 

with a feature size o f 350 pm were fabricated through this technique. Research grade 

all-glass microfluidic devices were fabricated in under 4 minutes.

3. Optimization o f thermal sensing method for nucleic-acid detection: thermal 

sensing o f  biochemical reactions is characterized for successful commercialization o f 

this technology. Thermal signal response is based on the flow velocities and the 

thermal time constant o f  the system. Steady state responses are characterized to 

obtain maximum sensor output. The design considerations o f the system and 

optimization parameters were identified to obtain maximum sensor output and to aid 

in successful integration o f  this sensing method for lab-on-a-chip automated analysis.



CHAPTER 6

FUTURE WORK

This section discusses the directions o f  future study that will provide potentially 

valuable insight towards lab-on-a-chip system for point-of-care applications.

6.1 Quantitative Analysis

The microfluidic geometry used for oscillating-flow PCR in this work is a simple 

design. By changing the geometry (Figure 6-1) and repeating the design on the same 

chip, quantitative analysis can be performed. The standard PCR sample and the test PCR 

samples can be loaded with oil plugs in the system. When the PCR is performed using 

oscillating-flow, a single fluorescence image acquired can be used to quantitatively 

determine the difference between the standard and the test sample. By performing PCR 

using this technique, complexity related to multiplex analysis is eliminated.
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Figure 6-1: Geometry for quantitative analysis.

6.2 Integration

Once the PCR is achieved, the system can be integrated with the thermoelectric 

sensor for on-chip detection. Symmetric PCR (equal concentration o f  primers) has been 

demonstrated in this dissertation, PCR variant such as asymmetric PCR can be performed 

to obtain one strand o f  target sequence in excess after the amplification. The amplified 

product can then be moved to the integrated thermoelectric sensor region to detect the 

amplified product. DNA hybridization reaction can be implanted over the thermoelectric 

sensor region to detect the amplified product. One advantage o f using this approach is 

that the signal to be monitored is electrical, as opposed to optical. Only a voltmeter is 

required for such measurement, which provides an extremely simple way to fully 

automate the analysis system.



APPENDIX A

RT-PCR EXPERIMENTAL PROTCOL

A .l Stock Solution Preparation

The following steps are involved in the solution preparation:

1. Prepare the Forward and Reverse primers to 100 pM stock and dilute to 10 

pM.

2. Prepare RNA to a stock concentration o f 100 ng.

A.2 One Step SYBR Prime Script RT-PCR protocol

1. Prepare the following reagents on ice. < Per reaction >. Table A -l details

the regents list and concentrations for the preparing the mixture.
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Table A -l: Reagents for one-step RT-PCR.

Reagents Volume Final Cone.

2X One Step SYBR® RT- 
PCR Buffer 4

10 pi IX

PrimeScript 1 step Enzyme 
Mix 2

0.8 pi

PCR Forward Primer (10 
pM)

0.8 pi 0.4 pM*1

PCR Reverse Primer (10 
pM)

0.8 pi 0.4 pM*1

Total RNA 2 pi *2

RNase Free dH 20 5.6 pi

Total 20 pi

* 1: The final concentration o f  primers can be 0.4 pM for most reactions. If  this

does not work, determine the optimal concentration within the range o f 0.2 - 1.0 pM. 

* 2: It is recommended to use 10 pg - 100 ng total RNA as templates.

2. Start reaction Gently spin down PCR capillaries, then start the reaction after 

setting them in the LightScanner 

Stage 1: Reverse transcription 

42 °C 5 min. 20 °C/sec.

95 °C 10 sec. 20 °C/sec.

1 Cycle

Stage 2: PCR reaction 

95 °C 5 sec. 20 °C/sec.
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60 °C 20 sec. 20 °C/sec.

40 Cycle

Stage 3: melting curve analysis 

95 °C 0 sec. 20 °C/sec.

65 °C 15 sec. 20 °C/sec.

95 °C 0 sec. 0.1 °C/sec.

Note: Heat inactivation prior to PCR should be 95 °C for 10 sec. There is no need 

to heat at 95 °C for (5-15 min). for initial denaturation, as is required for chemically 

modified Taq polymerase. If  longer heat treatment is performed, the enzyme activity

decreases and the amplification efficiency and the accuracy in quantification can also be

affected.

3. Analyze after completion o f reaction. After the reaction is completed, verify 

amplification curve and melting curve. Establish the standard curve when 

quantitative analysis is necessary.

4. Different thermocycling parameters for PCR are detailed in Table A-2 and Table 

A-3.
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A.3 Shuttle  PC R

Table A-2: Recommended shuttle PCR protocol for Takara kit.

Step Temp. Time Detection Remark

Denature 95°C 3 - 5 sec. O ff Since the target size 
amplified for real-time PCR 
is generally shorter than 300 
bp, denaturation at 95 °C for 
3 - 5  seconds is sufficient.

Annealing/
Extension

60 - 66°C 20 - 30 sec. 

( 3 0 - 3 4  sec.) *1

On Please try each standard 
protocol at first. The 

temperature should be 
optimized within the range 
o f 60 - 66°C if  optimization 

is required. When the 
reaction does not proceed 

efficiently, extend the time 
or change to a 3-step PCR 

protocol.
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A.4 T h ree  Step PC R

Table A-3: Recommended three step PCR protocol for Takara kit.

Step Temp. Time Detection Remark

Denature 95 °C 3 - 5 sec. O ff Since the target size 
amplified for real-time PCR 
is generally shorter than 300 
bp, denaturation at 95 °C for 
3 - 5  seconds is sufficient.

Annealing 55-60 °C 1 0 - 2 0  sec. O ff Please try 55°C for 10 
seconds first. When non

specific amplified products 
are generated or when the 
amplification efficiency is 

low, optimize the annealing 
temperature. Longer 
annealing time may 

sometimes improve the 
amplification efficiency.

Extension 72 °C 6 - 1 5  sec. 

(30 -3 4  sec.) *1

On When the amplified size is 
less than 300 bp, the time 

should be determined within 
the range o f  6 - 15 seconds. 
Longer extension time can 

cause non-specific 
amplification.

Cycle: 30 - 45cycles

* 1: Detection step must be set at more than 30 seconds for instruments o f Life 

Technologies. For 7700 and 7500 Fast, it should be set at 30 seconds, for 7000 and 7300, 

at 31 seconds, and for 7500, at 34 seconds.
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