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ABSTRACT 
 

An optically-based injection control system has been developed as a proof-of- 

concept that such is of use for an intravenous drug delivery application. Current clinical 

drug delivery for oncology typically provides for intravenous administration without 

providing awareness of achieved plasma concentration, yet interpatient variability 

produces consequences ranging from toxicity to ineffectual treatments.  We report a 

closed loop injection system integrating a pulse-photoplethysmograph to measure the 

concentration of indocyanine green (ICG) in the circulating blood of a one-compartment 

murine model. A proportional-derivative (PD) controller manages the injection rate in 

real-time. The target function for the controller is the population estimate of the 

pharmacokinetic model developed using Bayesian statistics describing the injection phase 

of a calibration set of 22 injections in mice. The controlled set of 8 injections showed a 

reduction in variance from the target injection phase concentration profile of 74.8%. 
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CHAPTER 1 

LITERATURE REVIEW 

 
1.1 Current Medical Treatments 

 
The administration of medication has been simplified to the five rights: right 

medication, right dose, right patient, right time, and right route as a first approximation of 

the appropriate use of drugs [1]. This mantra neglects the variance observed between 

patients and between doses on the same patient in both pharmacokinetics (i.e., drug 

concentration dynamics) and pharmacodynamics (i.e., effects of these concentrations). 

Although the vast majority of drugs that receive Food and Drug Administration (FDA) 

approval have a broad therapeutic window – the range of doses at which a drug is 

effective without unacceptable adverse events – many drugs are available with a narrow 

therapeutic window because the potential benefits outweigh the side effects. For 

example, many chemotherapeutic agents fall into this category [1]. 

For drugs with a narrow therapeutic window, the concentration can be monitored 

over time to be within that window based on an individual patient’s response. These 

adjustments can be made over a longer period of time based on the pharmacodynamics 

(e.g., titrating the dose of warfarin or adjusting the chemotherapy dose based on 

neutrophil counts) or over shorter time scales by adjusting the dose based on the 

pharmacokinetics.  In theory, adjustments based on pharmacokinetics can be performed 
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during clinical drug administration and the area of therapeutic drug monitoring has arisen 

to regulate the effects of narrow therapeutic index drugs by controlling the 

pharmacokinetics. However, one of the limitations of therapeutic drug monitoring is the 

logistics of measuring blood concentrations at regular intervals and providing timely 

feedback during a single dose.  Clinical therapeutic drug monitoring is generally 

restricted to measuring the pharmacokinetics during a dose and then adjusting subsequent 

doses based on the measured, patient-specific pharmacokinetics [1]. Herein, we 

demonstrate an enhancement of therapeutic drug monitoring in which the drug 

concentration is measured in real-time using optical sensing which allows for controlling 

the concentration of a drug during a dose rather than waiting for the next dose. 

An example of the issues mentioned above may be seen in the in the field of 

anesthetics. It is a well-documented issue that monitoring of the drug delivery and the 

various states of the patient are crucial to maintaining the proper therapeutic and patient 

response. Such issues have seen marked improvement through the application of control 

systems monitoring vitals such as heartrate and mean arterial blood pressure [2]. 

 
1.2 Control Theory in the Medical Field 

 
Control theory has recently begun to branch into the field of medicine through a 

plethora of new and impactful avenues. These are as broad as the application of robotic 

arms to surgical procedures, to the specific implementation of control theory as a manner 

to interface directly with human neurons [3]. Other reports have demonstrated the use of 

proportional-integral-derivative (PID) control [4, 5, 6, 7] with pharmacometrics or fuzzy 

logic theories [3] to manage the dosing of anesthesia or drugs in a clinical setting. It is 

this burgeoning development of potential within the field of control theory that this 
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project was intended to adapt to the field of pharmacokinetics. Control in this setting can 

refer to the ability to manage a physiological variable within a desirable range, such as 

heart rate or blood pressure or brain activity, as well as the restriction of a drug 

concentration in vivo within a therapeutic dosing window. A significant limiting factor 

towards implementing control was the availability, or the lack thereof, of an associated 

sensing system to track an instantaneously relevant physiological state. 

 
1.3 Previous Work 

 
Previously this lab implemented a three-wavelength photoplethysmograph (PPG) 

which measures the absorbance (which is related to concentration through Beer’s Law) of 

optically active compounds in circulation, which was employed in this report to provide 

for real-time feedback.  This device was used to measure the concentration of a 

circulating dose of optically absorptive gold nanoshells (a ~100 nm diameter particle) 

used in medical applications such as cancer therapy [8] as well as two drugs: 

amphotericin B [9] and quinine [10]. The probe is physically similar to a pulse oximeter 

and uses a finger or murine tail/leg clip.  The precision of the instrument to provide a 

point estimate of concentration of these nanoparticles, relative to the measurement via 

off-line external blood draws, was reported to be ±20% in the relevant concentration 

ranges. There has also been considerable prior work in this lab pertaining to the 

application of Bayesian modeling to the fields of biomedical technology and medical 

therapy, as can be seen in Magaña, et. al [11]. 

It is also important to provide cases of previous work founded in the field of 

medical controls, as this field only became viable in the last century. Throughout the 

latter have of the 20th  century and over the last 20 years, there has been a wide range of 
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work in the field of medically applied controls. This ranges from applying controls to the 

medical field for monitoring the blood glucose level of a patient in a diabetic coma [12] 

work form the mid 70’s, to the application in cases such as analyzing different potential 

methods of delivering chemotherapy drugs [13], a case similar in idea to this project. In 

the latter project, it is used as an adaptive, closed-loop method to model and control 

patient blood glucose level via state space, with the noted requirement of relevant patient 

data being readily available and viable to collect, it is then a simple matter of minimizing 

a set evaluation function which represents the effect treatment of the patient [12]. In the 

analysis of potential chemotherapy, varying robust optimal controllers were modeled and 

analyzed for their efficacy in treating cancer via chemotherapy, several key nots from this 

project included noting that the less model data that could be obtained, the more drug 

would have to be administered, and recommending the use of 𝐻𝐻∞when an initial dose of 

drug will not have a negative side effect, as doing so will reduce the overall amount of 

drug needed in treatment [13].  Though these are generally theoretical in their treatment 

of the field, they still provide a good background for the work done in this project, as a 

window into what could be expected. 

 
1.4 Project Goals 

 
The primary objective of this thesis is to demonstrate a system that controls the 

shape of the concentration versus time curve of a drug during injection by varying the 

injection rate of the drug in response to real-time concentration measurements to affect a 

reduction on the interpatient variability of blood concentration. Here interpatient 

variability at blood concentration is defined as the amount an individual’s blood 

concentration varied from the population pharmacokinetic model.  This system controls 
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the infusion rate thus providing the recommended drug concentration.  A patient 

receiving the recommended concentration is more likely to result in an effective 

treatment (by ensuring under-exposure does not occur) with fewer adverse side effects 

(by ensuring over-exposure does not occur). To achieve this objective, a population 

model for the selected drug, ICG, was calibrated a on a BALB/c mouse model; then 

developed a proportional-differential feedback control system (PDCS) that uses real-time 

absorbance measurements from the PPG as feedback; and then quantified the total 

delivered dose and verified we could track a target concentration versus time curve 

through the implementation of the control system on BALC/c mice to ensure it was 

effective in fulfilling its purpose of reducing variance within the therapeutic window. 

 
1.5 Statistical and Computation Methods 

 
It is first necessary in this section to mention the method by which the statistical 

analysis was carried out during this work. For analysis of the data obtained during this 

project Markov Chain Monte-Carlo (MCMC) modeling was utilized via the WinBUGS 

analysis package, run using the R programming language. And it is also prudent before 

discussing MCMC to give a brief introduction into Bayes’ theorem, as it is an integral 

foundation of the MCMC process. 

The focus of this project in the field of pharmacokinetics was based on the 

principles of Bayesian modeling, i.e. the drug concentration within a patient body was the 

given system data utilized in conjunction with a model parameter vector treated as 

random variables by Bayes’ theorem.  Bayes’ theorem as it applies to a system involving 

a model with a parameter vector may be seen below, (1.1). 
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𝑝𝑝(𝑦𝑦|𝜃𝜃) 𝑝𝑝(𝜃𝜃) 
𝑝𝑝(𝜃𝜃|𝑦𝑦) = 

𝑝𝑝(𝑦𝑦) 
(1-1) 

 
 

In (1.1) p represents a probability density; this of course means p(𝜃𝜃) is the prior 
 

distribution of the parameter vector set 𝜃𝜃, that is; the distribution of the parameter set 

without consideration of the model prediction y, which are the values utilized to satisfy 

the model at the given inputs to achieve the value y..  Thus p(y|𝜃𝜃) is used to show how the 

 

data are predicted based on the parameter values and p(𝜃𝜃|y) is the posterior distribution 

for 𝜃𝜃. 

Here, as an aside, it should be noted that the parameter set 𝜃𝜃 represents the 

variables CL, V, and φ0 of the functional form of the model seen in section 3.1 in (3.2), 

and the “inputs” to this model as referred to in this explanation are the time values t 

which correspond to the given y. 

In general to use Bayes’ theorem in a practical way it was necessary to employ an 

algorithmic process, as mentioned above, for the purposes of this project, MCMC was 

selected as this implementation.  In the application of MCMC it does not matter what 

happens with y in p(y|𝜃𝜃), as the model prediction y is the output from the system that is 

being modeled by this process. This means that for the purposes of modeling this system 

using MCMC, the term p(y|𝜃𝜃) is obtuse, as it expects the probability of an unchanging 

data point (no longer model prediction as with Bayes’ theorem), y, to change as the 

values of 𝜃𝜃 change. Therefore, we may replace p(y|𝜃𝜃) with a mean-likelihood estimator 

(MLE) for 𝜃𝜃, L(𝜃𝜃; y); which will tell us the likelihood that our 𝜃𝜃 fits the model, in its’ 

attempt to generate the known data point y. Thus, to restate (1.1) in this way as it applies 

to MCMC, we end up with (1.2) [14]. 
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𝑝𝑝(𝜃𝜃|𝑦𝑦)  ∝   𝐿𝐿(𝜃𝜃; 𝑦𝑦)𝑝𝑝(𝜃𝜃) (1-2) 
 

In (1.2) p(𝜃𝜃|y) is proportional to the MLE, L(𝜃𝜃; y), by the probability of 𝜃𝜃, p(𝜃𝜃). 
 

It is this likelihood estimator that is key in determining the value of the posterior 
 

p(𝜃𝜃|y) and therefore the values of the parameter set. Often times to simplify the 

calculations, a conjugate will be used in place of the likelihood estimator L(𝜃𝜃; y). A 

conjugate is a family of functions which describe the distribution of the prior and 

posterior, an example of this would be saying both distributions were Normal, thus using 

a Normal distribution to satisfy the given prior and posterior in (1.2) simplifies the 

calculation greatly [14]. 

It was clear then, from these observations, and prior work in the field of 

pharmacokinetics, that Bayesian statistics was the appropriate method for developing a 

population model for this project as it allowed for rapid prediction model for each test 

mouse [11]. This implementation is what allowed the project to perform under the 

constraints applied, such as number of mice available for data collection, and set equation 

creation. In other words, under the limitations of complexity, a one compartment 

pharmacokinetic model, as was determined necessary for this project, was well suited for 

determination by method of Bayesian statistical analysis. And, as seen from previous 

work in the field of medical controls, verification of the overall effect of this project 

would be idyllically simple, as implementing this model with a controller and analyzing 

the variance would be enough to determine if there had been a sufficient change to the 

therapy given [15]. Thus, the next step would be to implement the Bayesian statistical 

methods in order to determine the required parameter values for the model, i.e. set 

equation. 
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To implement Bayesian statistics, we utilized the open-source WinBUGS 

software package, run through the R programing language. By analyzing the confidence 

interval data for each parameter, and the chi-squared value for the model overall in the 

log files produced by WinBUGS, it was possible to determine if the model configuration 

and generated parameter sets were correct, or that the current model needed to be 

rethought. 

The most important aspect of WinBUGS was its application of Markov Chain 

Monte Carlo integration (MCMC). It is the MCMC which performs the calculations 

necessary to determine the posterior distribution for 𝜃𝜃, p(𝜃𝜃|y), and thus allows the user to 

determine the updated model parameters. MCMC is necessary as often it is not easy, or 

even necessarily possible to determine the correct conjugates required for the integration 

which can be seen in (1.3) [14]. 

 
 

    

𝐸𝐸[𝜃𝜃|𝑦𝑦] = ∫ 𝜃𝜃𝑝𝑝(𝜃𝜃|𝑦𝑦)𝑑𝑑𝜃𝜃 (1-3) 
 

 

𝜃𝜃 
 

Where E[𝜃𝜃|y] is the expectation of the parameter set given the values y, 𝜃𝜃 is the 
 

parameter set, and p(𝜃𝜃|y) is the posterior distribution of the parameter set. As previously 

stated, it is the application of MCMC which in the case of a multi-parameter problem, 

solves the issue of identifying a conjugate prior. This is necessary as with an increase in 

the number of parameters, there is also an increase in the difficulty of determining a 

conjugate probability. Here, a conjugate probability refers to the integral equation which 

is a closed-form expression of the posterior, i.e. an expression which yields the values of 

 

p(𝜃𝜃|y). Therefore, the use of MCMC prevents, or solves, the problem of having to deal 

with difficult integration altogether.  It is also important to note that generally, a joint 
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posterior distribution is of a nonstandard form for an arbitrarily large parameter set, in 

which case the user would have no other suitable option than to apply MCMC [14]. 

The method employed by WinBUGS to implement MCMC is Gibbs sampling. 
 

Gibbs sampling is a special case of the Metropolis-Hastings algorithm which will 

generate the Markov chains by splitting the parametric vector 𝜃𝜃 into sub-vectors which 

 

are each sampled conditionally on the most recent values of all other 𝜃𝜃 parameters [14]. 

This essentially means that each individual model parameter is sampled based on every 

other model parameter at any given time, allowing there to be a more accurate predicted 

value of the sampled parameter. 

The algorithm of Gibbs sampling is as follows [14]: 
 

1. Chose an arbitrary value for each parameter of 𝜃𝜃𝜃. (here super-scripts represent 
 

iteration)  

𝜃𝜃𝜃  = {𝜃𝜃1
0  , 𝜃𝜃2

0 … , 𝜃𝜃𝑘𝑘 
0} (1-4) 

 

2. Sample new values for each parameter by cycling through the following: 
 

A. Sample a new value for θ1  from the full conditional distribution of θ1 
 

given the most recent values of all other parameters and the data set: 
 

𝜃𝜃1
1    =  𝑝𝑝(𝜃𝜃1|𝜃𝜃2

0 … 𝜃𝜃𝑘𝑘 
0, 𝑦𝑦) (1-5) 

B. Sample a new value for θ2 from its full conditional distribution 

given the most recent values of all other parameters and the data set: 

𝜃𝜃2
1  =  𝑝𝑝(𝜃𝜃2|𝜃𝜃1

1, 𝜃𝜃3
0   … 𝜃𝜃𝑘𝑘 

0, 𝑦𝑦) (1-6) 

Note: θ1 
1 is included instead of θ1 

0  since it is the most updated version. 
 

C. Repeat for all k parameters. 
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This completes one iteration of the Gibbs sampler and generates a new iteration 

of the parameter set 𝜃𝜃 1 

3. Repeat step 2 for many iterations to obtain a sequence of dependent realizations 
 

of the parameter set 𝜃𝜃. 
 

Due to the functionality of Gibbs sampling the full conditional distribution which allows 

the updated parametric information to be obtained can often be reduced to a distribution 

specific random number generational method, thus reducing the overall complexity of the 

entire process considerably [14]. Such an implementation was utilized in this project, 

following an assumed normal distribution for each parameter. 



 

 
 
 
 
 

CHAPTER 2 

MATERIALS AND METHODS 

 
2.1 Experimental Setup 

 
All experiments were performed using BALB/c mixed gender mice. The care and 

handling of mice followed the Louisiana Tech University Institutional Animal Care and 

Use Committees protocol. Prior to injection, each mouse was kept under specific 

temperature control (35-39°C) to facilitate intravenous cannulation and to maintain 

consistency with drug delivery protocols designed to promote profusion. Isoflurane 

inhalation (3% for induction and 2% for maintenance) anesthesia was used to immobilize 

a mouse during the injections; this aided in the collection of data [5]. 

 
2.2 Injections of ICG in Mice 

 
A fresh ICG solution was prepared each day with a target concentration of 156 

mg/mL which, according to Beer’s Law (A = εcd), has an absorbance of 300; the actual 

absorbance of ICG used varied from 197 absorbance to 318 absorbance. Stability of the 

solution at this high concentration necessitated the use of dimethyl sulfoxide (DMSO) 

(10% by volume) and spectrographic analysis to ensure that the peak at 780 nm was 

dominant in the stock solution [15]. 

ICG injections were given with the intent to reach one of three pre-specified 

points of maximum absorbance in the animal: small (2.25 absorbance), medium (3.00 
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absorbance), and large (3.75 absorbance). Each mouse was kept at approximately 36°C 

for the duration of the experiment in the presence of a space heating fan, and placed on a 

heating pad set to that temperature. The injections were carried out intravenously via tail 

vein using a custom catheter system fashioned from a 28 gauge needle tip and 2-french 

tubing. The method of injection was through a syringe pump (New Era Pump Systems, 

Inc. Farmingdale, NY. Model # NE-1010) which was programmed to inject the provided 

ICG solution at an initial rate of 15 µL/min. During the course of all injections, the data 

was collected by the PPG data probe, placed near the base of the mouse’s tail. 

 
2.3 The Photoplethysmograph 

 
The PPG is a non-invasive optical monitoring device that can detect an optically 

active compound in the blood stream by measuring the optical extinction at three 

different wavelengths of light [16]. The PPG consists of an optical probe, analog signal 

modification circuitry and a LabVIEW DAQ which feeds all the received data into the 

created LabVIEW program for processing, monitoring, and cataloguing. Given the 

optical similarity of ICG dye to the nanoparticles for which the system was initially 

designed, the probe was implemented unchanged using optical extinction measurements 

at 660 nm, 805 nm, and 940 nm. This probe detects the pulsatile blood signal in a tissue 

mass and calculates the concentration of ICG according to AC805/DC [9]. 

When using the PPG, a strict inclusion criteria was maintained on all collected 

data. A data point was created by the system by averaging data collected over 5 seconds. 

The criteria for retaining each data point was that it had a standard deviation of less than 

0.03 mV, that the mouse heart rate calculated from the observations of the three system 
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wavelengths each be within 20% of the computed mean heart rate, and that the voltage 

peak-to-peak of the AC portion be greater than 1.5 mV [11]. 

 
2.4 Bayesian Analysis 

 
In order to implement the feedback control system with the PPG, it was necessary 

to first create the population model. The selected method for creating the population 

model for this study was Bayesian statistics. Bayesian statistics is the application of 

previously collected data to statistical models as a method of enhancing and adapting the 

accuracy of the models. This can be rephrased in more technical terms to mean that 

Bayesian statistics allows the user to assume a certain statistical distribution exists for a 

given random variable, and then update that distribution with observed knowledge, i.e. 

adapt and update the model with the new information [14].  In doing so, it lends itself 

well to the method of creating population models, in which case the model parameters 

would generally be taken to be random variables. It should be noted that this is contrary 

to the frequentist statistical analysis in which the data are considered to be random 

variables and the model parameters are considered to be unknown set values [14]. This 

means that by applying Bayesian statistics to model creation by collecting new 

information from individuals of a population the model may be updated for a better fit to 

the population. 

The version of WinBUGS used in this study was 1.4.3. This was implemented 

with R version 3.1.2. The R packages used in this implementation were R2WinBUGS, 

coda, lattice, and MASS. To determine the fit of the model to a given parameter set the 

chi squared value was observed, this represents the variance of the variance of the model 

system and is a good indicator as to the overall outcome of an analysis.  Using this chi 
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squared value it was possible to determine if the model was an over-fit, as was discovered 

early in the project when an initial two compartment model was being implemented. 



 

 
 
 
 
 

CHAPTER 3 

PHARMACOKINETIC MODEL IDENTIFICATION 

 
3.1 The Population Pharmacokinetic Model 

 
Pharmacokinetics is the study of how therapeutic agents are changed by a body or 

system, population pharmacokinetics is the application of this study with the intent of 

generalizing the outcome a population of organisms will have on a specific therapeutic 

agent. Thus population pharmacokinetics was ideal for implementing a set equation for 

the controller used in this study.  The population pharmacokinetic model was identified 

by comparing the absorbance versus time data and pharmacokinetic model predictions 

using the WinBUGS software. The covariate free one compartment model structure 

selected for use in this study was determined by observing the deviance information 

criterion of different pharmacokinetic models. The following model components were 

evaluated: inter-mouse variability and inter-trial variability on clearance (the rate at 

which a body removes a therapeutic agent) and volume of distribution (the effective 

volume which a given therapeutic agent may reach within a body); additive, proportional, 

and combined residual error models; and covariate effects of heartrate, O2  (Oxygen) 

level, and mouse weight on clearance and volume of distribution. A non-informative 

normal distribution was used as the prior distribution for these pharmacokinetic model 
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parameters. Inverse gamma distributions were used for the precision of normally 

distributed error [11]. 

The one compartment model, given by (3.1) or (3.2), provided an excellent fit to 

the available data based on the measured absorbance. The concentration of the 

therapeutic agent in the mouse bloodstream was available in the form of experimental 

data from the PPG [11].  
 
𝑑𝑑A 𝐶𝐶𝐿𝐿 RATE(𝑡𝑡) = − A + ; A(0) =  𝜑𝜑 

  

 
 

(3-1) 
𝑑𝑑𝑡𝑡 𝑉𝑉 

−RATE(𝑡𝑡) 
𝑉𝑉 

 
−𝐶𝐶𝐿𝐿𝑡𝑡 

0 
 
 

RATE(𝑡𝑡) 
 

A(𝑡𝑡) = [ ] 𝑒𝑒   𝑉𝑉    + 
𝐶𝐶𝐿𝐿 + 𝜑𝜑0 (3-2) 

𝐶𝐶𝐿𝐿 
 

In equations (3.1) and (3.2) A(t) is the absorbance (as an analogue for 

concentration), CL is the clearance rate, V is the volume of distribution, φ0 represents the 

absorbance shift from baseline due to PPG system noise, RATE(t) is the injection rate 

over time, and t is time. These variables correspond to the basic theory in chemical 

engineering of the extinction of a one compartment system with a given input 

concentration of an external solution. As such they correspond to the same concepts as 

within the pharmacokinetic model, where clearance rate is the rate of flow of the base 

fluid of the compartmental system, volume of distribution is the volume which the input 

solution may theoretically extend to within the compartment, or theoretically the volume 

of the compartment itself, and rate corresponds to the inflow rate of the input solution. It 

is interesting to note how similar this system ideology is to the analog in electrical 

engineering involving a single pole filter. 

An ICG pharmacokinetic model for BALB/c mice was identified based on 

concentration versus time measurements from the PPG for a total of 22 injections divided 
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into three injection size categories: small (7 injections), medium (9 injections), and large 

(6 injections) using 8 BALB\c mice (see Figure 3-1). 

 

 
Figure 3-1: Flow chart describing distribution of mice within experimentation 
parameters. 

 

Once the final population pharmacokinetic model was identified, we used the 

posterior distribution of parameters from WinBUGS as the population model parameters 

defined above. In other words, the values of CL, V, and φ0 were determined through 

WinBUGS in the manner described in section 1.5 wherein they constituted the 

components of a parameter vector, 𝜃𝜃, as described in equation (1.4). It was these 

parameters that are applied to the pharmacometric model set equation (3.2) for 

developing the control system. 



 

 
 
 
 
 

CHAPTER  4 

CONTROL SYSTEM AND TUNING 

 
4.1 Selected Control System 

 
In this study a form of PID controller was selected for use with the system. This 

was because of the overall ease of implementing a PID style controller. A PID controller 

needs only to be properly tuned and then provided the error signal produced by the 

system which it is controlling. Had this study used another form of control, it would have 

been necessary to design the controller from the ground up, which can be a tenuous 

process in itself. The most important aspect of designing a controller is verifying its 

stability, which is systematically possible, but can become extremely difficult depending 

on the required components of the controller.  Overall to avoid such complications, as 

this study more focused on a proof-of-concept approach to the application of control 

theory to a medical treatment, a form of PID controller was selected for use with this 

project. 

A proportional-derivative (PD) control system was used to control the error 

between the pharmacokinetic model predictions (the set equation) and the current 

concentration measurement (system signal). This PD system is a reduction of a 

proportional-integral-derivative (PID) control design. This reduction from PID to PD 

was used because the integral term may get quite large if the error term is never allowed 
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to go to zero. This is due to the fact that the integral term sums the error for all of process 

run-time [17]. Therefore, as this was a medical system designed with undershooting the 

set equation in mind it was beneficial to avoid using an integral term in the controller. 

 
4.2 Control System Tuning 

 
Although data points from the system were digital, not analog, the PD control 

system worked in much the same manner as would an analog PD control system: it 

numerically differentiated the error signal rather than using the analog derivative. The 

PPG collected data once every 5 seconds so the signal was discrete rather than 

continuous. This influenced the controller because the error signal was discrete as well. 

We used a continuous time solution to the differential equation for the set equation and 

then input the current time index of the received PPG data from the injection. This 

avoided any discrepancy between the analog-discrete setup we created because it allowed 

the analog differential equation to be used at the discrete points of data. As seen in the 

(4.1), the system error, e(t), is calculated and used by the PD error equation. 

𝑢𝑢(𝑡𝑡) =  𝑘𝑘𝑝𝑝 𝑒𝑒(𝑡𝑡) + 𝑘𝑘𝑑𝑑 
𝑑𝑑𝑒𝑒(𝑡𝑡) 

𝑑𝑑𝑡𝑡 
(4-1) 

 

The values kp = 124.56 and kd = 48.91 were obtained using the Zeigler-Nichols 

tuning rule, where u(t) is the controller [18]. The controller was operated based on a 

bang-bang principle. This means when the system was operating within its bounded 

margin of error, i.e. the current value of absorbance (OD) was within 30 % of the set 

equation A(t) (3.2) based on the value of u(t), no action was taken by the adjustment 

equation, and conversely when the system was operating outside this bound based on 

u(t), an adjusted rate was calculated following (4.2) algebraically. 
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𝑖𝑖 𝑖𝑖 

 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖+1 

𝑅𝑅(𝑡𝑡  + 1/15) − 𝛼𝛼 
=  15 + ( ) ∗ 4000 (4-2) 

𝐶𝐶 
 

In (4.2) RATEi+1 represents the next value of the injection rate in microliters per 

minute, 15 represents the base injection rate which the model assumes, i.e. 15 microliters 

per minute, A(t) is the absorbance equation seen in (3.2), αi represents the actual value of 

absorbance last measured by the PPG at time ti, the +1/15 term is used to calculated the 

PPG measurement at the next discrete time point, and C is the measured concentration of 

the stock solution of ICG being used in the current injection. The 4000 term is used to 

adjust the delta y calculation from absorbance to units of microliters per minute. 

Traditionally a controller is implemented in such a way as to directly influence 

the system, not in following the method of bang-bang; equation (4.3) describes this 

operational methodology as it applies to this project. 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖 =  𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖−1 + 𝑢𝑢(𝑡𝑡); 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸0 
𝜇𝜇𝐿𝐿 

= 15 
𝑚𝑚𝑖𝑖𝑚𝑚 

(4-3) 
 

In (4.3) RATEi represents the current value of the injection rate in microliters per minute, 

RATEi-1 represents the last value of the injection rate in microliters per minute, and u(t) is 

the controller equation as seen in (4.1). 

An important concern we held in developing a control system for use as a 

therapeutic device was the potential danger of an erratic or poorly tuned system to the 

patient. In the event the controller were to over predict and inject more than required of a 

therapeutic agent, the patient would be at risk of toxicity. Therefore, we developed the 

controller with an intentional negative bias to ensure we were below the population 

pharmacokinetic curve and reducing the risk of toxicity by turning off the pump if the 

measured concentration was above the target.  This equation represents a linear 
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adjustment to the desired model value at the next time interval of measurement, and in 

essence represents the classical method of Euler a la yi+1 = yi + dy. This was chosen as the 

method of updating the RATE variable as the system operation time is in the range of 

seconds.  Such a rapid response time allowed the use of this simple method, and due to 

the fact that this project was mainly a proof of concept a simpler method was desirable 

for the practicality of implementation. 

 
4.3 Control Software 

 
The control software was the primary component for enacting the objective of this 

project: controlling the drug concentration with time. The control software was written in 

the Python programing language, version 3.3.0, and - implementing the serial, numpy, 

matplotlib, tkinter, time, os, and math libraries - it controls the ICG injections based on 

the real time absorbance measurements from the PPG. The set equation implemented for 

the PD control system was the identified Bayesian population pharmacokinetic model. 

The system enacted its changes through use of serial communication with the injection 

pump, calculating a new injection rate based on the current system error. Displaying all 

available mouse data (heart rate, O2, absorbance, injection rate, and total volume 

injected), and allowing for emergency system stop, the software was self-contained; 

given a concentration of ICG and valid injection endpoint, the system would run the 

injection to completion, auto-stop the pump, and then continue monitoring after injection. 

To validate that the control system could follow a desired concentration versus 

time profile, the tuned system with pharmacokinetic model parameters and the PD 

control values were set within the software. This was then applied to a total of 8 

injections on BALB/c mice, generating the controlled set.  These injections were 
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performed with 3 in the small, 3 in the medium, and 2 in the large target absorbance 

group. The data collected from these injections was used to determine if control based 

medication was a valid option in future treatments. 

 
4.4 Analysis of Controller 

 
The viability of the controller was demonstrated using the error between the 

measured absorbance of each data point and the corresponding population 

pharmacokinetic model prediction.  The primary outcome was the reduction in variance 

in the average error between data points in the calibration injections versus the controlled 

injections. 



 

 
 
 
 
 

CHAPTER 5 

RESULTS 

 
5.1 Data Inclusion Criteria 

 
The PPG absorbance measurements were verified using the standard data metric 

for the device; any collected data from experiments was held to this metric to ensure 

reduced variability. An example of this metric for an uncontrolled injection is in the test 

output in Figure 5-1. These inclusion criteria are the following: average together the 

three vales for heartrate obtained from each of the three wavelengths (660 nm, 805 nm, 

and 940 nm), and ensure an individual data point has its heartrate values within 20% of 

this mean heartrate, if not discard the data point. Next, measure the AC signal amplitude 

of each heartrate signal, and ensure they are between 1 and 100 mV. The final step in 

verifying the data is to ensure that no repeating data points are retained, as the PPG 

collects a new data point every 5 s, but records data every second, thus, the median data 

point in a 5 s collection group is selected and retained, this happens only if the others in 

its group of 5 s were not rejected following the criteria above, else that data point is also 

rejected.  The applied inclusion criteria was developed by a previous project from this 

lab, when the PPG was developed for use with gold nanoparticles [16] (see The 

Photoplethysmograph subsection of Materials and Methods). 
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Figure 5-1: (Left) Example photoplethysmograph output of absorbance vs. time from 
mouse injection for an uncontrolled injection. (Right) Corresponding heartrate data from 
each wavelength (660 nm, 805 nm, and 940 nm) over a 1 min. interval. 

 
 
 

5.2 Population Pharmacokinetic Model 
 

A single compartment model provided an accurate and unbiased fit to the 

calibration data (22 injections performed on 8 mice at 3 maximum absorbance levels). 

This was verified following analysis of the chi-squared value from the output file, as 

mentioned in (2.4). There were no significant covariate effects on any of the model 

parameters. The resulting population pharmacokinetic model parameters are shown in 

Table 5-1. 
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Table 5-1: Population pharmacokinetic model parameters based on calibration trials 
(n=22) 

 
 

 
 

The half-life from the calibration injections (1.89 min) agrees with a previously 

published report (2-4 min) [19]. 

 
5.3 Analysis of Controlled Injections 

 
The primary outcome is that there was a 74.8% reduction in variance of the 

controlled group Figure 5-2. As can be seen, not only was the controlled group less 

varied on an individual basis of the injections, but the overall spread of the injection 

around the average was smaller as well. This data definitively displays the reduced 

variability of the controlled injections. 
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Figure 5-2: (Left) model comparison error of 22 injections from the controlled group 
represented as a standard box plot about the average (solid line) approximately 0. (Right) model 
comparison error of 8 injections from the controlled group as a standard box plot about the 
average (dashed line) approximately -0.3, calibration average (solid line) provided for 
comparison. 

 
 

A demonstration of the controller in action can be seen in Figure 5-3. The system 

is corrected by increasing the injection rate when the measured concentration was below 

the target to better fit the provided target model. 
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Figure 5-3: (Left) Example absorbance with time with injection control. (Right) 
Corresponding PD error and calculated injection-phase rate change. The dashed line is an 
asymptote of error (averaged) and solid line on left is the population pharmacokinetic model. 

 
 

With the controller in place, we had a variance in the clearance rate comparable to 

that seen in the clearance rates and cardiac output metrics obtained in clinical studies 

employing ICG, using pulse dye densitometry [18, 19]. As seen in Figure 5-4 the control 

group injections are displayed in comparison to the population pharmacokinetic model to 

represent this. 

Because the goal of this project was the reduction in variability of injections of a 

therapeutic agent, we also analyzed the delivered dosage generated by the controller for 

each injection Table 5-2. While the control system may be given a certain termination 

point in time or absorbance, it was not calculating or using the area under the curve, or 

AUC, as is standard in many pharmacological studies. This is due to the systems 

feedback mechanism. Data collected by the PPG was optical absorbance, and therefore 

keeping the system simple and operating on this variable was ideal as this was only a 

proof of concept. 
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Table 5-2: Comparison between expected dose (Exp) and achieved dose (Inj) 
necessary to achieve a target absorbance in validation experiments. 
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Figure 5-4: Injections from Controlled Data Set (dots) with target model (solid line) and 
95% credible interval (dashed line), absorbance vs. time. Figures (a) – (c) have a final 
absorbance target of 2.25, figures (d) – (f) have a final absorbance target of 3.00, and 
figures (h) – (g) have a final absorbance target of 3.75. 



 

 
 
 
 
 

CHAPTER 6 

DISCUSSION 

 
6.1 Overview 

 
A population pharmacokinetic model was developed for the therapeutic agent 

ICG to study the feasibility of using a closed-loop PD control system for tracking a 

desired concentration profile during intravenous administration of drugs. We found that 

closed-loop control of ICG reduces variance from the target injection concentration 

profile by 74.8%. 

 
6.2 Controller Advantages 

 
There are several advantages to closed-loop control of injections for tracking a 

desired concentration profile. These are primarily due to the applied control system’s 

application of system error when calculating the next move to make. For example, our 

approach has the potential to reduce acute toxicity by ensuring that the actual 

concentration is below the population pharmacokinetic model. Another example may be 

seen in the application of closed-loop control to a highly sensitive therapy. Take for 

example one which needs to be maintained in a tight therapeutic window for an extended 

period. Keeping the patient within this window is a considerably less difficult task as the 

system can be designed to maintain the window rigorously with the application of 

feedback control to the drug delivery system.  Still another advantage seen in applying a 
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closed-loop control system is perhaps the most poignant caveat of control and automation 

systems in general. Control systems allow the designer to choose the operation and 

response time as well as the method and number of system reactions to a specific 

stimulus as relayed in the system error. Meaning, it is up to the designer in what way and 

how fast any form of system error is processed. Thus, the controller provides a more 

dynamic and robust platform upon which to expand any system. This cannot be 

accomplished without system feedback, and therefore cannot occur without the closed- 

loop. 

 
6.3 Pharmacokinetic Observations 

 
In going from a target absorbance of 2.25 (Inj #1) to an absorbance of 3.75 (Inj 

 
#8) required 5 times the dose. Injection #1 appears to require a below average dose to 

achieve the desired concentration so the administration of the expected dose may lead to 

over-dose. On the other hand, Injection #8 required an above average dose to achieve the 

desired concentration so administering the expected dose may not be effective. 

 
6.4 Controller Error Response 

 
The best case of this can be seen in the overall error response of the Controlled 

group, where the error is centered below the marginal average of zero. This is due to the 

system design. As previously mentioned considered the potential threat of therapeutic 

toxicity, we therefore implemented a negative bias as a precautionary measure.  While 

this increases system response time, this has two benefits; it allows our system to run 

longer and therefore approach the asymptotic PD error margin of zero, as well as reduces 

the potential threat to the patient from a system malfunction caused by over injection. 
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6.5 General Outcome 
 

Beyond this initial impact in reducing the variability of patient treatment, this 

study is an important step in the direction of fully-automated therapeutic systems. We 

demonstrate that the idea of self-sustained and self-controlled treatment systems is not 

only practical, but closer than other current work would seem to suggest. Overall, our 

study shows that interpatient variability need not influence the outcome of a clinical 

study, and by the same token, personalized medicine is in the near future. 

 
6.6 Project Drawbacks 

 
It should be noted that this study did not include the pharmacodynamics when 

considering our control system. This is reflected primarily in the choice of our style of 

control; i.e. a PD control system. Classically PID and all related modes of control are 

utilized in situations in which there are a plethora of unknown and or unmeasurable 

variables. The general idea behind a PID being to tune the error signal to a prespecified 

series of results in order to achieve the desired system convergence. In doing so, we 

focused entirely on meeting the goal of reduction of inter-patient variability and left all 

other system variation up to the control system. Thus, having designed our system 

around these aspects of the pharmacokinetics, no considerations had been made for the 

effect which the drug was having on the patients. 

The main limitation is the system’s undershooting of the population 

pharmacokinetic curve, though this is a measure to protect the patient from toxicity, (a 

potentially realistic concern in our overstepping of pharmacodynamics). In the future, a 

more finely calibrated control system, made with a more sensitive PPG, would not have 

this concern, and thus not need to undershoot.  It should also be noted that the use of 
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absorbance as the target and general pharmacokinetic model standard in our study is not 

the clinical tradition. 

Although this project focused on the use of optically-based controller feedback, 

the system need not have any specific type of sensory feedback. In future work, an 

exploration into other clinical metrics such as glucose, neurotransmitters, and hormone 

level therapeutic applications could be explored. 



 

 
 
 
 
 

CHAPTER 7 

CONCLUSIONS 

 
7.1 Future Work 

 
Controller based medical therapy is a new and developing field. As shown in our 

work it holds promise in reducing inter-patient variability. The future application of 

controllers to the many forms of medical treatment is the key to resolving the current 

issues held in the medical field which limit treatments based on small margins of 

population effectivity and will allow physicians to be more certain of the reliability of 

medical treatment overall. Such future works in this field might include the creation of a 

more compact version of the device utilized within this project, such that it might fit on a 

patient arm, containing all components of the described system within a smaller, closed- 

form casing, perhaps one that is 3D-printed to increase feasibility, reduce cost, and 

increase the device fit on an individual patient. Such a device might have a touch screen 

with a variety of options of therapeutic windows and/or treatment-session 

goals/outcomes, and would likely include a peripheral device worn at another location on 

the patient, such as the opposing wrist/appendage, to gain a more accurate measure of the 

administered drugs profusion. This hypothetical device need not focus solely on the 

application of optically-based feedback, but might also take measurements in similar 

form to a blood glucose monitor, or a manner similar or identical to radio therapy. This 
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hypothetical device would also likely not need to apply an undershoot or bias as was 

utilized in this project, and thus could potentially very tightly control the administration 

of its drug allowing previously toxic drugs to be safely administered. As can be seen from 

even one such theorized device, the future of control based medication holds potential as 

a means to broaden the availability of medical treatments to the global populous in a way 

that has yet to be available in the modern era. 



 

 
 
 
 
 

APPENDIX A 
 

CALIBRATION DATA MODELS AND VALIDATION DATA 
 

The data used to develop the pharmacokinetic model, the calibration set, was 

analyzed on an individual basis. Each injection profile was modeled with a one- 

compartment pharmacokinetic model and in conjunction with properly determining the 

covariate effects which were potentially present, the heartrate of each mouse was also 

collected and graphed. This data is presented here, in Appendix A. Data was also 

collected during the validation experiments, for the purpose of future analysis and has 

also been included here, in Appendix A. A general note on the nomenclature used, M#I# 

in the below image captions represents which mouse number from a set, and which 

injection number for that mouse. 
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Figure A-1: (Top) Injection profile M1I1 (dots) with model (red line) and (bottom) heart 
rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-2: (Top) Injection profile M1I2 (dots) with model (red line) and (bottom) heart 
rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-3: (Top) Injection profile M2I1 (dots) with model (red line) and (bottom) heart 
rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-4: (Top) Injection profile M2I2 (dots) with model (red line) and (bottom) heart 
rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-5: (Top) Injection profile M2I3 (dots) with model (red line) and (bottom) heart 
rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-6: (Top) Injection profile M3I1 (dots) with model (red line) and (bottom) heart 
rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-7: (Top) Injection profile M3I2 (dots) with model (red line) and (bottom) heart 
rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-8: (Top) Injection profile M3I3 (dots) with model (red line) and (bottom) heart 
rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-9: (Top) Injection profile M3I4 (dots) with model (red line) and (bottom) heart 
rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-10: (Top) Injection profile M4I1 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-11: (Top) Injection profile M5I1 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-12: (Top) Injection profile M5I2 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-13: (Top) Injection profile M5I3 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-14: (Top) Injection profile M5I4 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-15: (Top) Injection profile M6I1 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-16: (Top) Injection profile M6I2 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-17: (Top) Injection profile M6I3 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-18: (Top) Injection profile M7I1 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-19: (Top) Injection profile M8I1 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-20: (Top) Injection profile M8I2 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-21: (Top) Injection profile M8I3 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-22: (Top) Injection profile M8I4 (dots) with model (red line) and (bottom) 
heart rate data averaged over 5 (red line), 10 (green line), and 15 (blue line) seconds. 
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Figure A-23: Validation Injection profile M1I1, (dots) with population model (red line). 

 

Figure A-24: Validation Injection profile M1I2 (dots) with population model (red line). 
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Figure A-25: Validation Injection profile M1I3 (dots) with population model (red line). 

 

Figure A-26: Validation Injection profile M1I4 (dots) with population model (red line). 
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Figure A-27: Validation Injection profile M2I1 (dots) with population model (red line). 

 

Figure A-28: Validation Injection profile M2I2 (dots) with population model (red line). 
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Figure A-29: Validation Injection profile M2I3 (dots) with population model (red line). 

Figure A-30: Validation Injection profile M2I4 (dots) with population model (red line). 



 

 
 
 
 
 

APPENDIX B 
 

CODE FOR SOFTWARE & STATISICAL ANALYSIS 
 

During the course of this study there were two main programming languages 

utilized for the development of the software and the statistical analysis of the data. The 

language selected for the creation of the software was Python v3.3. The external modules 

utilized in the creation of the software were: math, matplotlib, tkinter, os, serial, and time. 

A process flow diagram, as well as the core code for the software are included here, in 

Appendix B. 

The language chosen for statistical analysis was WinBUGS v.1.4.3. It utilized the 

R programming language v.3.1.2 as a container language for processing and ease. The R 

code which was utilized to by WinBUGS is included here, in Appendix B. The included 

external R modules were R2WinBUGS, coda, lattice, and MASS. 
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Figure B-31: Process flow diagram for Python Control Software. 
 

Below is the core code from the Python program which carried out the process flow 

described in Figure B-1. The red text preceded by a pound-sign are comments, the green 

text are key words in the python language syntax. The blue text is the name of a defined 

function.  The orange text are text strings.  The purple text denotes functions and 

variables that are properties of the overall class structure. An ellipsis (…) implies the line 

continues as a truncated line, one line down from the ellipsis. 

def execute(self): 
# If an Injection has not begun 
if not self.on: 
# Activate Injection 
self.on = 1 
self.stop_on = 0 
self.state = 0 

self.menuactive(0) 

# Check if user wants to clear data 
if self.clearvar.get() == 0: 
if self.restart: 
self.query_clear = M.askyesno(message = 'Would you like to clear all... 

injection data?', icon = 'question', title = 'Clear Data?') 
 

if self.query_clear: 
self.clear_all_data() 

 
# If we are restarting an injection, and the users asks, clear all data 
if self.clearvar.get() == 1: 
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if self.restart: 
self.clear_all_data() 

 
# Attempt to program the pump, raise error if failure. 
try: 
self.program_upload() 
self.program_execute() 
self.pump_running = 1 

except SerialException: 
self.wind("Serial Communication Error!") 
self.breaker = 0 

 
# Attempt to grab data from PPG/Initial Run-through before loop 
try: 
self.updateData() 

 
# Create a Zero-null time index 
self.initial_x = float(self.current_line[9]) 

 
# Measure time positively from the Zero-null index 
self.x[0] = float(self.current_line[9])-self.initial_x 
# Get the OD at the current time index 
self.y[0] = float(self.current_line[17]) 
# Set the PID setpoint to the model value at the current time index 
self.PID.setPoint(self.injection_model(self.x[0])) 
# Calculate the PID error at the current time index 
self.error = self.PID.update(self.y[0]) 
# Pass the current OD to a past-point container 
self.past_od = self.current_line[17] 
# Update the Graph 
self.update_points() 
# Force GUI update in case of any issues. 
self.update() 

 
# Numerical Integration to find Injected Volume 
self.injected_volume += self.rate_calc_var*0.0666666667 
self.injection_var.set(str(round(self.injected_volume, 4))+' uL') 

 
# Time-out variable 
self.borrow_iterator = time() 

 
# Loop the above (without the definition of a Zero-null index) 
while(self.breaker): 
# In the event of any errors, catch them. 
try: 
self.updateData() 

 
if self.current_line[17] != self.past_od: 
self.x[0] = float(self.current_line[9])-self.initial_x 
self.y[0] = float(self.current_line[17]) 

 
self.PID.setPoint(self.injection_model(self.x[0])) 

 
self.error = self.PID.update(self.y[0]) 
self.PID_err_variable.set(str(round(self.error, 4))) 

 
if self.state == 0: 
if self.stop_check[0] >= self.stop_val: 
self.stop_command() 

 
else: 
self.injected_volume += self.rate_calc_var*0.0666666667 
self.injection_var.set(str(round(self.injected_volume, 4))+' ul') 
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if abs(self.error) >= self.E_max: 
self.pump_control() 

 
self.past_od = self.current_line[17] 

self.update_points() 

self.update() 
 

# Simply ignore any error. 
except IndexError: 
pass 

 
# Warn the user of a time-out from PPG connection and ask what they'd like 

to do. 
if time()-self.borrow_iterator >= 4: 
if self.pump_running == 1: 
self.query = M.askyesno(message = 'A communication timeout has... 

occurred!\n\tStop the Injection?', icon = 'question', title = 'Stop... 
Injection?') 

 
if self.query: 
self.stop_pump() 

else: 
self.wind('A communication timeout has occurred!\nAssumption: Process... 

Complete') 
self.menuactive(1) 
self.restart = 1 

 
break 

 
# If inital run failed, warn user, only possible case would be a missing file 

from the PPG. 
except FileNotFoundError: 
self.wind('File not Found!') 
self.menuactive(1) 

 
# Ijection is done, tell the system it's not running. 
self.on = 0 

 
# Ignore successive button presses if we're already running. 
else: 
pass 

 

 
Below is the R utilized for the Bayesian statistical analysis from this project. 

 
rm(list = ls()) 

 
model_name <- "1_comp_model_analysis" 

 
######################################################################### 
# set directories and load packages ##################################### 
######################################################################### 

 
working_directory <- "C:/Users/Trey/Desktop/Research Data/WinBUGS Analysis" 
#/WinBUGS Analysis" 
WinBUGS_directory <- "C:/Users/Trey/Documents/Winbugs" 
tools_directory <- "C:/Users/Trey/Documents/Winbugs" 
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setwd(working_directory) 
 

library(R2WinBUGS) 
library(coda) 
library(lattice) 
library(MASS) 
source(file.path(tools_directory, "bugs.tools.R")) 
source(file.path(tools_directory, "bgillespie.utilities.R")) 

 
######################################################################### 
# data and variables #################################################### 
######################################################################### 

data <- read.csv(file.path(working_directory,"WinBUGS Data.csv"), header=TRUE) 

bugsdata <- list( 
N_observations = nrow(data), 

#N_mice = max(data_bolus$MOUSE), 
N_trials = max(data$TRIAL), 
#MOUSE = data$M, 
#GROUP = data_bolus$GROUP, 
TRIAL = data$TRIAL, 
INJ = data$I, 
TIME = data$TIME, 
OD = data$OD,#as.numeric(data$DV), 
TAU = data$TAU, 
CONC = data$CONC, 
HR = data$HRS 
#DOSE = data$DOSE 

 
#AMT = data_bolus$AMT 
# RATE = data_bolus$RATE 
# DOSE = data_bolus$DOSE, 
# WT = data_bolus$WT 

) 
 

bugsinit <- function() { 
rnorm.trunc <- function(n,mean=0,sd=1,lower=-Inf,upper=Inf) { 

qnorm.trunc(runif(n),mean,sd,lower,upper) 
} 
qnorm.trunc <- function(p,mean=0,sd=1,lower=-Inf,upper=Inf) { 

qnorm(p*pnorm(upper,mean,sd)+(1-p)*pnorm(lower,mean,sd),mean,sd) 
} 

 
list( 
CL_0 = rnorm.trunc(1, 1.097, 0.1, lower=0), 
CL_precision = rnorm.trunc(1, 6.016, 0.6, lower=0), 
V_0 = rnorm.trunc(1, 3.016, 0.3, lower=0), 
V_precision = rnorm.trunc(1, 1.796, 0.1, lower=0), 
phi_s_0 = rnorm(1, 0.662, 0.06), 
phi_s_precision = rnorm.trunc(1, 17.466, 01.7, lower=0), 
X_precision = rnorm.trunc(1, 1.392, 0.1, lower=0) 
#beta = rnorm(1, 0 , 1) 
#beta_l = rnorm(1, 0, 0.001), 
#beta_m = rnorm(1, 0, 0.001), 
#beta_s = rnorm(1, 0, 0.001) 

 
#beta_group_CL_A = rnorm(1, 0, 0.1), 
#beta_group_CL_B = rnorm(1, 0, 0.1), 
#beta_group_CL_D = rnorm(1, 0, 0.1), 
#beta_injection_CL = rnorm(1, 0, 0.1), 
#beta_group_V_A = rnorm(1, 0, 0.1), 
#beta_group_V_B = rnorm(1, 0, 0.1), 
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#beta_group_V_D = rnorm(1, 0, 0.1), 
#beta_injection_V = rnorm(1, 0, 0.1), 
#beta_preinjection_V = rnorm(1, 0, 0.1), 
#beta_preinjection_CL = rnorm(1, 0, 0.1), 
#beta_carrageenan_CL = rnorm(1, 0, 0.1) 

) 
} 

 
parametersToPlot <- c("CL_0", "V_0", "phi_s_0", "X_sigma", "CL_sigma", 
"V_sigma", "phi_s_sigma", "CL_trial", "V_trial", "phi_s_trial") 
# "beta_preinjection_CL", "beta_group_V_A", "beta_group_V_B", 
"beta_group_V_D", "beta_group_CL_A", "beta_group_CL_B", "beta_group_CL_D", 
"beta_injection_CL", "CL_mouse", "V_mouse", "CL_sigma_mouse", "V_sigma_mouse" 

 
otherRVs <- c() 

 
parameters <- c(parametersToPlot, otherRVs) 
parametersToPlot <- c("deviance", parametersToPlot) 

 
######################################################################### 
# run WinBUGS ########################################################### 
######################################################################### 

 
#n.chains <- 2 
#n.iter <- 2000 
#n.burnin <- 1000 
#n.thin <- 1 

 
n.chains <- 5 
n.iter <- 20000 
n.burnin <- 10000 
n.thin <- 5 

 
bugs.fit <- bugs( 
data = bugsdata, 
inits = bugsinit, 
parameters.to.save = parameters, 

model.file = file.path(working_directory, paste(model_name, ".txt", 
sep="")), 

n.chains = n.chains, 
n.iter = n.iter, 
n.burnin = n.burnin, 

n.thin = n.thin, 
clearWD = FALSE, 
debug = FALSE, 

bugs.directory = WinBUGS_directory, 
working.directory = getwd() 

) 
WinBUGS_output = bugs.fit$sims.array 
posterior = array(as.vector(WinBUGS_output), 
dim=c(prod(dim(WinBUGS_output)[1:2]), dim(WinBUGS_output)[3]), 
dimnames=list(NULL,dimnames(WinBUGS_output)[[3]])) 
posterior <- subset(posterior, select=c(-deviance)) 
#write.csv(posterior, file="C:/Users/Eric_Sherer/Dropbox/Project - 
Omnibus/PK_analysis_average/posterior.csv", row.names=FALSE) 

 
temp = 
WinBUGS_output[,,unlist(sapply(c(paste("^",parametersToPlot,"$",sep=""),paste(" 
^",parametersToPlot,"\\[",sep="")),grep,x=dimnames(WinBUGS_output)[[3]]))] 
summary_table = parameter.plot.table(temp) 
write.csv(summary_table, paste("summary.csv",sep="")) 
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