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ABSTRACT 

Colorectal cancer (CRC) is one of the deadliest types of cancer in the US due to 

its high incidence and mortality rates. Detection of CRC in the early stages through 

available screening tests increases the patient's survival chances. In this study, we 

investigate the cost-effectiveness of a wide variety of multi-modal CRC screening 

policies. More specifically, we develop a Monte Carlo simulation framework to model 

the CRC natural history and preventive interventions. Age-specific and size-specific 

progression rates of adenomatous polyps are estimated using an innovative active 

learning method.  Specifically, we develop a decision tree model to estimate size-specific 

and age-specific adenoma progression and regression rates. Compared to traditional 

methods, the proposed calibration process expedites the searching of the model parameter 

space significantly. CRC age-specific incidence rates and CRC stage distribution are the 

two output measures used in the calibration process. Seventy-eight CRC screening 

policies are applied to a cohort of U.S. male population using the simulation model and 

compared in terms of expected Quality Adjusted Life Years (QALY) and costs. Eleven 

policies are identified as efficient frontier policies. Among these 9 are identified as cost-

effective at the willingness to pay (WTP) threshold of $50,000. Fecal Occult Blood Test 

(FOBT) biennially in conjunction with one time Colonoscopy at 60, FOBT biennially 

along with one time Colonoscopy at 50, Fecal Immunochemical Test (FIT) biennially in 

conjunction with two times Flexible Sigmoidoscopy (FS) at 60 and 65. FIT biennially 
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with one time Colonoscopy at 65, Colonoscopy at 50, 60 and 70, FOBT biennially along 

with two times Colonoscopy at 55 and 65, FOBT annually with 2 times FS at 70 and 75, 

FOBT annually in conjunction with FS at 50 and 55, and FIT biennially along with FS 

every 5 years are the nine identified cost-effective policies. 
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CHAPTER 1 

 

INTRODUCTION 
 

Colon and rectal cancer are often grouped together and called colorectal cancer 

(CRC) since they have many features in common (American Cancer Society 2018). It is 

estimated that in 2018, more than 140,000 people are diagnosed with CRC and more than 

50,000 patients are dead from CRC (National Cancer Institute 2018a). More than 8% of 

cancer incidences and deaths are estimated to be CRC related (National Cancer Institute 

2018a). According to the Surveillance, Epidemiology, and End Result (SEER) program 

1975-2015 review, between 2011 and 2015, approximately 9% of all new cancer cases 

are CRC and about 9% of all cancer-related deaths are due to CRC, making it the second 

deadliest cancer and the fourth most common cancer among all different types of cancer. 

CRC starts with a polyp in the innermost layer of the colon or rectum and may grow 

through other layers of the colon if not detected and treated (American Cancer Society 

2018). There are two main types of polyp in the colon and rectum. Adenomatous polyps, 

also called adenomas, are the type which can develop to cancer. The second type of 

polyps is hyperplastic and inflammatory polyps which generally do not develop into 

cancer (American Cancer Society 2018). While in the wall of the colon or rectum, cancer 

cells may spread to adjacent lymph nodes or distant body parts through the blood or 

lymph vessels. Stages of CRC are based on how deep they have grown into the colon or 
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rectum wall or how far they have traveled outside of their organ of origin (American 

Cancer Society 2018).  

CRC mortality risk can be reduced through detection of cancer in early stages 

when there is a higher survival chance. The overall five-year surveillance rate for CRC is 

64.6%. This ratio for cases who are diagnosed in the localized and distant stage is 90% 

and 13.9%, respectively. These ratios show the importance of detecting CRC in an early 

stage. Currently, there are several early CRC detection screening tests available, such as 

Fecal Immunochemical Test (FIT), Fecal Occult Blood Test (FOBT), Flexible 

Sigmoidoscopy (FS), and colonoscopy (Lansdorp-Vogelaar et al. 2011). These tests vary 

in different features. Sigmoidoscopy and colonoscopy use a camera on a flexible tube 

introduced through the anus to examine the colon and rectum for abnormal growths. 

These tests are categorized into visual (structural) exams since they look at the structure 

inside the colon and rectum for any abnormal areas that might be cancer or adenomas. 

Sigmoidoscopy is performed on an alert patient and reaches at most the first third of the 

large colon. Any polyps detected are recorded (and maybe removed and biopsied) and the 

patient is generally referred for colonoscopy. Colonoscopy is the most aggressive and 

expensive procedure performed on a sedated patient, and permits an examination of the 

entire colon. During a colonoscopy, any suspicious polyps can be removed, which may 

prevent cancer occurrence in the future (National Cancer Institute 2018b). FIT and FOBT 

are stool-based tests and look for evidence of occult (hidden) blood in the stool. FIT 

reacts to the part of the human hemoglobin protein, found in red blood cells. FOBT 

detects occult blood in the stool through a chemical reaction, in a different way than FIT. 

Neither FIT nor FOBT can specify if the blood is from the colon or other parts of the 
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digestive tract since the blood can be from cancers or polyps or some other non-CRC-

related causes (American Cancer Society 2018). Therefore, a positive FIT or FOBT 

requires a follow-up colonoscopy. One of the weaknesses associated with FIT and FOBT 

is low specificity which results in higher false positives in test results. The associated 

high false positive results increase the number of unnecessary colonoscopy tests (Lejeune 

et al. 2014). To avoid false positive results, patients are required to follow some dietary 

restrictions before FOBT tests. However, no dietary restriction is required before FIT 

(American Cancer Society 2018). Stool-based tests are usually associated with low costs 

which come with lower sensitivity as well (Knudsen et al. 2016; Prakash et al. 2017). 

Currently, there is no evidence on which CRC screening policy is most effective 

in early detection of CRC cases at the population level (Prakash et al. 2017; Stracci et al. 

2014). A review of the current literature on CRC screening shows that clinicians need 

more guidance to choose the best screening policy for their patients based on the patient's 

different risk factors such as age, sex, and health condition. This is also manifested as a 

result of the differences in CRC screening tests and thereby different utility levels of 

these tests for patients with different risk factors. Multi-modal screening policies can 

benefit patients by providing more diverse screening options with different sensitivity 

and specificity based on the patient's risk. For example, a screening strategy which 

recommends stool-based tests at younger ages and colonoscopy at older ages can be a 

potential improvement for a low-risk patient compared to only colonoscopy screening 

policy since the stool-based tests are less aggressive (Dinh et al. 2013). Table 1-1 

presents the in-practice CRC screening guidelines recommended by different health 

agencies in the US. It includes the most recent in-practice screening policies provided by 
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the United States Preventive Service Task Force (USPSTF), the US Multi-Society Task 

Force (USMSTF), and the American Cancer Society (ACS). All three agencies 

recommend patients start screening at age 50. None of the three health agencies 

recommend individuals older than 75 to undergo any screening unless under special 

circumstances. Among the nine policies listed in Table 1-1, only one policy 

recommended by the USPSTF is a multi-modal policy recommending a mixture of 

screening tests. 
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Table 1-1: In-practice screening policies recommended by different health agencies. 

Agency Age Recommended Test Frequency 

USPSTF 

50-75 

FOBT 

Colonoscopy  

FS-FOBT 

Annually 

Every 10 years 

FS every 5 years 

along with FOBT 

every 3 years 

76-85 

The USPSTF recommends against routine 

screening for colorectal cancer in adults 76 to 

85 years of age. There may be considerations 

that support colorectal cancer screening in an 

individual patient.  

NA 

85+ 
The USPSTF recommends against screening 

for colorectal cancer in adults older than age 

85 years. 

NA 

ACS 

50-75 

FIT 

FOBT 

Multi-target stool DNA test  

Colonoscopy 

CT Colonography 

FS 

Annually 

Annually 

Every 3 years 

Every 10 years 

Every 5 years 

Every 5 years 

76-85 

The ACS recommends that clinicians 

individualize CRC screening decisions for 

individuals based on patient preferences, life 

expectancy, health status, and prior screening 

history 

NA 

85+ 

The ACS recommends that clinicians 

discourage individuals over age 85 from 

continuing CRC screening 

NA 

USMSTF 50-75 

Colonoscopy 

FIT 

CT Colonography 

FIT-fecal DNA test 

FS 

Capsule colonoscopy 

Every 10 years 

Annually 

Every 5 years 

Every 3 years 

Every 5 years 

Every 5 years 
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1.1 Active Learning as a Simulation Calibration Tool 

Simulation models must be adequately calibrated to ensure a valid representation 

of the actual system. A review of the literature shows that more than 85% of the cancer 

simulation models used a calibration method to adjust their output (Stout et al. 2009). 

Trial and error, random sampling, and grid search are some of the popular approaches 

used (Stout et al. 2009). Although these methods work for simple simulation models, they 

are not efficient enough or even practical for more complex models with a large 

parameter set. Grid search and random search, specifically, conduct an extensive search 

in the parameters solution space. This makes these methods very intriguing for smaller 

simulation models, but very time-consuming and sometimes impractical for more 

complex simulation models. The extensive search of the parameter combinations can be 

avoided by identifying smaller neighborhoods which are more likely to contain the 

"optimum" combinations. Hence, machine learning methods such as decision tree 

algorithms or regression models can be used to search the parameter set more efficiently 

(Cevik et al. 2016). Active learning (also known as query learning) is considered as a 

sub-field of machine learning and, more generally, artificial intelligence. As it is shown 

in Figure 1-1, the key concept of active learning is that the learning algorithm is able to 

interactively query the user (or some other information source) to obtain the desired 

outputs at new data points. This results in an improved performance with less training 

(Russell and Norvig 2016). Supervised learning is the machine learning task of learning a 

function that maps an input to an output based on sample input-output pairs (Russell and 

Norvig 2016). Each example is a pair consisting of an input object (typically a vector) 

and the desired output value. A supervised learning algorithm analyzes the training data 
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and produces a function, which can be used for mapping new examples. An optimal 

scenario will allow for the algorithm to correctly determine the class labels for unseen 

instances. This requires the learning algorithm to generalize from the training data to 

unseen situations in a reasonable way (Mohri et al. 2012). For any supervised learning 

system to perform well, it must often be trained on a large set of labeled instances. 

Sometimes these labels come at little or no cost, but for many other sophisticated 

supervised learning tasks, labeled instances are very difficult, time-consuming, or 

expensive to obtain. Therefore, the ability to learn with less data is considered a desirable 

property for learning algorithms (Settles 2012). Active learning algorithms enable the 

calibration models to efficiently choose a better combination of parameters to guide the 

model outputs to the output measure targets in clinical reports. The idea of the use of 

active learning in simulation calibration process was first introduced by Cevik et al. 

(2016). In that study authors used active learning to calibrate a breast cancer simulation 

model developed at the University of Wisconsin. A small set of evaluated parameters are 

labeled with a scoring approach to train an artificial neural network as a prediction 

model. The prediction model is used to constrain parameter combinations to a smaller 

neighborhood where parameters are more likely to produce the desired output.  
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Figure 1-1: Learning cycle of a schematic supervised active learning model (City University 

of Hong Kong 2018). 

In this study, we investigate the cost-effectiveness of a wide range of multi-modal 

CRC screening policies. Moreover, we conduct a comprehensive evaluation of in-practice 

policies listed in Table 1-1. The alternative policies are compared with the in-practice 

policies. To the best of our knowledge, current studies on CRC screening policy cost-

effectiveness analysis are limited in the extent of the details in capturing the disease 

dynamics in pre-cancerous stages. In this study, age-specific and stage-specific pre-

cancerous progression and regression rates are estimated using an innovative active 

learning approach. More specifically, the main contributions of this study are as follows. 

1) We developed a detailed CRC natural history model which captures the dynamics of 

pre-cancerous states as well as the cancer states. The proposed model incorporates three 

different adenomatous polyps’ sizes and the possibility of adenomas’ regression. The 

proposed detailed model enables us to study the disease dynamics and the impact of 

possible intervention more precisely. 2) We estimated the parameters of the detailed 

proposed natural history model using innovative active learning methods. Currently, there 
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is no detailed data available to estimate age and stage specific transition rates in the pre-

cancerous states. As a result, the existing models use simplified models in characterizing 

the CRC natural history which may introduce some bias in the corresponding analysis. In 

this study, using active learning, specifically decision trees, we devise a more efficient 

and faster calibration process to estimate the detailed natural history model parameters. 3) 

We investigated the cost-effectiveness of a variety of CRC screening policies. Screening 

policies are generated based on different screening tests’ features and the disease 

dynamics in the average-risk population. Policies are designed as a combination of stool-

based and visual screening tests to take advantage of both types of tests. 

This thesis is structured as follows. In CHAPTER 2 we present a review of the 

literature on the effectiveness and cost-effectiveness analysis of CRC screening 

strategies. In CHAPTER 3, the proposed CRC natural history and intervention simulation 

models are presented.  The proposed method for simulation calibration is also presented 

in this section. Parameters estimation details are discussed in CHAPTER 4. Numerical 

results are presented in CHAPTER 5 followed by the conclusion presented in CHAPTER 

6. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 

A review of the studies on the effectiveness/cost-effectiveness of CRC screening 

policies is given by Lansdorp-Vogelaar et al. (2011), Patel and Kilgore (2015), and 

Pignone et al. (2002). Table 2-1 lists studies that are most relevant to ours and their 

models’ specifications. Currently, most of the recommended screening guidelines, 

suggested by recent studies and in-practice screening policies, are uni-modal (Dinh et al. 

2013; Sharaf and Ladabaum 2013). A partially observed Markov chain (POMC) model is 

developed by Li et al. (2014) to evaluate the cost-effectiveness of colonoscopy and 

determine the effect of the length of the intervals between colonoscopy tests. They 

developed a natural history model which includes three pre-cancerous states (small, 

medium, and large adenomas). Cancer states are categorized into localized, regional, and 

distant cancers. All three cancerous states are divided into clinical and preclinical states. 

However, adenoma regression is not included in the proposed model. Data are taken from 

literature and the model is calibrated against clinical data of a specific group of patients. 

Their results show that colonoscopy intervals have a significant impact on the cost-

effectiveness of the screening policies. Vijan et al. (2007) has also developed a Markov 

model to evaluate the performance of three uni-modal screening policies: CT 

colonography every 5 years, CT colonography every 10 years and colonoscopy every 10 

years. Cancer states are similar to the model presented by Li et al. (2014); however, this 
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model divides the pre-cancerous states based on the risk of becoming cancer into low-risk 

polyps and high-risk polyps. Transition rates from high-risk adenoma to cancer are 

assumed to be 100%. No calibration method is used and the possibility of adenomatous 

polyps’ regression and symptomatic cancers are not considered in the proposed model. 

Screening policies are compared based on diagnostic accuracy in detecting polyps and 

cancer tissues. They found that CT colonography every 5 or 10 years is cost-effective 

compared to no-screening policy. However, colonoscopy every 10 years between the age 

of 50 and 80 is still the most cost-effective policy. Pil et al. (2016) developed a Markov 

model to analyze the cost-effectiveness of biennial FOBT for both men and women aged 

56 to 74. Incremental cost-effectiveness ratio (ICER), when compared with no-screening 

policy, is used to evaluate the policy. They adopted the tumor, node, and metastasis 

(TNM) tumor classification system for CRC modeling. TNM is a CRC stage 

classification system presented by the American Joint Committee on Cancer (AJCC). 

Adenomatous polyps in the proposed model are assumed to be low-risk or high-risk. 

Results show that for the tested policies, the probability of being cost-effective is 100% 

for men and 97% for women. This study does not incorporate the possibility of adenoma 

regression and symptomatic cancer in the CRC modeling. Van Rossum et al. (2011) 

developed a Markov model to evaluate the cost-effectiveness of one round of FOBT 

compared to one round of FIT for patients aged between 50 and 75.  Similar to Pil et al. 

(2016), they adopted the TNM classification system for cancer states modeling and 

assumed that there is only one pre-cancerous state as advanced adenoma. No calibration 

method is discussed in Pil et al. (2016) and Van Rossum et al. (2011). However, they 

performed sensitivity analysis to assess the outputs’ sensitivity to changes in the value of 
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the parameters with a high level of uncertainty. The result shows that among the tested 

policies, FIT outperforms FOBT while both policies are shown to be cost-effective versus 

no-screening. Lee and Park (2016) developed a Markov model to evaluate the cost-

effectiveness of annual FOBT and its effect on health disparity compared to no-screening 

policy. They used a very simplified natural history model including only three states: 

polyp, early cancer, and advanced cancer. The proposed model used in this study does 

not incorporate the effect of symptomatic cancer in the natural history, and there is no 

calibration process to reduce the error of the Markov model against epidemiological 

reports. The Atkinson ICERs (ICER adjusted by the Atkinson Inequality Index (Atkinson 

1970)) are calculated based on the gained QALYs, total screening, and treatment costs to 

evaluate the screening policies. Hypothetical participants are tested via different policies 

between age 50 and 80. Results show that the annual FOBT between 50 and 80 is cost-

effective and has a higher health disparity compared to no-screening. Prakash et al. 

(2017) developed a micro-simulation model based on Colon Modeling Open Source Tool 

(CMOST) to calculate the optimal timing of colonoscopy tests. The proposed micro-

simulation model calculates the impact of different screening policies and their 

incorporated costs. CMOST models the natural history of CRC providing automated 

calibration of model parameters to meet the epidemiological benchmarks. Their proposed 

natural history model is limited as it includes only early adenomas, advanced adenomas, 

cancer, and direct cancer. A greedy search algorithm is used to calibrate this model. They 

have shown that CRC incidence and mortality rates are reduced most efficiently by 

colonoscopy between ages 56 and 59 while colonoscopy at 59 is the most cost-effective 

screening policy.  
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There are a few studies evaluating CRC screening policies with a combination of 

CRC screening tests (Byers et al. 1997; Eisen et al. 2000; Lieberman et al. 2001; Rex et 

al. 2000; Winawer et al. 1997). Telford et al. (2010) developed a probabilistic Markov 

model to estimate the cost-effectiveness of CRC screening policies and to derive the 

optimal screening policy among all available policies. Low-risk polyp and advanced 

adenoma are the two pre-cancer states in their proposed model. The proposed model 

includes localized cancer, regional cancer, and distant cancer which are also divided into 

clinical and preclinical cancers. The model does not include possible adenomatous 

polyps’ regression. No calibration process is described as being used in this study. Ten 

different screening policies are examined using the data from the literature. They 

concluded that all of the ten screening policies are cost-effective. Colonoscopy every 10 

years between 50 and 75 is introduced as the most effective policy as a result of 

significant reduction in CRC incidence and mortality rates. However, annual FIT 

between 50 and 75 is determined as the most cost-effective policy. Frazier (2000) 

developed a model similar to Telford et al.'s (2010) model to assess the cost-effectiveness 

of CRC screening policies in average-risk patients. Pre-cancerous adenomas are divided 

into two levels based on their risk of becoming cancer, low-risk adenoma, and high-risk 

adenoma, and the model is calibrated based on logistic regression methods. Distal and 

proximal parts of the colon are considered separately in this model in order to evaluate 

the performance of the FS more accurately. Follow-up colonoscopy is modeled as well 

for the patient diagnosed with high-risk polyps and positive FS. The comparison is done 

based on ICER, discounted lifetime costs and life expectancy. Annual FOBT from age 50 

to 85 in conjunction with FS every 5 years is shown to be the most cost-effective policy 
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in this study.  Sharaf and Ladabaum (2013) used a similar Markov model to explore the 

comparative effectiveness and cost-effectiveness of colonoscopy against FS and other 

CRC screening tests. The natural history model categorizes adenomas into small and 

large adenomas. The model is calibrated and related outputs are validated against several 

trials and studies such as the Minnesota Colon Cancer Control Study and UK Flexible 

Sigmoidoscopy Trial. Calibration methods are not discussed in the published article. 

Symptomatic cancer is included in this model; however, the study lacks modeling 

adenoma regression possibility. Results show higher adherence on FIT tests and 

colonoscopy is shown to be cost-effective versus FS. They concluded that the cost-

effectiveness of colonoscopy versus FS and FIT is dependent on the adherence rate 

associated with colonoscopy. Dinh et al. (2013) developed a simulation model to evaluate 

the cost-effectiveness of multi-modal CRC screening scenarios. The developed model, 

called Archimedes, is a large-scale simulation of human physiology, diseases, 

interventions, and health care systems. The model has separated the natural history into 

three major steps: adenoma development, tumor growth, and cancer symptoms. The CRC 

sub-model of the Archimedes was developed in collaboration with the ACS using 

published epidemiological studies and clinical trials data. The sub model is calibrated 

against several reports including the SEER report although authors have not discussed 

their calibration method in the published article.  Annual or biennial FIT between 50 and 

65 with one time colonoscopy at 66 shown to be cost-effective and comparable with cost-

effective uni-modal policies with favorable impact on resources demands. 

The studies listed above fall short in the level of the details they incorporate in 

modeling adenomatous polyps (pre-cancerous states) due to lack of available data. 
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Moreover, some of the available models (Lee and Park 2016; Van Rossum et al. 2011) 

have not simulated multiple adenomatous polyps growths. Natural history model 

validation is another restriction for different studies (Pil et al. 2016; Telford et al. 2010; 

Van Rossum et al. 2011; Vijan et al. 2001). 
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Table 2-1: Specifications of the similar studies published in the literature. 

 

Study Model 
Hybrid 

scenarios 

Age range 

for 

screening 

Calibration 

method. 
Adenoma stages Cancer stages 

Adenoma 

regression 

Symptomatic 

cancer 

Source CRC natural history 

relate data 

Best result/final 

conclusion 

Telford et al. 

2010 
Markov Yes 50-75 N/A 

Low risk polyp 

Advanced 

adenoma 

Localized, regional, 

distant (Preclinical 

and clinical) 

No No 
Literature 

SEER 

50-75 Colonoscopy 

every 10 years 

Frazier 2000 Markov Yes 50+ 

Logistic 

regression 

analysis. 

Low risk polyp 

High risk polyp 

Localized, regional, 

distant 
No Yes 

Literature 

SEER 

 

50-85 Annual FOBT, 

FS every 5 years 

Sharaf and 

Ladabaum 

2013 

Markov Yes 50-80 
Methods is not 

discussed 

Small Polyp 

Large Polyp 

 

Localized, regional, 

distant 
No Yes 

Literature 

SEER 

MEDLINE 

Cost-effectiveness is 

depended on the 

adherence rate 

Dinh et al. 

2013 
Archimedes Yes 50-75 

Methods is not 

discussed 

Benign polyp 

Adenomatous 

polyp 

Cancer lesion No Yes 

MEDLINE, Cochrane Database 

of Systematic Reviews, Web of 

Science, PubMed 

50-65 Annual or 

biennial FIT, 

colonoscopy at 66 

Li et al. 2014 Markov No 50-80 
Methods is not 

discussed 

Small, 

medium, large 

Localized, regional, 

distant (Preclinical 

and clinical) 

No Yes 
Clinical data 

Literature 

Colonoscopy interval 

affects cost-

effectiveness 

Vijan et al. 

2007 
Markov No 50-80 N/A 

Low risk polyp 

High risk polyp 

Localized, regional, 

distant (Preclinical 

and clinical) 

No No 

Literature 

SEER 

 

50-80 colonoscopy 

every 10 years 

Pil et al. 2016 Markov No 50+ N/A 
Low-risk polyp 

High-risk polyp 

TNM CRC stage 

classification 

 

 

No No 
Clinical data 

Literature 

Policies are 100 % 

cost-effective for 

males and 97% for 

women 

Van Rossum 

et al. 2011 
Markov No 50-75 N/A 

Advanced 

adenoma 

TNM CRC stage 

classification 
No Yes Clinical data 

One time FIT between 

50 and 75 

Lee and Park 

2016 
Markov No 50-80 

Not mentioned 

N/A 
Polyp 

Early cancer 

Cancer 

Advanced cancer 

No Yes Literature 50-80 Annual FOBT 

Prakash et al. 

2017 
CMOST No NA 

Greedy search 

algorithm  

Early adenoma 

Advanced 

adenoma 

Cancer, direct 

cancer 
Yes Yes 

Literature 

SEER 

MEDLINE 

One time colonoscopy 

between 56 and 59 
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CHAPTER 3 

 

 METHODOLOGY 
 

In this section, the proposed natural history and simulation model modules are 

presented. A detailed Markov framework is developed to model CRC dynamics. The 

details of the proposed Markov model are presented in Section 3.1. Simulation models 

characterizing CRC dynamics and possible preventive interventions through CRC 

screening tests are presented in Sections 3.2 and 3.3, respectively. The detail of the 

calibration process for estimating the age-specific and size-specific transition 

probabilities of the Markov model is provided in Section 3.4. 

3.1 CRC Natural History Model 

A Markov chain framework is used to model the CRC natural history. The 

proposed Markov framework is shown in Figure 3-1. The state space of the proposed 

Markov model is              , where state 0 represents no adenoma. Similar to 

MISCAN-Colon model (Loeve 2000), states 1 through 3 represent a diminutive adenoma 

(     ), a medium adenoma (      ) and a large adenoma (      ), 

respectively. States 4 through 6 represents localized, regional, and distant stage cancers, 

respectively. The localized stage represents the stage where the cancer tissue is still 

confined to the primary site. The regional stage represents the stage at which cancer has 

spread to regional lymph nodes. The last stage is the distant stage where the cancer tissue 

has metastasized to the other parts. Based on the TNM classification of malignant tumors 



18 

system, we assume that localized, regional and distant stages refer to stage I, both stage II 

and III, and stage IV, respectively (National Cancer Institute). The transition probability 

from state   to state   for age group   is denoted by    
 . The transition periods are 

assumed to be one year. Based on a previous study (Rex et al. 1997), and as reflected in 

the Markov model, an adenomatous polyp can grow or regress spontaneously. However, 

once an adenomatous polyp grows to become cancer, the probability of cancer regression 

without a treatment involvement is negligible. For simplification, we assume these rates 

are zero.  The probability of more than one transition from a given state in one year (e.g., 

the growth of a localized cancer from no adenoma state) is considered to be zero due to 

the negligibility of these rates (Sharaf and Ladabaum 2013).  

 

Figure 3-1: Proposed Markov model representing dynamics of adenomatous polyps. 

 We refer to a patient status by a vector of length six, that is               

        , where   ,   , and    represent the number of small, medium, and large 
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adenomatous polyps, respectively, and    ,    , and     represent the number of 

localized cancer (LC), regional cancer (RC), and distant cancer (DC) tissues, 

respectively. For instance, a patient with two small and a large adenomatous polyps and a 

regional cancer tissue is represented by (2, 0, 1, 0, 1, 0). Previous studies have shown that 

the probability of having more than six adenomas/cancer tissues in an individual is 

negligible (Sherer et al. 2013). Therefore, we assume that the maximum number of 

adenomatous polyps/cancer tissues in our model is limited to six (i.e.,            

              ). 

3.2 CRC Natural History Simulation Model 

Figure 3-2 presents a one-year dynamics of the proposed CRC natural history 

simulation model. Simulation of each patient starts at birth (age zero) and the patient is 

followed until he is terminated from the model either due to CRC related death or a 

competing cause of death. Age 100 is considered the simulation terminating age, 

consistent with the maximum life expectancy in the U.S. life table (Arias et al. 2017). 

Note that the maximum number of adenomatous polyps is assumed to be six. Each 

individual adenomatous polyp and cancer tissue dynamics (incidence, progression, and 

regression) are simulated according to the natural history model presented in Figure 3-1. 

At the beginning of each year, the possibility of adding adenomatous polyp(s) is 

evaluated based on adenomatous polyps’ incidence rates and the number of existing 

adenomatous polyps. Existing adenomas may progress or regress during the year as 

captured by the natural history model. We assume that the patient status (number and 

type of adenomas/ cancerous tissues) is updated at the beginning of each year and 

remains the same during the year. 
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Figure 3-2: CRC natural history simulation framework 

3.3 Screening Module Simulation 

Figure 3-3 and Figure 3-4 show the screening and cancer detection simulation 

modules for stool-based and visual CRC screening tests, respectively. As discussed in 

Section 3.1, at the beginning of each year the patient status is updated using the natural 

history model. If a screening test is prescribed in a year, the patient undergoes the 

screening test (perfect adherence to the prescribed test). During each year, if CRC is 

present in the patient's body, it may either become symptomatic or be detected through 

screening tests. We assume that any positive result from a stool-based test is followed up 

by a colonoscopy (Figure 3-4) and a biopsy test is performed after receiving a positive 

result on an endoscopic-based test (Figure 3-3). A biopsy may be performed during a 

colonoscopy or any other endoscopic procedures where a gastroenterologist is able to 

retrieve a sample from colon or rectum (Cancer Treatment Centers of America 2015). 

Due to the high sensitivity of biopsy test for cancer in this study, we assume that biopsy 

is a perfect test and reveals the true health status of the patient (Petrelli et al. 1999). It is 
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assumed that there is a disutility associated with each test depending on the 

aggressiveness of the test. Patients may receive false positive or false negative results 

depending on the sensitivity and specificity of the prescribed screening test. We assume 

that there is a disutility associated with receiving a false positive result. If not detected 

through screening, the cancer may develop symptoms. Symptomatic cancers are modeled 

using CRC mean sojourn time concept. Cancer sojourn time is defined as the time 

between the onset of preclinical cancer and the point at which cancer becomes 

symptomatic (Zheng and Rutter 2012). Cancer sojourn times are randomly generated 

according to the available distributions at the time of cancer onset. If a CRC case remains 

undetected, either due to false negative results or as a result of no scheduled screening 

test in the period between the cancer onset and the time that the cancer becomes 

symptomatic, cancer will show symptoms at the simulated scheduled time.  The proposed 

simulation model does not incorporate the post-diagnosis procedures (cancer treatment 

and surveillance). Instead, we assume that upon cancer detection, the remaining stage-

specific life expectancy and expected treatment and surveillance costs are accumulated 

and the patient's simulation is terminated. 
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Figure 3-3: Endoscopic-based CRC screening module of the simulation model. 

 

Figure 3-4: Stool-based CRC screening module of the simulation model. 

3.4 Model Calibration Process 

The dynamics of adenomatous polyps (colonic polyps in general) is not well-

studied. In this study, we calibrate the parameters of the proposed simulation model 

(representing a detailed dynamics of pre-cancerous (adenomatous polyps) and post 

cancerous states) using age-specific CRC incidence rates and CRC stage distribution 

reported by the SEER as output measures. The proposed model transition rates are age-
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specific to account for the impact of age as a significant CRC risk factor. SEER report 

(Howlader et al. 2016) includes the number CRC incidences per 100,000 individuals for 

18 different age-groups, including 17 age-groups in 5-year increments for patients 

younger than 85 and an age-group of patients older than 85.  

In this study, a combination of random search and machine learning approaches 

are used for the simulation model calibration. Figure 3-5 shows the proposed calibration 

process. Note that the proposed model parameters are age-specific and are estimated in 

five year increments. The calibration process consists of two main phases. In the first 

phase, a random search method is used to find neighborhoods yielding acceptable errors 

below predefined thresholds. In the second phase, machine learning classification 

methods are applied to search the parameter set space to expedite the calibration process. 

 

Figure 3-5: An overview of the calibration process. 

For the first output measure, CRC age-specific incidence rates, the weighted sum 

of relative errors of the estimated measures is used to evaluate the goodness of fit of an 
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estimation. Let    and      represent the observed and estimated CRC incidence rates of 

age-group            , respectively. The goodness of fit value for the first output 

measure is 

       

 

   

  
      

  
  Eq. 3-1 

where    is the weight associated with the     age group. The necessity of using weights 

is discussed in Section 3.4.1.  

For the second output measure, CRC stage distribution, the minimum of the sum 

of absolute errors (SAE) as presented in Eq. 3-2 is used to select best parameter sets. 

             

   

 Eq. 3-2 

where                denotes different CRC stages, and    and     represent the 

observed and estimated ratio of CRC cases in stage  , respectively. 

3.4.1 Characterization of the Training Data  

In the calibration process, the training data includes sets of Markov model 

transition probabilities (to be estimated) as inputs and a set of classes each representing a 

level of deviation from the SEER reported measures as the output. As the two output 

measures (incidence rates and CRC stage distribution) are continuous variables, we 

discretized (labeled) the outputs into different classes in order to apply classification 

machine learning methods. The discretization process occurs through defining envelopes 

and scores for the continued outputs based on the deviation from the observed measures 

reported by the SEER. An envelope is an interval or a set of two intervals defined around 

an observed output measure and represents a level of deviation from the observed 

measure. Let     
          denote the     envelope defined around the observed 
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incidence rate for age-group  , and            denote a predefined threshold controlling 

the tolerance of deviation from the observed incidence rate in the     envelope. The last 

(   ) envelope models an infinite error theoretically. Let    be the score assigned to the 

    envelope representing how close the estimated rates are from the observed rates. 

Table 3-1 represents a SEER incidence rate, hypothetical envelopes surrounding the rate, 

and the associated scores.  

Table 3-1: Schematic envelopes formed around an incidence rate and their associated scores. 

Tolerance Envelope Score 

                                         

                                                                           

… … … 

                                                                           

… … … 

-                                                   
 

Let    denote the final score associated with the estimated incidence rates 

(         ) obtained from the simulation model. The final score of a parameter set is 

calculated as the weighted sum (over all the age-groups) of scores of the envelopes which 

include the estimated incidence rates. Eq. 3-3 calculates the final score of a parameter set 

based on the estimated incidence rates. Note that a larger score implies a larger error and 

the goal is to minimize the overall score. Therefore, lower scores must be assigned to the 

envelopes with smaller tolerance. 

            

 

   

    

 

   

 Eq. 3-3 
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where     is the Kronecker delta function and is defined in Eq. 3-4,    the score 

associated with the     envelope, and    
  

   
 
   

 is the weight associated with age-group 

 . 

      
              

 

 
            

  Eq. 3-4 

The length of an envelope is calculated based on the magnitude of the associated 

incidence rates of the corresponding age-group. At younger ages, when the incidence 

rates are lower, the envelopes are smaller. As the patients become older, the envelope 

sizes increase. Therefore, the     envelopes at a younger age-group represents a smaller 

error compared to the counterpart envelope   at older age-group. To account for the 

different error representation of envelopes at different age-groups, envelope scores are 

weighted to enforce more weights on the age-groups with wider envelopes.  

Similarly, envelopes are developed around the observed CRC stage ratios     

with a predefined tolerance           , specifying the envelope's size. Let     
    

      denote the     envelope defined around the actual rate   . 

The final score associated with the estimated ratios, (   ) obtained from the 

simulation model, is calculated as the summation of the scores of the envelopes which 

include the estimated cancer stage ratio, as presented in Eq. 3-5. 

             

 

   

 

   

 Eq. 3-5 

where      is the Kronecker delta function and is defined similar to Eq. 3-4 and it takes 

value 1 if         
 , and 0, otherwise. 
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The final class that a set of parameters belongs to is determined based on the 

maximum value of    and   , i.e.,                 . Note that      is always 

between    and   . Let             , denote the     class. Class    is defined as 

parameter sets for which               , where    is the score assigned to the     

envelopes. Using the above process, the simulation data is transformed into labeled data. 

A balanced training data set is desirable in machine learning in order to increase 

the accuracy and precision of machine learning methods (Batista et al. 2004). Balance of 

a training data set is a function of tolerances and envelope scores since the final score of a 

parameter set is calculated based on the envelope scores of the age-groups. For example, 

given that we have four envelopes, desired tolerances and scores divide the training data 

into three different classes with each class containing approximately 33% of the data. 

3.4.2 Decision Tree Model 

A Decision Tree (DT) is an inductive learning algorithm consisting of several 

recursive decision rules, arranged hierarchically similar to the structure of a tree (Pradhan 

2013). The algorithm is based on the “divide and conquer” strategy and generates a 

classification tree using the training data/samples. The tree includes internal nodes (    

and    in Figure 3-6) and external (        in Figure 3-6) nodes. At each internal node, 

a test is applied to one or more attribute values to decide which node to visit next. An 

external node, also known as a terminal node, characterizes the output class.  DT are 

recommended to extract unknown patterns from large data-sets with distinction purposes.  
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Figure 3-6: A schematic decision tree. 

In order to train the DT, a training data set is first generated using the simulation 

model. Generated data are labeled using the approach described in Section 3.4.1. The DT 

is then trained and validated using the labeled data set. If the trained DT does not meet 

the acceptable level of accuracy, a new set of envelopes and scores will be generated. 

This process is iterated until an acceptable level of accuracy is reached. After the DT is 

trained, random parameter sets are generated to be classified by the trained DT. Note that 

a random parameter set is a set of transition probabilities (without the output measures). 

The DT classifies (labels) the randomly generated parameter sets into different classes. 

Parameter sets that are classified into the best class (with             ) are then fed 

into the simulation model to be evaluated. Among the parameter sets examined by the 

simulation model, the one which gives the smallest errors, calculated using Eq. 3-1 and 

Eq. 3-2, is selected. If the errors associated with the best data set are less than the 

acceptable thresholds (   and    respectively), the calibration process is completed. 

Otherwise, new parameter sets are randomly generated and the process is repeated until 

an acceptable error level is reached. 
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In summary, the proposed calibration method expedites the calibration process by 

exploiting machine learning tools. Specifically, instead of searching the transition 

probability space through time-consuming simulation model, the DT identifies the 

neighborhoods that are more likely to have the "optimal" parameter sets at a significantly 

faster pace. The simulation is then run only on the parameter sets identified as good 

solutions by the DT.  For example, for 1000 parameter sets, the simulation model 

(simulating 100,000 patients per parameter set) takes over 140 hours. The DT, however, 

classifies the same number of parameter sets in less than a minute.
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CHAPTER 4 

 

MODEL PARAMETER ESTIMATION 
 

The main challenge in the parameter estimation of the proposed model is to 

estimate the Markov model age-specific transition probability matrices. Particularly, the 

proposed model is very complex since it incorporates low level details of adenomas 

dynamics, including regression probabilities. An active learning approach, as discussed in 

Section 3.4, is used to estimate these parameters. Section 4.1 provides the details of the 

calibration process results for estimation of age-specific transition probabilities. Please 

note that the model is calibrated to represent the U.S. male population. Section 4.2 

presents the data sources used for estimation of the remaining parameters. 

4.1 Calibration Results 

Using the normalization constraint in the proposed Markov model, the number of 

the transition probabilities to be estimated for a given age-group is decreased from 15 to 

9. Therefore, given that there are 18 age-groups, the total number of transition 

probabilities to be estimated is 162. 

Using the random search method, at the end of the first phase of the calibration 

process the minimum error achieved for each output measure is 8%. In the second phase, 

three thousand random parameter sets in the neighborhoods of the estimated parameters 

(obtained in the first phase of the calibration process) are generated. The generated 
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parameter sets are then fed into the simulation model to calculate the output measures of 

interest. The result of the simulation model is then used to specify the characteristics of 

the discretization process which includes specifying envelopes and scores and to train the 

classification tool. Note that too many envelopes, and therefore classes, make the model 

more complicated and thereby slower. Moreover, note that we are only interested in the 

class with the smallest error. Therefore, there is no need to make the model more 

complicated by defining too many envelopes. There is no specific rule on what the 

numbers of envelopes, tolerance values and score must be. Therefore, using a trial and 

error approach, different combinations are examined for the model tuning. The results 

implied that setting the number of envelopes to three does not reach the desired accuracy 

and the model does not clearly differentiate the classes. Table 4-1 presents the best 

parameter values found in the calibration process. The score associated with the fourth 

envelope is considerably larger than that of the other envelopes to ensure that parameters 

sets with high deviation from the actual output measures in one or more age groups are 

not classified in the first class (with the lowest overall score). 

The classifiers are then trained using 80% of the training data set and validated 

using the remaining 20% of the data. Three different machine learning methods, namely 

Multilayer Perceptron (MLP), Naive Bayes (NB) and Decision Tree (DT) are tested. DT 

model outperformed the other two models in terms of accuracy and precision. We use the 

Gini Index to evaluate splits in the data set when training the DT. The DT reached an 

accuracy of 91%. 
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Table 4-1: List of the tolerances and scores obtained in the model tunning process. 

Incidence rate tolerance Stage distribution tolerance Score 

0.1 0.05 0 

0.2 0.1 3 

0.4 0.2 6 

>0.4 >0.2 200 
 

After the DT is trained and validated, new parameter sets are randomly generated 

and classified using the trained model. The parameter sets that are classified in the first 

class with the lowest score then are fed into the simulation model for exact error 

evaluation. Acceptable error threshold for CRC incidence rates (  ) and CRC stage 

distribution (  ) are set to 5% and 1%, respectively. The error threshold for the CRC 

incidence rate is selected to be higher since this error measures the deviation from the 

observed incidence under 18 different age-groups and therefore even a reasonable error in 

each age-group may add up to a big error. The minimum error for the first output 

measure (incidence rate) and second output measure (CRC stage distribution) achieved 

are 3.1% and 0.46%, respectively. Figure 4-1 and Figure 4-2 show the estimated 

incidence rates and CRC stage distribution, respectively, plotted against the same 

measures reported by the SEER. The estimated age-specific transition probabilities are 

presented in Table A-1 and Table A-2 in APPENDIX A. 
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Figure 4-1: Age specific estimated incidence rates using DT (red) and incidence rates 

reported by SEER (blue). 

 

Figure 4-2: CRC stage distribution obtained by the calibration model compared with those 

reported by SEER. 
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4.2 Other Parameters 

Table A-6 presents the data sources used for parameter estimations. Natural cause 

and CRC related mortality rates are calculated using SEER cancer statistics review 

(Howlader et al. 2016) and the US life table (Arias et al. 2017). Age and stage specific 

life expectancy of CRC patients are estimated using the MD Anderson CRC survival 

calculator (MD Anderson Cancer Center CRC Survival Calculator 2009). Screening 

specifications are adopted from recently published literature (Erenay et al. 2014; Knudsen 

et al. 2016). Screening costs are the source of most of the disparities in cost-effectiveness 

studies. In order to retrieve the most accurate cost estimates, we adopted the screening 

and treatment costs from most recent published studies to make sure there are no 

significant technology changes. In addition, all costs are adjusted to the calendar year 

2018 dollars by using the Bureau of Labor Statistics Consumer Price Index (Bureau of 

Labor Statistics 2018). The CRC sojourn time is assumed to follow an exponential 

distribution (Loeve 2000) and the mean parameters are adopted from Brenner et al.'s 

(2011) study. 
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Table 4-2: Data source and estimated parameters used in the simulation model. 

Parameter Value Reference 

Age-specific precancerous transition 

probabilities   
Table A-1 Sherer et al. 2013  

Age-specific post-cancerous transition 

probabilities   
Table A-2 Macafee et al. 2008  

Age-specific mortality rates  US. Life Table Arias et al. 2017 

CRC localized stage mortality rates 

CRC regional stage mortality rates 

CRC distant stage mortality rates 

0.0542 

0.1677 

0.6469 

Macafee et al. 2008 

Age-specific quality adjusted life year 

<= 44 

45-54 

55-64 

65-74 

75+ 

 

0.91 year 

0.78 year 

0.77 year 

0.75 year 

0.73 year 

Fryback and Lawrence 1997 

Colonoscopy disutility 

FS disutility 

FIT disutility 

FOBT disutility 

11 days 

2 days 

1 days 

1 days 

Erenay et al. 2014 

Mayo clinic 2018 

American Cancer Society 2018 

American Cancer Society 2018 

Stage-specific CRC life expectancy Table A-3 
MD Anderson Cancer Center CRC 

Survival Calculator 2009 

CRC mean sojourn time Table A-4 Brenner et al. 2011 

Screening tests sensitivities Table A-5 Knudsen et al. 2016 

Colonoscopy specificity 

FS specificity 

FIT specificity 

FOBT specificity 

86% 

87% 

89.8% 

92.5% 

Knudsen et al. 2016 

Colonoscopy cost 

FS cost 

FIT cost 

FOBT cost 

$1192.6 

$548.47 

$24.88 

$24.88 

Prakash et al. 2017 

Sharaf and Ladabaum 2013 

Bureau of Labor Statistics 2018 

Treatment costs Table A-6 Joseph 2018 
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CHAPTER 5 

 

NUMERICAL RESULTS 
 

Different screening policies are implemented to a cohort of one hundred thousand 

males. Screenings are applied to the cohort of individuals aged from 50 to 75. The 

screening policies differ in the type of screening tests and screening intervals. A cost-

effectiveness analysis on a broad set of uni-modal and multi-modal CRC screening 

policies is performed. Specifically, we assess 78 different policies including no-

screening, five CRC screening policies recommended by different US health agencies, 

and 72 alternative multi-modal screening policies. The five in-practice screening policies 

analyzed are Colonoscopy at 50, 60 and 70, annual FIT, annual FOBT, FS every 5 years 

and FOBT every 3 years in conjunction with FS every 5 years. FIT, FOBT, colonoscopy, 

and FS are the screening modalities considered in the alternative screening policies. 

Policies are generated by combining policies recommended by the health agencies and 

some recent studies. In the evaluated multi-modal policies, patients undergo two different 

types of tests: a stool-based test and a visual test. Stool-based tests are associated with 

lower cost and are less aggressive compared to visual tests. Visual tests, on the other 

hand, are more sensitive and costly. We assume each year at most one screening test is 

performed on a patient unless the patient receives a positive result and is referred for a 

biopsy. In a year with a confluence of two different screening tests, only the visual test 

(FS or colonoscopy) is used. The frequencies of the tests are selected based on the 
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recommended frequencies by the health agencies and the literature. Stool-based tests are 

prescribed annually or biennially, and FS and colonoscopy are prescribed at 5-year and 

10-year frequencies, respectively. The policies investigated in this study are listed in 

Table 5-1. 

All 78 policies considered in this study are represented in Figure 5-1. The blue 

points are the “inefficient” or "dominated" policies, or the policies that are each 

dominated by other screening policy(ies) with a higher QALYs and lower cost. The 

identified “efficient" or "dominant" and in-practice policies are presented in green and 

red, respectively. FOBT biennially in conjunction with one time Colonoscopy at 60, 

FOBT biennially along with one time Colonoscopy at 50, FIT biennially in conjunction 

with two times FS at 60 and 65, FIT biennially with one time Colonoscopy at 65, 

Colonoscopy at 50, 60 and 70, FOBT biennially along with two times Colonoscopy at 55 

and 65, FOBT annually with 2 times FS at 70 and 75,  FOBT annually in conjunction 

with FS at 50,55 and FIT biennially along with FS every 5 years are the nine identified 

dominant policies. The structure of the identified dominant policies show that undergoing 

endoscopic-based tests between age 55 and 65 benefits the patients. In addition, 

prescribing stool-based tests for the patients biennially is shown to be more cost-effective 

as suggested by 6 of the identified dominant policies. Prescribing stool-based tests 

annually seems to unnecessarily increase the expected cost while it does not significantly 

affect the expected QALYs. As the results show, for each in-practice policy, there is an 

alternative policy that results in higher QALYs with the same or a lower cost of the in-

practice policy. For instance, consider the in-practice policy of FS every 5 years. This 

policy yields the highest expected QALYs (67.05 years), with an associated expected cost 
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of $3,762, among the in-practice polices. However, the alternative policy of FOBT 

annually, in conjunction with FS at 70 and 75 yields both higher expected QALYs (67.06 

years) and lower expected cost ($3,684). The results show all the 77 policies evaluated in 

this study benefit the patients through increased QALYs and decreased CRC mortality 

compared to no screening policy. In most cases, combining stool-based tests with visual 

tests will benefit patients with higher life expectancy and lower expected cost. Multi-

modal policies are associated with higher reduction rates in CRC incidence and mortality 

compared with uni-modal scenarios. 

 

Figure 5-1: Efficient frontier versus the in-practice policies. 

In order to evaluate the performance of different CRC screening policies, 

incremental cost-effectiveness ratio (ICER) is calculated. ICER is calculated as the 

expected cost difference per expected QALYs difference for every 2 consecutive policies 
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while all screening policies are sorted in expected QALYs in an increasing order. Let    

and     denote two consecutive policies with associated        and       , 

respectively and              . Eq. 5-1 calculates the ICER value when comparing 

policies    and    and represents the ratio of the additional cost that must be paid under 

policy    for one additional unit of QALYs when compared with policy   . A negative 

value for        represents that policy    is dominated by policy    since policy    is 

associated with higher expected cost and lower expected QALYs. ICER for dominant 

screening policies is calculated as the cost difference per QALY gained relative to the 

nearest efficient frontier policy (Dinh et al. 2013). 

        
                             

                             
 Eq. 5-1 
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Table 5-1: Cost, QALYs, and ICER associated with the investigated policies.  

Policy QALYs Cost ICER Policy QALYs Cost ICER 

No screening 66.61 $1,306 NA 
FOBT annually, 
Colonoscopy at 60 

66.99 $3,870 Dominated 

FIT annually, 
Colonoscopy at 50, 

60, 70 

66.91 $6,221 Dominated 
FOBT biennially, 

Colonoscopy at 60 
66.99 $2,634 $3,486 

FIT annually, FS at 

55,60 
66.91 $4,342 Dominated 

FOBT biennially, 

Colonoscopy at 65, 75 
66.99 $3,546 Dominated 

FIT biennially, 

Colonoscopy at 60, 70 
66.91 $3,718 Dominated 

FIT annually, 

Colonoscopy at 60 
67.00 $4,505 Dominated 

FOBT annually, 

Colonoscopy at 55, 

65, 75 

66.91 $5,480 Dominated 
FIT biennially, 

Colonoscopy at 70 
67.00 $2,934 Dominated 

FIT annually, FS at 
70, 75 

66.92 $4,273 Dominated 

FIT biennially, 

Colonoscopy at 50, 

60, 70 

67.00 $4,591 Dominated 

FIT annually, FS at 
60, 65 

66.93 $4,328 Dominated 
FOBT annually, FS at 
55, 60 

67.00 $3,776 Dominated 

FIT biennially, 

Colonoscopy at 75 
66.93 $3,034 Dominated 

FOBT annually, 

Colonoscopy at 50 
67.00 $3,886 Dominated 

FOBT biennially, FS 

at 55, 60 
66.93 $2,748 Dominated 

FOBT biennially, 

Colonoscopy at 55 
67.00 $2,744 Dominated 

FIT annually, 

Colonoscopy at 55, 
65, 75 

66.94 $6,129 Dominated 
FOBT every 3 years , 

FS every 5 years 
67.01 $3,245 Dominated 

FIT biennially, 

Colonoscopy at 60 
66.94 $2,941 Dominated 

FOBT annually, FS at 

60, 65 
67.01 $3,735 Dominated 

FOBT annually, 
Colonoscopy at 60, 70 

66.94 $4,666 Dominated 
FOBT annually, FS 
every 5 years 

67.01 $5,101 Dominated 

FOBT annually, 
Colonoscopy at 65, 75 

66.94 $4,559 Dominated 
FOBT annually, 
Colonoscopy at 75 

67.01 $3,755 Dominated 

FOBT annually, 
Colonoscopy at 50, 

60, 70 

66.94 $5,582 Dominated FIT annually 67.02 $3,680 Dominated 

FIT annually, 

Colonoscopy at 55, 65 
66.95 $5,391 Dominated 

FIT annually, 

Colonoscopy at 65 
67.02 $4,479 Dominated 

FIT annually, FS 

every 5 years 
66.95 $5,610 Dominated 

FIT biennially, 

Colonoscopy at 55 
67.02 $3,085 Dominated 

FIT biennially, 

Colonoscopy at 55, 

65, 75 

66.95 $4,852 Dominated 
FOBT annually, 

Colonoscopy at 50, 60 
67.02 $4,750 Dominated 

FIT biennially, FS at 
55, 60 

66.95 $3,016 Dominated 
FOBT biennially, FS 
at 50,55 

67.02 $2,781 Dominated 

FIT biennially, FS at 
65, 70 

66.95 $2,963 Dominated 
FOBT biennially, FS 
every 5 years 

67.02 $4,183 Dominated 

FOBT biennially, FS 

at 70, 75 
66.95 $2,682 Dominated 

FOBT biennially, 

Colonoscopy at 50 
67.02 $2,692 $2,031 
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Policy QALYs Cost ICER Policy QALYs Cost ICER 

FIT annually, 
Colonoscopy at 75 

66.96 $4,388 Dominated 
FOBT biennially, 
Colonoscopy at 65 

67.02 $2,737 $177,503 

FIT annually, 

Colonoscopy at 60, 70 
66.96 $5,304 Dominated 

FOBT biennially, 

Colonoscopy at 60, 70 
67.02 $3,424 Dominated 

FOBT biennially, 

Colonoscopy at 70 
66.96 $2,682 Dominated 

FOBT biennially, 
Colonoscopy at 50, 

60, 70 

67.02 $4,306 Dominated 

FOBT biennially, 

Colonoscopy at 75 
66.96 $2,724 Dominated 

FIT annually, 

Colonoscopy at 50 
67.03 $4,502 Dominated 

FIT annually, FS at 

50, 55 
66.97 $4,364 Dominated 

FIT biennially, FS at 

50, 55 
67.03 $3,064 $332,458 

FOBT annually, 

Colonoscopy at 55 
66.97 $3,855 Dominated 

FIT biennially, FS at 

60, 65 
67.03 $2,985 $22,856 

FIT annually, 
Colonoscopy at 55 

66.98 $4,492 Dominated 
FOBT annually, 
Colonoscopy at 65 

67.03 $3,820 Dominated 

FIT annually, 

Colonoscopy at 70 
66.98 $4,441 Dominated 

FOBT biennially, 
Colonoscopy at 55, 

65, 75 

67.03 $4,517 Dominated 

FIT annually, FS at 

65, 70 
66.98 $4,312 Dominated FOBT annually 67.04 $3,100 Dominated 

FIT biennially, 

Colonoscopy at 50 
66.98 $2,974 Dominated 

FIT biennially, 

Colonoscopy at 65 
67.04 $3,070 $834 

FIT biennially, 

Colonoscopy at 50, 60 
66.98 $3,803 Dominated 

FIT biennially, 

Colonoscopy at 55, 65 
67.04 $4,023 Dominated 

FIT biennially, 
Colonoscopy at 65, 75 

66.98 $3,883 Dominated 
FOBT annually, 
Colonoscopy at 70 

67.04 $3,804 Dominated 

FOBT annually, FS at 
65, 70 

66.98 $3,726 Dominated 
FOBT biennially, 
Colonoscopy at 50, 60 

67.04 $3,528 Dominated 

FOBT annually, 

Colonoscopy at 55, 65 
66.98 $4,714 Dominated 

Colonoscopy at 50, 

60, 70 
67.05 $3,341 $44,760 

FOBT biennially, FS 

at 60, 65 
66.98 $2,747 Dominated FS every 5 years 67.05 $3,762 Dominated 

FOBT biennially, FS 

at 65, 70 
66.98 $2,718 Dominated 

FOBT annually, FS at 

70, 75 
67.06 $3,684 $4,387 

FIT annually, 

Colonoscopy at 50, 60 
66.99 $5,397 Dominated 

FOBT biennially, 

Colonoscopy at 55, 65 
67.06 $3,682 $22,824 

FIT annually, 
Colonoscopy at 65, 75 

66.99 $5,226 Dominated 
FOBT annually, FS at 
50, 55 

67.08 $3,781 $6,859 

FIT biennially, FS at 
70, 75 

66.99 $2,947 Dominated 
FIT biennially, FS 
every 5 years 

67.09 $4,442 $43,183 
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Table 5-1 presents all the policies investigated in this study with their associated 

QALYs, cost and ICER. Willingness to pay (WTP) is defined as the maximum price at or 

below which the patient (consumer) will buy a service (product) (Miller et al. 2011). At 

$50,000 WTP threshold (Sharaf and Ladabaum 2013), among the 11 dominant policies, 9 

policies are cost-effective out of which 8 policies are multi-modal. Multi-modal policies 

are also associated with lower ICER compared with the identified cost-effective uni-

modal policy (Colonoscopy at 50, 60 and 70).  

The performance of the in-practice policies and best alternative policies in terms 

of expected QALYs, incidence reduction, and mortality reduction, when compared with 

no screening policy are compared in Table 5-2. Among the in-practice policies 

colonoscopy at 50, 60 and 70 outperforms other policies in terms of expected QALYs 

(67.05), incidence and mortality reduction (86.5% and 89.4% respectively). Comparing 

this policy with the alternative policies, FIT biennially in conjunction with FS every 5 

years benefits the patients with higher expected QALYs (67.09). FOBT biennially along 

with three times colonoscopy at 50, 60 and 70 serves the patients with higher incidence 

reduction (88.6%) and FIT annually, colonoscopy at 55, 65 and 75 benefits patients with 

higher mortality reduction (93%) compared to the best identified in-practice policy. 
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Table 5-2: In-practice policies and best identified alternative policies in terms of the expected 

QALYs, incidence reduction, and mortality reduction - number in parentheses represent 

confidence intervals (CI). 

 
Policy 

Expected 

QALYs 

Incidence 

Reduction 

Mortality 

Reduction 

In
-p

ra
ct

ic
e 

No screening 
66.61 

(66.59,66.63) - - 

FIT annually 
67.02 

(67.00,67.04) 69.8% 85.4% 

FOBT annually 
67.04 

(67.01,67.07) 60.4% 80.1% 

FS every 5 years 
67.05 

(67.03,67.07) 71.1% 81.1% 

FOBT every 3 years, FS every 5 years 
67.01 

(66.99,67.03) 62.7% 79.0% 

Colonoscopy at 50, 60 and 70 
67.05 

(67.02,67.07) 86.5% 89.4% 

A
lt

er
n

a
ti

v
e FIT biennially, FS every 5 years 

67.09 

(67.07,67.11) 75.8% 87.1% 

FOBT biennially, Colonoscopy at 50, 60, 

70 

67.02 

(67.00,67.04) 88.6% 91.9% 

FIT annually, Colonoscopy at 55, 65, 75 
66.94 

(66.91,66.97) 87.1% 93.0% 
 



 

44 

 

CHAPTER 6 

 

CONCLUSION 
 

As implied by multiple health agencies, currently there is no consensus on which 

CRC screening policy is the most effective. In this study, we adopted a Markov chain 

framework to model CRC natural history. We used Monte Carlo simulation approach to 

model the CRC dynamics and quantify the effectiveness of CRC preventive 

interventions. Using active learning, specifically a decision tree, we devised an 

innovative calibration process to estimate the parameters of the detailed proposed natural 

history model, i.e., age-specific and size-specific adenoma progression and regression 

rates as well as age-specific CRC progression rates. This method calibrates the proposed 

simulation model through a more efficient and faster process compared to other methods 

used in the literature such as trial and error, random sampling, and grid search. 

A cohort of 100,000 males is simulated under 78 different CRC screening policies 

using the calibrated model. A cost-effectiveness analysis is performed on different 

screening policies. Screening policies are compared in terms of the associated expected 

screening and treatment cost, expected QALYs, and reduction in the CRC incidence and 

mortality rates. The numerical analysis results show that in most cases, combining stool-

based tests with visual tests will benefit patients with higher life expectancy and lower 

expected cost. Multi-modal policies are associated with higher reduction rates in CRC 

incidence and mortality compared with uni-modal scenarios. Among the nine identified 
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dominant policies under $50,000 WTP threshold, eight policies are multi-modal. Multi-

modal policies are also associated with lower ICER compared with the identified cost-

effective uni-modal policy. 

This study has several limitations. First, using multiple data sources for parameter 

estimation introduces some potential sources of errors. Screening and treatment costs are 

usually difficult to estimate due to the wide estimation variation in the literature. Second, 

a discretization approach is taken in this study when calibrating the model through the 

DT training as DT is a classification approach.  The discretization introduces some errors 

due to classifying different errors in one class. Employing prediction models that can 

work with continuous variables, and thereby avoiding discretization, would result in 

eliminating this error in the calibration process. This study is limited to male population 

and incorporates age as the only CRC risk factor. However, other risk factors such as 

gender and family history, etc., need to be taken into account for more precise disease 

modeling. A risk stratification model which takes into account patient-specific risk 

factors and recommend policies accordingly would be a possible future direction. 
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APPENDIX A  
 

MODEL PARAMETERS USED IN THE SIMULATION MODEL 

Table A-1: Age-specific pre-cancer transition probabilities  

Age group                                             

1-4 0.992 0.008 0.008 0.966 0.026 0.013 0.960 0.026 0.005 0.975 0.020 

5-9 0.999 0.001 0.004 0.991 0.004 0.008 0.988 0.005 0.003 0.994 0.003 

10-14 0.996 0.004 0.005 0.983 0.012 0.008 0.979 0.013 0.003 0.988 0.010 

15-19 0.996 0.004 0.003 0.985 0.012 0.006 0.982 0.012 0.002 0.989 0.009 

20-24 0.996 0.004 0.004 0.982 0.014 0.007 0.979 0.015 0.002 0.987 0.011 

25-29 0.996 0.004 0.004 0.982 0.014 0.007 0.978 0.015 0.003 0.986 0.011 

30-34 0.993 0.007 0.005 0.972 0.023 0.008 0.968 0.024 0.003 0.979 0.018 

35-39 0.990 0.010 0.006 0.960 0.034 0.010 0.955 0.035 0.004 0.970 0.026 

40-44 0.994 0.006 0.006 0.975 0.019 0.011 0.970 0.019 0.004 0.982 0.014 

45-49 0.989 0.011 0.009 0.953 0.038 0.016 0.946 0.038 0.006 0.965 0.029 

50-54 0.990 0.010 0.011 0.957 0.032 0.018 0.949 0.033 0.007 0.969 0.025 

55-59 0.990 0.010 0.009 0.958 0.032 0.016 0.951 0.033 0.006 0.969 0.025 

60-64 0.989 0.011 0.009 0.955 0.035 0.016 0.948 0.036 0.006 0.967 0.027 

65-69 0.987 0.013 0.012 0.944 0.044 0.020 0.934 0.045 0.008 0.958 0.034 

70-74 0.988 0.012 0.010 0.951 0.039 0.018 0.943 0.040 0.007 0.964 0.030 

75-79 0.988 0.012 0.011 0.948 0.041 0.018 0.940 0.042 0.007 0.961 0.032 

80-84 0.988 0.012 0.011 0.948 0.041 0.019 0.939 0.042 0.007 0.962 0.031 

85+ 0.990 0.010 0.010 0.957 0.033 0.017 0.950 0.034 0.006 0.968 0.025 
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Table A-2: Age-specific cancer states transiotion probabilities. 

Age group                 

1-4 0.710 0.290 0.581 0.419 

5-9 0.709 0.291 0.580 0.420 

10-14 0.701 0.299 0.580 0.420 

15-19 0.695 0.305 0.576 0.424 

20-24 0.694 0.306 0.576 0.424 

25-29 0.694 0.306 0.576 0.424 

30-34 0.692 0.308 0.571 0.429 

35-39 0.687 0.313 0.568 0.432 

40-44 0.686 0.314 0.568 0.432 

45-49 0.686 0.314 0.563 0.437 

50-54 0.686 0.314 0.545 0.455 

55-59 0.686 0.314 0.553 0.447 

60-64 0.684 0.316 0.549 0.451 

65-69 0.685 0.315 0.548 0.452 

70-74 0.685 0.315 0.547 0.453 

75-79 0.674 0.326 0.541 0.459 

80-84 0.674 0.326 0.539 0.461 

85+ 0.670 0.330 0.539 0.461 
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Table A-3: Stage-specific life expectancy of CRC patients. 

Age Localized Regional Distant Age Localized Regional Distant 

1 64.76 50.41 5.32 51 23.06 17.00 1.97 

2 63.95 49.81 5.25 52 22.35 16.49 1.66 

3 63.10 49.19 5.23 53 21.63 15.96 1.52 

4 62.31 48.62 5.23 54 20.89 15.41 1.40 

5 61.49 48.00 5.21 55 20.18 14.87 1.36 

6 60.66 47.34 5.21 56 19.44 14.38 1.10 

7 59.85 46.70 5.19 57 18.67 13.79 0.73 

8 58.99 46.02 5.17 58 17.86 13.16 0.71 

9 58.08 45.23 5.12 59 17.01 12.43 0.65 

10 57.12 44.30 4.52 60 16.06 11.52 0.63 

11 56.32 43.62 4.51 61 15.42 11.03 0.60 

12 55.51 43.02 4.46 62 14.80 10.62 0.58 

13 54.66 42.41 4.44 63 14.17 10.17 0.56 

14 53.87 41.83 4.43 64 13.54 9.76 0.55 

15 53.06 41.21 4.42 65 12.88 9.30 0.54 

16 52.23 40.55 4.42 66 12.23 8.87 0.54 

17 51.42 39.91 4.40 67 11.54 8.38 0.52 

18 50.56 39.24 4.38 68 10.78 7.80 0.51 

19 49.66 38.45 4.33 69 9.96 7.11 0.50 

20 48.69 37.52 3.73 70 9.02 6.21 0.50 

21 47.91 36.85 3.72 71 8.56 5.95 0.47 

22 47.12 36.26 3.66 72 8.12 5.67 0.36 

23 46.28 35.66 3.64 73 7.65 5.36 0.34 

24 45.49 35.09 3.64 74 7.19 5.08 0.28 

25 44.69 34.48 3.62 75 6.71 4.75 0.26 

26 43.87 33.82 3.62 76 6.20 4.44 0.25 

27 43.06 33.19 3.60 77 5.63 4.07 0.25 

28 42.21 32.52 3.58 78 5.01 3.62 0.24 

29 41.31 31.73 3.54 79 4.26 3.02 0.23 

30 40.34 30.80 2.94 80 3.36 2.18 0.22 

31 39.57 30.14 2.93 81 3.25 2.12 0.21 

32 38.78 29.55 2.88 82 3.11 2.02 0.19 

33 37.94 28.95 2.86 83 2.80 1.98 0.13 

34 37.16 28.38 2.85 84 2.62 1.91 0.13 

35 36.36 27.77 2.83 85 2.42 1.84 0.08 

36 35.54 27.12 2.83 86 2.17 1.75 0.06 

37 34.74 26.49 2.81 87 1.81 1.63 0.06 

38 33.89 25.82 2.79 88 1.61 1.44 0.05 

39 32.99 25.03 2.75 89 1.29 1.06 0.04 

40 32.02 24.10 2.28 90 0.83 0.69 0.04 

41 31.26 23.45 2.15 91 0.82 0.65 0.04 

42 30.48 22.88 2.14 92 0.78 0.58 0.04 

43 29.66 22.29 2.10 93 0.72 0.58 0.03 

44 28.90 21.73 2.07 94 0.66 0.51 0.02 

45 28.11 21.13 2.06 95 0.63 0.47 0.02 

46 27.30 20.49 2.05 96 0.56 0.45 0.01 

47 26.51 19.87 2.05 97 0.56 0.40 0.01 

48 25.66 19.20 2.03 98 0.52 0.36 0.01 

49 24.77 18.42 2.01 99 0.48 0.34 0.01 

50 23.81 17.49 2.00 100 0.27 0.31 0.01 
 

 



49 

Table A-4: Age-specific mean sojourn time. 

Age Mean Sojourn Time (years) 

1-59 5.5 

60-64 5.2 

65-69 4.7 

70-74 4.9 

75-79 5.0 

80-100 5.5 
 

 

Table A-5: Screening sensitivities. 

 Colonoscopy FS FOBT FIT 

Small adenoma 0.75 0.75 N/A N/A 

Medium adenoma 0.85 0.85 N/A N/A 

Large adenoma 0.95 0.95 N/A N/A 

CRC 0.95 0.95 0.70 0.74 
 

 

Table A-6: CRC stage-specific treatment costs. 

Stage Initial cost (Year 1) Surveillance Costs (Years 2-5) 

Localized $20,247 $1,305 

Regional $26,008 $2,345 

Distant $30,085 $15,057 
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APPENDIX B  
 

PROGRAMMING CODE OF THE MODEL 
 

#library(xlsx) 

#list of policies 

Policies<-matrix(0,100,81) 

Policies[c(50:75),2]<-3 

Policies[c(50,60,70),3]<-1 

Policies[seq(50,75,5),4]<-4 ; Policies[seq(50,75,3),4]<-3 

Policies[c(45:75),5]<-2 

Policies[c(45:75),6]<-3 

Policies[c(45,55,65,75),7]<-1 

Policies[seq(45,75,5),8]<-4 

Policies[c(50:75),9]<-2 

 

Policies[seq(50,75,1),10]<-2 ; Policies[50,10]<-1 

Policies[seq(50,75,1),11]<-2 ; Policies[55,11]<-1 

Policies[seq(50,75,1),12]<-2 ; Policies[60,12]<-1 

Policies[seq(50,75,1),13]<-2 ; Policies[65,13]<-1 

Policies[seq(50,75,1),14]<-2 ; Policies[70,14]<-1 

Policies[seq(50,75,1),15]<-2 ; Policies[75,15]<-1 

Policies[seq(50,75,1),16]<-2 ; Policies[c(50,60),16]<-1 

Policies[seq(50,75,1),17]<-2 ; Policies[c(55,65),17]<-1 

Policies[seq(50,75,1),18]<-2 ; Policies[c(60,70),18]<-1 

Policies[seq(50,75,1),19]<-2 ; Policies[c(65,75),19]<-1 

Policies[seq(50,75,1),20]<-2 ; Policies[seq(50,75,10),20]<-1 

Policies[seq(50,75,1),21]<-2 ; Policies[seq(55,75,10),21]<-1 

 

Policies[seq(50,75,1),22]<-2 ; Policies[c(50,55),22]<-4 

Policies[seq(50,75,1),23]<-2 ; Policies[c(55,60),23]<-4 

Policies[seq(50,75,1),24]<-2 ; Policies[c(60,65),24]<-4 

Policies[seq(50,75,1),25]<-2 ; Policies[c(65,70),25]<-4 

Policies[seq(50,75,1),26]<-2 ; Policies[c(70,75),26]<-4 

Policies[seq(50,75,1),27]<-2 ; Policies[seq(50,75,5),27]<-4 

 

Policies[seq(50,75,2),28]<-2 ; Policies[50,28]<-1 

Policies[seq(50,75,2),29]<-2 ; Policies[55,29]<-1 

Policies[seq(50,75,2),30]<-2 ; Policies[60,30]<-1 
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Policies[seq(50,75,2),31]<-2 ; Policies[65,31]<-1 

Policies[seq(50,75,2),32]<-2 ; Policies[70,32]<-1 

Policies[seq(50,75,2),33]<-2 ; Policies[75,33]<-1 

Policies[seq(50,75,2),34]<-2 ; Policies[c(50,60),34]<-1 

Policies[seq(50,75,2),35]<-2 ; Policies[c(55,65),35]<-1 

Policies[seq(50,75,2),36]<-2 ; Policies[c(60,70),36]<-1 

Policies[seq(50,75,2),37]<-2 ; Policies[c(65,75),37]<-1 

Policies[seq(50,75,2),38]<-2 ; Policies[seq(50,75,10),38]<-1 

Policies[seq(50,75,2),39]<-2 ; Policies[seq(55,75,10),39]<-1 

 

Policies[seq(50,75,2),40]<-2 ; Policies[c(50,55),40]<-4 

Policies[seq(50,75,2),41]<-2 ; Policies[c(55,60),41]<-4 

Policies[seq(50,75,2),42]<-2 ; Policies[c(60,65),42]<-4 

Policies[seq(50,75,2),43]<-2 ; Policies[c(65,70),43]<-4 

Policies[seq(50,75,2),44]<-2 ; Policies[c(70,75),44]<-4 

Policies[seq(50,75,2),45]<-2 ; Policies[seq(50,75,5),45]<-4 

 

Policies[seq(50,75,1),46]<-3 ; Policies[c(50,55),46]<-4 

Policies[seq(50,75,1),47]<-3 ; Policies[c(55,60),47]<-4 

Policies[seq(50,75,1),48]<-3 ; Policies[c(60,65),48]<-4 

Policies[seq(50,75,1),49]<-3 ; Policies[c(65,70),49]<-4 

Policies[seq(50,75,1),50]<-3 ; Policies[c(70,75),50]<-4 

Policies[seq(50,75,1),51]<-3 ; Policies[seq(50,75,5),51]<-4 

 

Policies[seq(50,75,1),52]<-3 ; Policies[50,52]<-1 

Policies[seq(50,75,1),53]<-3 ; Policies[55,53]<-1 

Policies[seq(50,75,1),54]<-3 ; Policies[60,54]<-1 

Policies[seq(50,75,1),55]<-3 ; Policies[65,55]<-1 

Policies[seq(50,75,1),56]<-3 ; Policies[70,56]<-1 

Policies[seq(50,75,1),57]<-3 ; Policies[75,57]<-1 

Policies[seq(50,75,1),58]<-3 ; Policies[c(50,60),58]<-1 

Policies[seq(50,75,1),59]<-3 ; Policies[c(55,65),59]<-1 

Policies[seq(50,75,1),60]<-3 ; Policies[c(60,70),60]<-1 

Policies[seq(50,75,1),61]<-3 ; Policies[c(65,75),61]<-1 

Policies[seq(50,75,1),62]<-3 ; Policies[seq(50,75,10),62]<-1 

Policies[seq(50,75,1),63]<-3 ; Policies[seq(55,75,10),63]<-1 

 

Policies[seq(50,75,2),64]<-3 ; Policies[c(50,55),64]<-4 

Policies[seq(50,75,2),65]<-3 ; Policies[c(55,60),65]<-4 

Policies[seq(50,75,2),66]<-3 ; Policies[c(60,65),66]<-4 

Policies[seq(50,75,2),67]<-3 ; Policies[c(65,70),67]<-4 

Policies[seq(50,75,2),68]<-3 ; Policies[c(70,75),68]<-4 

Policies[seq(50,75,2),69]<-3 ; Policies[seq(50,75,5),69]<-4 

 

Policies[seq(50,75,2),70]<-3 ; Policies[50,70]<-1 

Policies[seq(50,75,2),71]<-3 ; Policies[55,71]<-1 
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Policies[seq(50,75,2),72]<-3 ; Policies[60,72]<-1 

Policies[seq(50,75,2),73]<-3 ; Policies[65,73]<-1 

Policies[seq(50,75,2),74]<-3 ; Policies[70,74]<-1 

Policies[seq(50,75,2),75]<-3 ; Policies[75,75]<-1 

Policies[seq(50,75,2),76]<-3 ; Policies[c(50,60),76]<-1 

Policies[seq(50,75,2),77]<-3 ; Policies[c(55,65),77]<-1 

Policies[seq(50,75,2),78]<-3 ; Policies[c(60,70),78]<-1 

Policies[seq(50,75,2),79]<-3 ; Policies[c(65,75),79]<-1 

Policies[seq(50,75,2),80]<-3 ; Policies[seq(50,75,10),80]<-1 

Policies[seq(50,75,2),81]<-3 ; Policies[seq(55,75,10),81]<-1 

 

 

SCRES<-matrix(0,81,22) #scenario matrix that has each scenario 

 

#for (h in c(1:1)) { #for one scenario 

for (h in c(41:81)) { #policy index 

  Scenario<-Policies[,h] # selecting the scenario  

 

 

t<-1 #number of  

 

load(file ="C:\\Users\\amirhosein.fouladi\\Dropbox\\LA 

Tech\\Research\\Dessertation\\ACL\\Scenarios\\BRates20205000-4.RData") #importing 

the set of parameters 

dim(BRates2020) 

 

#################Variables for calibration process 

BERROR<-matrix(0,t,1) # sum of errors between seer and estimated incidence rates 

BMSERROR<-matrix(0,t,1) #sum squared error recorder between seer and estimated 

incidence rates 

BIGRES<-matrix(0,t,18) # estimated incidence rates 

BDIF<-matrix(0,t,18) # difference between each estimated and actual incidence rates 

################################################## 

 

SEER_Males<-

matrix(c(0,0,0,0.4,1.3,2.5,5.3,9.2,17.4,32.1,61.9,76.1,106.7,153.1,205.4,248.3,301.7,342.

7),18,1,dimnames = list( 

                            c("0-4","5-9","10-14","15-19","20-24","25-29","30-34","35-39","40-

44","45-49","50-54","55-59","60-64","65-69","70-74","75-79","80-84","85+"),"Males")) 

#SEER reported incidence rates 

 

 

GDR<-

(matrix(c(5498,419,283,210,183,151,131,114,98,83,75,84,120,189,284,384,486,600,726,

856,990, 
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1112,1203,1254,1277,1291,1309,1326,1348,1372,1399,1426,1454,1485,1521,1573,1642,

1723, 

              

1813,1914,2027,2164,2332,2542,2795,3068,3366,3716,4116,4548,4989,5435,5901,6401,

6942, 

              

7527,8140,8771,9406,10051,10736,11478,12273,13128,14057,15076,16204,17483,1892

3,20533, 

              

22439,24653,27135,29737,32404,35321,38796,42852,47377,52749,58353,64396,71496,

79699,88491, 

              

97689,109336,122073,135933,150930,167061,184300,202596,221873,242028,262931,2

84431,306354, 

              328515,350719),100,1))/1000000 #general death rates 

 

CDR<-

(matrix(c(rep(0,4),rep(c(0,0,0,0.2,0.5,1.2,2.5,4.7,8.8,15.4,23.5,35.2,48.8,70.6,99.5,137.3,

213.4,213.4,213.4),each = 5),213.4),100,1))/10000 #CRC death rates 

 

DR<-GDR-CDR #death rates based om any causes but CRC 

 

ASDR<-matrix(c(rep(.0542,100),rep(0.1677,100),rep(0.6469,100)),100,3) #stage specific 

CRC death rates 

 

Utilities<-matrix(c(rep(.91,44),rep(c(.78,.77,.75),each=10),rep(0.73,26)),100,1,dimnames 

= list( 

  c(1:100),c("Healthy State Life Expectancy")))  #Healthy State Life Expectancy 

 

Disutilities<-matrix(c(0.0301,0.0027,0.0027,0.0055),4,1,dimnames = 

list(c("Colonoscopy","FIT","FOBT","FS"),"Disutilities")) #test disutilities 

 

DQ<-read.csv("C:\\Users\\amirhosein.fouladi\\Dropbox\\LA Tech\\Research\\CRC-

Simulation files\\Excel Files\\MD Anderson.csv",header = TRUE) # stage specific age 

specific CRC life expectancy 

 

TSen<-

matrix(c(c(.75,.85,.95,.95),.076,.076,.238,.74,.075,.124,.239,.7,.75,.85,.95,.95),4,4,dimna

mes = 

list(c("Dimunitive","Medium","Large","CRC"),c("Colonoscopy","FIT","FOBT","FS"))) 

# Test sensitivities 

 

TSpec<-matrix(c(.86,.898,.925,.87),4,1,dimnames = 

list(c("Colonoscopy","FIT","FOBT","FS"),"Specifity")) # test specificity 

FSF<-matrix(c(1,1,1,1),1,4) #a matrix to disable a test in ascenario (for testing the code) 
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SojT<-matrix(c(rep(5.5,54),rep(c(5.5,5.2,4.7,4.9,5),each=5),rep(5.5,21)),100,1,dimnames 

= list( 

  c(1:100),c("Sojourn Time")))  #mean Sojourn time 

 

##Cost information 

 

Price<-matrix(c(1192.6,24.88,24.88,548.47),4,1,dimnames = 

list(c("Colonoscopy","FIT","FOBT","FS"),"Price")) # test prices 

 

TRC<-

matrix(c(20247.20,1305.04,26007.5,2346.72,30085.20,15057,24544.13,1576.24),2,4,dim

names = list(c("Initial","Surveillance"),c("Local","Regional","Distant","Weighted 

Average"))) #Treatment cost 

 

########################################################################

################### 

 

for(x in c(1:t)){#parameter set index  

   

CC<-matrix(0,100,1) #new cancer cases 

 

DC<-matrix(0,100,1) #death cases 

 

AC<-matrix(0,100,1) #alive cancer cases 

 

Rates<-BRates2020[,,4250] # importing different rates from an array  

#############################  

K<-100000 # of patients 

n<-7 #maximum number of adenomas (one fewer than n) 

###################################### 

BQALYs<-matrix(0,K,1) #QALYs recorde 

BCosts<-matrix(0,K,1) # costs recorde 

CQALYs<-matrix(0,K,1) # a test measure  

CCosts<-matrix(0,K,1) # a test measure  

FSR<-matrix(0,K,9) # a test measure  

CSR<-matrix(0,100,3) # a test measure  

PREC<-array(0,dim=c(100,9,K)) # a test measure  

WQUALY<-matrix(0,100,K) # a test measure  

WCOST<-matrix(0,100,K) # a test measure  

 for(k in c(1:K)){ #starting simulation of K patients 

     

    S<-matrix(c(0),100,9,byrow=TRUE,dimnames = list(c(1:100),c("Adenoma-

D","Adenoma-M","Adenoma-L","CRC-L","CRC-R","CRC-D","Alive?","Death 

Cause","# OF Years With CRC"))) # patient life matrix 

    i<-1 #aging index 

    A<-0 #alive or dead index (0 is alive) 
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    W<-0 # a test measure  

    QALYs<-0 #patinet QALYs recorder 

    Costs<-0  #patient Cost recorder 

    STF<-0 # Sojourn time flag 

    RST<-101 # sojourn time 

    CF<-0 #cancer flag to distinguish cancer cases from non cancer cases 

    while(i<=100 & A==0){ #start aging from 1 to 100 for a person 

      AQ<-0 #Adding QALYs permission 

      CR<-S[i,5] #number of CRC-R adenomas in this state 

       

      if(CR>=1){ #in case the patient have at least one CRC-R adenoma 

        for(u in c(1:CR)){ #counting adenoma 

          r5<-runif(1,0,1) 

           

          if(r5>Rates[(ceiling(i/5)),19]){ #56 

             

            S[i,5]<-S[i,5]-1 

            S[i,6]<-S[i,6]+1 

            CSR[c(i:100),3]<-CSR[c(i:100),3]+1 

            CSR[c(i:100),2]<-CSR[c(i:100),2]-1 

          } 

          u<-u+1 #next adenoma 

        } 

      } 

      CL<-S[i,4] #number of CRC-L adenomas in this state 

            if(CL>=1){ #in case the patient have at least one CRC-L adenoma 

        for(r in c(1:CL)){ #counting adenoma 

          r4<-runif(1,0,1) 

           

          if(r4>Rates[(ceiling(i/5)),17]){ #45 

             

            S[i,4]<-S[i,4]-1 

            S[i,5]<-S[i,5]+1 

            CSR[c(i:100),2]<-CSR[c(i:100),2]+1 

            CSR[c(i:100),1]<-CSR[c(i:100),1]-1 

          } 

           

          r<-r+1 #next adenoma 

        } 

      } 

      L<-S[i,3] #number of large adenomas in this state 

       

      if(L>=1){ #in case the patient have at least one large adenoma 

        for(o in c(1:L)){ #counting adenoma 

          r3<-runif(1,0,1) 

          if(r3<=Rates[(ceiling(i/5)),14]){ #stage 3 to 2 
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            S[i,3]<-S[i,3]-1 

            S[i,2]<-S[i,2]+1 

          } 

                    if(r3>=(1-Rates[(ceiling(i/5)),16])){ #stage 3 to 4 

             

            if(S[i,4]==0){ #a test measure  

              CC[i]<-CC[i]+1 

              CSR[c(i:100),1]<-CSR[c(i:100),1]+1 

              SCRES[h,5]<-SCRES[h,5]+1 #a test measure  

              CF<-1 #a test measure  

                            RST<-rexp(1,(1/SojT[i])) #generate mean sojourn time 

              if(STF==0){  

                S[i,9]<-1 

                STF<-1 

              } 

            } 

             

            S[i,3]<-S[i,3]-1 

            S[i,4]<-S[i,4]+1  

          } 

          o<-o+1 #next adenoma 

        } 

      } 

       

       

      M<-S[i,2] #number of medium adenomas in this state 

       

      if(M>=1){ #in case the patient have at least one medium adenoma 

        for(m in c(1:M)){ #counting adenoma 

          r2<-runif(1,0,1) 

          if(r2<=Rates[(ceiling(i/5)),9]){ #stage 2 to 1 

            S[i,2]<-S[i,2]-1 

            S[i,1]<-S[i,1]+1 

          } 

                   if(r2>=(1-Rates[(ceiling(i/5)),11])){ #stage 2 to 3 

            S[i,2]<-S[i,2]-1 

            S[i,3]<-S[i,3]+1 

          } 

          m<-m+1 #next adenoma 

        } 

      } 

      D<-S[i,1] #number of dimunitive adenomas 

       

      if(D>=1){ #in case the patient have at least one dimunitive adenoma 

        for(l in c(1:D)){ #counting adenoma 
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          r1<-runif(1,0,1)  

          if(r1<=Rates[(ceiling(i/5)),4]){ #stage 1 to 0 

            S[i,1]<-S[i,1]-1 

          } 

         

          if(r1>=(1-Rates[(ceiling(i/5)),6])){ #stage 1 to 2 

            S[i,1]<-S[i,1]-1 

            S[i,2]<-S[i,2]+1 

          } 

          

          l<-l+1 #next adenoma 

        } 

      } 

       

       

       

      if(sum(S[i,])<n){ #checking the maximum allowed number of adenoma condition to 

see if we can have adenoma incidence or not  

        r0<-runif(1,0,1) 

        f<-0 

        for(j in c((n-sum(S[i,])):1)){#number of adenoma that can be generated 

          if(r0<=(Rates[(ceiling(i/5)),2])^(j) & f==0){ #number of adenoma that the body 

generates 

            S[i,1]<-S[i,1]+(j) #adding generated adenomas life matrix 

            f<-1 

          } 

          j<-j-1 

        } 

      }  

      if(i<=99){ #copying patient life matrix next year 

         

            S[i+1,]<-S[i,] 

             

            if(STF>0){ 

              S[i+1,9]<-S[i,9]+1 ########add one to Sojourn time counter for next year 

            } 

      }  

 

    #############Applying screening tests 

      ##########Removing adenomas via clonoscopy / a person with adenoma and not 

cancer has colonoscopy 

      if(Scenario[i]==1 & sum(S[i,(4:6)])==0){ ## removing adenomas 

        SCRES[h,13]<-SCRES[h,13]+1 

        for(g in c(1:3)){ #to apply the test on Dimunitive,Medium and Large Adenoma 

          for(e in c(1:S[i,g])){ #to go one by one on each adenoma 

            r13<-runif(1,0,1) 
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            if(S[i,g]>0 & r13<=TSen[g,1]){ 

              S[i+1,g]<-S[i+1,g]-1 

   

              CF<-1 

            } 

          } 

        } 

      } 

       ##########Removing adenomas via FS / a person with adenoma and not cancer has 

FS 

      if(Scenario[i]==4 & sum(S[i,(4:6)])==0){ ## removing adenomas 

        for(g in c(1:3)){ #to apply the test on Dimunitive,Medium and Large Adenoma 

          for(e in c(1:S[i,g])){ #to go one by one on each adenoma 

            r11<-runif(1,0,1) 

            r14<-runif(1,0,1) 

            if(S[i,g]>0 & r14<=TSen[g,4] & r11<=.34){ 

              S[i+1,g]<-S[i+1,g]-1 

               

              CF<-1 

            } 

          } 

        } 

      } 

            ######### A CRC case has Screening 

      r15<-runif(1,0,1) 

      if((sum(S[i,c(4:6)]))>0 & Scenario[i]>0){  

        if(r15<(FSF[Scenario[i]])){ 

        TT<-Scenario[i] #to clarify test type 

        if(TT==1){ 

          SCRES[h,13]<-SCRES[h,13]+1 # a measure test 

        } 

        r8<-runif(1,0,1) 

        if(r8<TSen[4,TT]){#True positive ,, terminating patient because we discover his 

CRC 

                    if(TT==2 | TT==3){ #deduct colonoscopy disutility and add colonoscopy 

cost 

            QALYs<-QALYs-Disutilities[1] #extra colonoscopy 

            Costs<-Costs+Price[1] 

            SCRES[h,14]<-SCRES[h,14]+1# a test measure  

          } 

                    S[c(i:100),7]<-i #setting the matrix life for the rest of the years to show age 

at death and cause of dead 

          S[c(i:100),8]<-TT 

          SCRES[h,(TT+5)]<-SCRES[h,(TT+5)]+1 # a test measure  

          A<-1 

          # adding QALYS based on final stage of patient 
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          if(S[i,6]>0){ #distant  

            QALYs<-QALYs+DQ[(i),3] 

           

             

            Costs<-Costs+TRC[1,3]+TRC[2,3] #adding treatment costs 

 

            AQ<-1 

          } 

                    if(S[i,5]>0 & AQ==0){ #regional  

            QALYs<-QALYs+DQ[(i),2] 

            Costs<-Costs+TRC[1,2]+TRC[2,2] 

            AQ<-1 

          } 

              if(S[i,4]>0 & AQ==0){ #localized  

            QALYs<-QALYs+DQ[(i),1]  

            Costs<-Costs+TRC[1,1]+TRC[2,1] 

 

            AQ<-1 

          } 

        } 

        #if we get False Negetive, patient will go back to system and his CRC may be 

diagnosed later 

      }} 

       ########### A healthy patient has Screening 

       if(sum(S[i,c(4:6)]==0 & Scenario[i]>0)){  

        TT<-Scenario[i] 

        r10<-runif(1,0,1) 

        if(r10 > TSpec[TT]){ # false positive  

            

          # colonoscopy  and biopsy discover the truth ,, True Negetive 

            QALYs<-QALYs-.0027 #deducting disutility for the false positive  

            if(TT==2 | TT==3){ # if patient gest the false negative from FIT or FOBT 

            Costs<-Costs+Price[1] #extra colonoscopy 

            QALYs<-QALYs-Disutilities[1] #extra colonoscopy 

            SCRES[h,14]<-SCRES[h,14]+1 # a test measure  

             

             

              if(sum(S[i,(1:3)])>0){ ## removing adenomas in case the patient has adenoma , 

(lucky patient) 

                for(g in c(1:3)){ #to apply the test on Dimunitive,Medium and Large Adenoma 

                  for(e in c(1:S[i,g])){ #to go one by one on each adenoma 

                    r13<-runif(1,0,1) 

                    if(S[i,g]>0 & r13<=TSen[g,1]){ 

                      S[i+1,g]<-S[i+1,g]-1 

                     

                      CF<-1 
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                    } 

                  } 

                } 

              } 

            } 

        } 

       

        if(TT==1){ #test is colonoscopy 

          SCRES[h,13]<-SCRES[h,13]+1 # a test measure  

        } 

      } 

      ############################# Sojourn time and self detection 

      if(A==0 & S[i,9]>=RST){ #if cancer becoms symptomatic 

        ### we add remaining QALYs and costs based on distant stage and terminate  him 

        S[c(i:100),7]<-i 

        S[c(i:100),8]<-9 

        SCRES[h,10]<-SCRES[h,10]+1 # a test measure  

        A<-1 

        DC[i]<-DC[i]+1 

         

        # adding QALYS based on distant stage 

          QALYs<-QALYs+DQ[i,3] 

 

          Costs<-Costs+TRC[1,3]+TRC[2,3] 

 

          AQ<-1 

      } 

       

       

      ########### terminating  a CRC case before sojourn time  

       

      if(A==0 & S[i,6]>0){ #killing a distant case  

         

        r7<-runif(1,0,1) 

        if(r7<= ASDR[i,3]){  

           

          S[c(i:100),7]<-i #updating teh life matrix 

          S[c(i:100),8]<-6 

          SCRES[h,11]<-SCRES[h,11]+1 #a test measure  

          A<-1 

          DC[i]<-DC[i]+1 

          FSR[k,]<-S[i,] 

          CSR[c(i:100),3]<-CSR[c(i:100),3]-1 # a test measure  

        } 

      }  

            if(A==0 & S[i,5]>0){ #terminating a regional case  
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                r7<-runif(1,0,1) 

        if(r7<= ASDR[i,2]){ 

           

          S[c(i:100),7]<-i #updating the life matirx 

          S[c(i:100),8]<-6 

          SCRES[h,11]<-SCRES[h,11]+1 

          A<-1 

          DC[i]<-DC[i]+1 

          FSR[k,]<-S[i,] 

          CSR[c(i:100),2]<-CSR[c(i:100),2]-1 #a test measure  

        } 

      }  

       

      if(A==0 & S[i,4]>0){ #killing a localized case   

            r7<-runif(1,0,1) 

        if(r7<= ASDR[i,1]){ 

           

          S[c(i:100),7]<-i #updating the life matrix 

          S[c(i:100),8]<-6 

          SCRES[h,11]<-SCRES[h,11]+1 #a test measure  

          A<-1 

          DC[i]<-DC[i]+1 

          FSR[k,]<-S[i,] 

          CSR[c(i:100),1]<-CSR[c(i:100),1]-1 

        } 

      }  

    

      ###########killing a non crc cases because of natural causes  

      r9<-runif(1,0,1) 

      if(r9<=DR[i] & A==0 & sum(S[i,(4:6)])==0){  

        S[c(i:100),7]<-i # updating the life matrix  

        S[c(i:100),8]<-10 

        SCRES[h,12]<-SCRES[h,12]+1 # a test measure  

        A<-1 

        DC[i]<-DC[i]+1 

      } 

      #######adding QALYs 

            if(AQ==0){#adding cost and  QALYs for the patient  

        QALYs<-QALYs+Utilities[i,1] 

        AQ<-1 

      } 

         

      if(Scenario[i]>0){ 

          QALYs<-QALYs - Disutilities[Scenario[i]] 

          Costs<-Costs+Price[Scenario[i]] 

      } 
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      #end of adding cost and QALYs for the patient 

      i<-i+1 #next year of the person's life 

    } # end of simulating a person 

        BQALYs[k]<-QALYs # recording this patient QALYs 

      BCosts[k]<-Costs # recording this patient cost 

        if(CF==1){ # a test measure  

      CQALYs[k]<-QALYs 

      CCosts[k]<-Costs 

    }   

    for (ab in c(1:100)){#a test measure  

      if (sum(S[ab,c(4:6)])>0){ 

        AC[ab]<-AC[ab]+1 

      } 

    } 

    PREC[,,k]<-S # a test measure  

    k<-k+1 #next person 

  } #end of simulating K people 

AP<-K-cumsum(DC) #Alive Population 

########################################### Population Matrix 

PO<-matrix(0,18,1)  

for(i in c(1:16)){ 

  PO[i+1]<-sum(AP[(5*i):(5*i+4)]) 

} 

PO[1]<-sum(AP[1:4]) 

PO[18]<-sum(AP[85:100]) 

###########################################Cancer Cases Matrix 

CCases<-matrix(0,18,1)  

for(i in c(1:16)){ 

  CCases[i+1]<-sum(CC[(5*i):(5*i+4)]) 

} 

CCases[1]<-sum(CC[1:4]) 

CCases[18]<-sum(CC[85:100]) 

###########################################Final result 

MRates<-matrix(0,18,1)  

for(i in c(1:18)){ 

  MRates[i]<-((100000*CCases[i])/(PO[i])) 

} 

Temp<-t(MRates) 

BIGRES[x,]<-Temp[1,] 

########################################### absolute Error and Square Error 

between Seer and my rates 

Difference<-matrix(0,18,1)  

DifferenceS<-matrix(0,18,1) 

for(i in c(1:18)){ 

  Difference[i]<-((SEER_Males[i])-(MRates[i])) 

  DifferenceS[i]<-((SEER_Males[i])-(MRates[i]))^2 
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} 

ERROR<-sum(abs(Difference)) 

MSERROR<-sum(DifferenceS) 

BERROR[x]<-ERROR 

BMSERROR[x]<-MSERROR 

BDIF[x,]<-t(Difference[,1]) 

########################################### gathering all row result in a matrix 

and write it 

Result<-cbind(AP,CC,AC) 

colnames(Result)<-c("Population","New Cancer cases","Alive cancer cases") 

###########################################Putting final results and SEER 

together  

COMP<-cbind(MRates,SEER_Males) 

#COMP 

########################################### 

}#calibration ends 

SCRES[h,1]<-mean(BQALYs) # patinets expected QALYs 

SCRES[h,2]<-sd(BQALYs) #  QALYs standard deviation 

SCRES[h,3]<-mean(BCosts) # patinets expected costs 

SCRES[h,4]<-sd(BCosts) # cost standard deviation 

 

SCRES[h,15]<-mean(CQALYs[CQALYs!=0]) # test measures  

SCRES[h,16]<-sd(CQALYs[CQALYs!=0]) # test measures 

SCRES[h,17]<-mean(CCosts[CCosts!=0]) # test measures 

SCRES[h,18]<-sd(CCosts[CCosts!=0]) # test measures 

 

SCRES[h,19]<-K-length(which(BQALYs==0)) # test measures 

SCRES[h,20]<-K-length(which(BCosts==0)) # test measures 

SCRES[h,21]<-K-length(which(CQALYs==0)) # test measures 

SCRES[h,22]<-K-length(which(CCosts==0)) # test measures 

 

write.csv(SCRES,file = "C:\\Users\\amirhosein.fouladi\\Dropbox\\LA 

Tech\\Research\\Dessertation\\ACL\\Scenarios\\SCRES10-1-27-41-81.csv") 
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