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ABSTRACT 

Smoothed particle hydrodynamics (SPH) is a simple and effective numerical 

method that can be used to solve a variety of challenging problems in computational 

mechanics. It is a Lagrangian mesh-free method ideal for solving deformation problems. 

In the SPH method, the state of a system is represented by a set of particles, which 

possesses individual material properties and interact with each other within a specific 

range defined as a support domain by a weight function or smoothing function. SPH 

features flexibility in handling complex flow fields and in including physical effects.  

In theory, the basic concept of the SPH method is introduced in this paper. Some 

detailed numerical aspects are discussed including the kernel approximation in 

continuous form and particle approximation in discrete form, the properties for the 

smoothing functions and some of the most frequently used ones in the SPH literature, the 

concept of support and interface domain, SPH formulations for Navier-Stokes equation, 

time integration, boundary treatment, particle interaction, artificial viscosity, laminar 

viscosity, shifting algorithm, and so on. 

In applications, this paper presents an improved SPH method for modeling the 

diffusion process of a microneedle and using smoothed particle hydrodynamics (SPH) 

method to simulate the 25% cross-section stenosis blood vessel model and the 75% cross-

section stenosis blood vessel model. The obtained numerical results are in close 

agreement with available theoretical and experimental results in the literature. 
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As an emerging transdermal drug delivery device, microneedles demonstrate 

some superior potential and advantages over traditional metallic needles-on-syringes in 

skin injection and vaccine [1]. However, very few research papers are available. This 

project uses a high order continuous method, the spectral element method (SEM), and a 

low order discrete method, the Smoothed Particle Hydrodynamics (SPH), to investigate 

this new drug delivery system. The incompressible Navier-Stokes equations were solved 

with SEM under appropriate initial and slip boundary conditions for the transport of 

medicine inside microneedles of rectangular and circular cross-sections. In addition, 

Darcy-Brinkman equations and a concentration equation were solved with SEM under 

appropriate initial and boundary conditions for the infiltration of medicine solution 

through porous media of   the dermis tissue once a microneedle enters the skin. 

Meanwhile, the Lagrangian form of the Navier-Stokes equations were solved with the 

weighted interpolation approach via numerical integrations without inverting any 

matrices. Results from the mesh-based SEM and the mesh-free SPH simulations revealed 

technical details about the processes of delivery of medicine particles through 

microneedles and diffusion in the skin tissue, and the medicine concentration changes 

with space and time. The overall effect of medicine delivery under initial concentration 

and conditions were simulated and the effect of drug delivery were assessed. 

The formation of thrombus is a complicated process. The existing literature rarely 

has a model for high-fidelity simulation of the effects and hazards of blood clots on blood 

flow. In this model, high-fidelity simulations are performed for complex human internal 

environments. The result of this simulation indicates high pressure area in blood vessel 

wall which matches the real condition of the vessel experiment. 
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CHAPTER 1 

  

INTRODUCTION 
 

1.1 Motivation and Background 

Fluid mechanics is a branch of mechanics that plays an important role in scientific 

research. Same as the other disciplines, fluid mechanics is developed by theoretical 

analysis and experimental research. Theoretical analysis means to find the quantitative 

results of the problem by the mathematical method. In some extreme condition, it is hard 

to build experimental model. Only a few problems could find the result by experimental 

research. Computational Fluid Dynamics (CFD) was developed to make up for this 

deficiency. 

CFD has been studied in all fields of fluid mechanics. The most commonly used 

numerical methods are finite difference method, finite element method, and the particle 

method. The finite difference method has been widely used in fluid mechanics. In recent 

years, for finite element method, there have been quite a few applications in dealing with 

low-speed fluids, and it is still rapidly developing. Taking the finite element method as an 

example, since this method was put forward around the 1950s, the finite element method 

has become one of the most important and indispensable tools in engineering analysis 

and calculation. At present, people have successfully developed a large number of the 

finite element commercial software package and has been widely used in engineering 

analysis. One of the most salient features of the finite element is the use of a pre-defined 
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grid to discretize a continuum of infinite degrees of freedom into a set of units of finite 

degrees of freedom. In this way, it is possible to obtain an approximate solution to a 

complex problem. However, due to the use of the pre-defined mesh, the finite element 

method becomes difficult to solve for some specific engineering problems. The 

weaknesses of the finite element method is when applying a finite element analysis to a 

problem, it is often necessary to focus on the division of the grid.  

Finite elements hard to deal with some complex issues include large deformation 

problems; dynamic crack propagation problems; high-velocity impact and geometric 

distortion problems; fission material problems; metal forming problems; multi-phase 

transformation problems, and so on. In order to solve these problems by FEM, the grids 

need to be re-divided every time step. However, re-divided grids every time step will 

increase the calculation time significantly. The shortcomings of the finite element method 

come from the use of its pre-defined grid. To completely solve these issues, we should 

avoid applying a fixed grid before we start the calculation. Therefore, the idea of a mesh-

free method has been proposed and developed rapidly in recent years.  

At present, the research on mesh-free method has become one of the hottest 

research fields in computational mechanics. The mesh-free method is a numerical method 

that does not require a well-defined mesh when building discrete system equations. 

Because the united elements are no longer used in mesh-free methods to separate 

problem domains, the problems mentioned above are naturally solved. Compared with 

the finite element method, mesh-free methods have been successfully applied to large 

deformation problems, dynamic crack propagation in metal forming problems, high-

velocity impact problems, and penetration problems.  
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This paper introduces the basic principles, related formulas and calculation 

techniques of smoothing particle hydrodynamics (SPH) and elaborates the entire 

calculation process of SPH. Based on the advantages mentioned above, SPH is easily 

applied to the medical and biological engineering field. The article describes how to 

establish two-dimensional and three-dimensional microneedle models, demonstrates the 

simulation results, and proves the feasibility of microneedles in medical injection from 

the perspective of theory and simulation. A thrombosis model was also established in the 

article. By changing the size of the thrombus and the viscosity of the blood, the effect of 

thrombus on the blood flow in the blood vessels was studied. Thrombosis is often the 

culprit of cardiovascular and cerebrovascular diseases. Today, with the increasing 

severity of cardiovascular and cerebrovascular diseases, constructing effective models of 

blood vessels and thrombi have great significance for the study and treatment of 

cardiovascular and cerebrovascular diseases. 

1.2 Background and applications of SPH method 

SPH method is widely used in CFD. Some applications of the SPH method are the 

following: 

1. Astrophysical problems: As an adaptive Lagrangian method, the smoothed 

particle hydrodynamics was originally proposed to solve astrophysical 

problems in three-dimensional free space. Lucy [1] simulated the fission of 

the protostar using the SPH method. Gingold and Monaghan [2] studied the 

rotation and oscillation of a three-dimensional asymmetric spherical 

polyhedra. Later, the SPH method was also applied to the numerical study of 

collisions between the Gemini and the planet, the formation and collapse of 
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galaxies, the development of the fluctuations of gas and dark matter in the 

expanding universe, and the evolution of the universe problem [3]. 

2. Incompressible flow problem: any kind of incompressible fluid can 

theoretically be considered as a weakly compressible fluid. Therefore, in the 

SPH method, the state equation of the weakly compressible fluid is usually 

used to simulate the dynamic behavior of the incompressible fluid [4]. The 

SPH model of artificially compressible fluids is now widely used to simulate 

dam-break flow, wave mechanics (wave generation, propagation, and wave 

breaking; wave impact on shore and shore structures; and interaction of waves 

with rivers and ocean structures) [5], Marine mechanics, coastal and river 

hydrodynamics and other fields. Monaghan simulated the problems of dam-

breaking flow, generation and propagation of solitary waves, and multiphase 

flow [4]. Shao uses a modified SPH model to simulate the dynamic behavior 

of near-shore solitary waves [6]. Gomez Gesteira and Dalrymple studied the 

impact of water waves on high-rise buildings and the phenomenon of breaking 

waves. Gotoh et al. used the SPH turbulence model to simulate wave 

interactions [7]. Yim studied the problem of water waves caused by vertical 

plungers. Cleary and Prakash studied the feasibility of the SPH method to 

simulate a tsunami. Liang et al. used the SPH method to simulate and study 

the design effect of the anti-tsunami housing [8]. Zheng et al. used the sub-

mass point turbulence model to simulate the dam-breaking flow problem and 

the problem of solitary wave climbing flow in the nearshore [9]. 



5 

 

 

3. High-velocity impact and penetration problems: High-velocity impact and 

penetration are typical problems of high-velocity deformation and failure of 

elasto-plastic materials [10]. In the process of high-velocity impact, when the 

elasto-plastic material is subjected to a strong impact load, the solid material 

will be extremely deformed in a very short time [11]. During the penetration 

process, solid materials may even be destroyed and become "scattered" 

everywhere in the debris. High-velocity impact and penetration problems 

involve moving boundaries and moving material interfaces. The traditional 

finite element method, finite difference method, and finite volume method are 

difficult to deal with the problem of grid distortion caused by large 

deformations and high-velocity movement of the material interface. As a pure 

Lagrangian mesh-free method, the smoothed particle hydrodynamics method 

can handle these problems easily. Libersky [12] and Randles [13] first applied 

the SPH method to study high-velocity impact and penetration problems, 

including HVI, fractures, and cracking. Attane et al. coupled the SPH method 

with the transient dynamics FEM program PRONOTO to perform impact and 

armor penetration studies. Zhang Hongtao and others used the SPH and FEM 

coupling technology in the PAM-CRASH software to analyze the bird's front 

wing collision problem [8]. Zhang Gangming et al. presented the discrete 

process of the continuum mechanics conservation equation in the two-

dimensional axisymmetric problem and the SPH discretization scheme and 

performed a series of high-speed collision simulations. Wang Fang et al. used 

the SPH method to simulate the hypervelocity impact of space debris [14]. 
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4. Explosion impact problem: An important application of the SPH method is the 

explosion impact from high energy explosive (HE) explosions. When high-

energy explosives explode, they generate high-pressure gas, which involves 

problems such as large deformation, high non-uniformity, interface of moving 

substances, and changes in free surface. Traditional grid-based finite element 

method is difficult to carry out accurate and effective numerical simulation 

analysis of these problems [15]. Swegle and Attaway used the SPH method 

combined with the finite element to simulate the underwater explosion, and 

mainly studied the pulsation characteristics of the generated bubbles [16]. Alia 

and Souli et al. used a multi-substance SPH equation to simulate the explosion 

process. Liu et al. used SPH methods to conduct a series of studies on the 

detonation of high performance explosives, explosive gas expansion, 

underwater explosions, and the enhancement and attenuation of explosive 

effects [17]. 

5. Other applications are magnetic fluid dynamics, elastomer fracture, metal 

cutting, geotechnical engineering, casting molding, water curtain protection, 

bio-nano engineering, environmental engineering, and pharmaceutical 

engineering. 

1.3 Outline of Dissertation 

This dissertation mainly talks about basic principle of particle methods, especially 

for SPH method. This article covers almost all aspects of the SPH method, which 

comprehensively describes the theoretical basis and formula derivation of the SPH 

method and uses the SPH method to simulate two complex medical problems. 
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Chapter 1 introduces the motivation and some overall background knowledge of 

this research work. The research goal and the structure of this dissertation are indicated. 

In addition, main applications of SPH are introduced in the first chapter and describe 

details about current development condition about applications in different areas: 

astrophysical problems, incompressible flow problem, high-velocity impact and 

penetration problems, explosion impact problem, and some other complex engineering 

problems. 

Chapter 2 gives a literature review covering the background required for SPH 

method, which includes the basic idea of SPH method, how to extend a simple concept to 

a complex theory and apply to numerical simulation. In Chapter 2, I also discuss kernel 

approximation and particles approximation, and how to apply them to the calculations. 

Base on approximation steps, we could solve the Lagrangian Navi-stocks equation: mass 

equation, momentum equation and energy equation. In addition, some other techniques 

are also introduced in this chapter, such as selection of viscosity term, boundary 

condition and time step algorithms, and so on. 

Chapter 3 gives two three-dimensions and three dimensions microneedle 

simulation by SPH. In order to illustrate correctness of the simulation results, this project 

uses a high order continuous method, SEM, and a low order discrete method, the SPH, to 

investigate this new drug delivery system. The concentration of whole computational 

domain demonstrates the microneedle could replace traditional needle to deliver drug into 

the blood circulation system.  

Chapter 4 describes the process of modeling of thrombus based on medical theory 

and numerical simulation method. A plenty of new techniques are added in this vessel 
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thrombus simulations. Generating animation and plot of a cross-section of blood fluid 

demonstrates the pressure change and velocity change in different models with small 

thrombus and large thrombus and compare the results of high fidelity thrombus 

simulation with other researchers’ and realistic data. 

Chapter 5 concludes the results of the dissertation and recommends some future 

works, indicate some new challenges of particle method, and predicts new development 

direction of particle method. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 

The SPH method is a mesh-free method which performs simulations by solving 

partial differential equations. There are two main steps: kernel function approximation 

and particle approximation. First, SPH discretizes the computational domain of partial 

differential equations. Second, an approximate function is used to represent an arbitrary 

point of the field function and its derivative. After these two steps, we could achieve 

physical parameters by kernel function approximation and particle approximation steps. 

2.1 The basic idea of the SPH method 

 The basic idea of the SPH method can be briefly described as follows: 

1. The computational domain of the problem is represented by a series of randomly 

distributed particles. There is no need to divide the computational domain into 

any meshes, and no connection between particles is required. 

2. Apply integral function to approximate the field function. 

3. Approximate the integration of kernel Function in the domain by particle 

approximation. 

4. The particle approximation process must be performed in each time step and is 

not affected by the random distribution of the particle. That is why the SPH 

method can handle the problem of extreme deformation. 
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5. Apply the particle approximation to the all relevant terms of the field function 

in partial differential equations, a series of time-dependent discrete forms of 

ordinary differential equations can be achieved. 

6. Using the explicit integration method to solve ordinary differential equations, 

we can calculate the value of variables over time. 

2.2 Kernel approximation and particles approximation of SPH 

Interpolation approximation is the core idea of the SPH method. The SPH 

equation is usually structured in two key steps. The first step is to approximate the field 

function using the kernel function. The second step is a particle approximation process 

that discretizes the integral equation. 

2.2.1 Kernel approximation 

In the SPH method, integral expression of function f(x) at point x can be written as: 

   ( ') ( ') 'f x f x x x dx


   Eq. 2-1 

where x is position vector, f is a function of position vector x, δ(x-x’ is Dirac delta function, 

Ω integral area of x: 

 
 

'
'

0 '

x x
x x

x x


 
  


 

Eq. 2-2 

 

If we use kernel function W(x) to replace Dirac delta function, the integration of f(x)   

could be written as: 

 ( ) ( ') ( ', ) 'f x f x W x x h dx


   Eq. 2-3 

Where Ω is the domain, h is the smoothing length, W is the kernel function or smoothing 

function. It means we extend the integration area from one point to a circle for 2D 
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problems and a sphere for 3D problems. If we extend the integration area, problems could 

be solved by numerical calculation. 

2.2.2 Kernel approximation of derivatives 

From Eq. 2-3, spacial derivative of f(x) could be obtained: 

 ( ) ( ') ( ') 'f x f x W x x dx


     Eq. 2-4 

 

Change the right side of equation： 

  ( ') ( ', ) [ ( ') ( ', )] ( ') ( ', )f x W x x h f x W x x h f x W x x h      

 

Eq. 2-5 

Substituting Eq. 2-5 into Eq. 2-4 : 

  ( ) ( ') ( ', ) ' ( ') ( ', ) 'f x f x W x x h dx f x W x x h dx
 

       

 

Eq. 2-6 

Apply the divergence theorem to the first term on the right side of the equation,  

and we can obtain the following result: 

  ( ') ( ', ) ' ( ') ( ', )
s

f x W x x h dx f x W x x h ndS


     

 

Eq. 2-7 

n is a unit vector perpendicular to surface S. 

Use the weight function to represent the field function. This step we called the 

kernel function approximation. Since the kernel function W(x-x’) has the support domain, 

when the support domain is inside of the problem domain, the integral surface term on 

the right side of the equation becomes zero. If the support domain and the problem 

domain are interleaved, integration area of the smooth function is truncated by the 
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boundary of the computation domain. At this time, the integral surface term will no 

longer be zero. In the case of the support domain and problem domain interleaving, it is 

necessary to use numerical methods to correct the effect of the boundary influence so that 

the integral surface term is zero [18]. 

If points in the support domain which are also in the problem domain, Eq. 2-7 can 

be written as: 

 ( ) ( ') ( ', ) 'f x f x W x x h dx


      Eq. 2-8 

 

2.2.3 Particles approximation 

 In the SPH method, the state of the system is described by a finite number of 

particles that contain their own physical properties (such as density, pressure, internal 

energy, velocity, etc.), and particles move and adhere to the governing equation. 

According to the basic principle of the SPH method, the solution is represented by 

a finite number of particles, SPH's continuous integral format can be converted into a 

discretized format for summation of all particles in the support domain. The summation 

of particles is always called particle approximation in the SPH related literature. Figure 

2-1 indicates the particles approximation in the support domain. 
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Figure 2-1: particles approximation in the support domain [4]. 

The process of particle approximation is as follows: if we use finite volume ΔVj to 

replace integration of dx’ at point x, mj could be obtained as: 

 
j j jm V    Eq. 2-9 

Where ρ j is the density of point j, j=1,2,3,4…N, N is the total number of particles in the 

support domain of particle j. The continuous integral form of f (x) can be written as a 

discretized particle approximation: 

 

1

1

( ) ( ') ( ', ) '

( ) ( , )

1
( ) ( , ) ( )

N

j j j

j

N

j j j

j

f x f x W x x h dx

f x W x x h V

f x W x x h m








  

  

 







 

Eq. 2-10 

 

     The particle approximation of the function at particle i can be written as: 

 

1

( ) ( )
N

j

i j ij

j j

m
f x f x W



   
Eq. 2-11 
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 ( , ) ( , ) ( , )ij i j i j ijW W x x h W x x h W R h      Eq. 2-12 

 

Where Rij=rij/h is the relative distance between particle i and particle j, rij is the distance 

between two particles. The function value at any point in computation domain could be 

achieved by the kernel function. 

The particle approximation of the function's spatial derivatives can be written as: 

 

1

( ) ( ) ( , )
N

j

j j

j j

m
f x f x W x x h



      
Eq. 2-13 

 

The gradient function W is related to the particle j, and the final form of particle 

approximation can be written as: 

 

1

( ) ( )
N

j

i j ij

j j

m
f x f x W



     
Eq. 2-14 

 

 

 
i j ij ij ij

ij

ij ij ij ij

x x W x W
W

r r r r

  
  

 
 

Eq. 2-15 

 

SPH method is widely used in CFD by quite a few researchers because particles 

in the SPH method not only interpolates but also carry materials density and mass in the 

particles approximation of formulas. This advantage is more significant for large 

deformation problems.  

2.3 Kernel function 

2.3.1 Characteristics of kernel function 

The kernel function is an essential part in SPH method because it determines both 

the form of the function approximation and the size of the particle support domain. It also 



15 

 

 

determines the consistency and accuracy of the kernel approximation and the particle 

approximation. The SPH smooth function should generally satisfy the following 

conditions: 

1. The smoothing function must be normalized over its support domain (Unity): 

 ( ', ) 1W x x h dx


   Eq. 2-16 

This normalization property ensures that the integral of the smoothing function 

   over the support domain to be unity.  

2. The smoothing function should be compactly supported (Compact support): 

 ( ', ) 0 'W x x h when x x kh     Eq. 2-17 

The dimension of the compact support is defined by the smoothing length h and 

a scaling factor k, where h is the smoothing length, and determining the spread 

of the specified smoothing function |x-x’| ≤ kh defines the support domain of 

the particle at point x. This compact support property transforms an SPH 

approximation from a global operation to local operation.  

3. W(x-x’), h≥0, 0 for any point at x within the support domain of the particle at 

  Particle x. This property indicates that the kernel function should be non-

negative in the support domain. It is not necessary as a convergent condition 

mathematically, but it is essential to ensure a stable representation of some 

physical properties. Some kernel functions used in some literature are negative 

in parts of the support domain.  

4. The kernel function value for a particle should be decreasing with the increase 

of the distance away from the particle monotonically . This property depends 



16 

 

 

on the physical aspect in that a nearer particle should have a bigger effect on 

the particle selected.  

5. The smoothing function should satisfy the Dirac delta function property when 

the smoothing length trends zero : 

 
0

lim ( ', ) ( ')
h

W x x h x x


    Eq. 2-18 

 This feature ensures that as the smoothing length tends to be zero, the   

approximation value approaches the function value, i.e. <f(x)>=f(x). 

6. The kernel function should be an even function (Symmetric property). This   

rule indicates that particles have distance but don’t have same positions 

should have the same influence on a selected particle.  

7. The kernel function should be sufficiently smooth (Smoothness). This feature 

aims to obtain better approximation accuracy.  

2.3.2 Kernel functions in the literature 

2.3.2.1 The bell-shaped function 

Lucy [1] first proposed a bell-shaped function as the kernel function in early SPH 

paper： 

 










10

1)1)(31(
),(),'(

3

R

RRR
hRWhxxW d

 

Eq. 2-19 

For dealing with different dimensional problems, αd could have different values. 

Corresponding to one-dimensional, two-dimensional and three-dimensional problems, 

should equal 5/4h, 5/πh2, 105/16πh3, r is the distance between two particles. 
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2.3.2.2 Gaussian kernel function 

Monaghan [5] first proposed Gaussian kernel function: 

 2

( ', ) ( , ) R

dW x x h W R h e     Eq. 2-20 

For one-dimensional, two-dimensional and three-dimensional problems, αd 

should equal 1/π1/2h, 1/πh2, 1/π3/2h3. Due to Gaussian type kernel function’s high stability 

and high precision, it is an excellent choice for the simulation of disordered particle 

distribution. However, if using the Gaussian kernel function in simulation requires a large 

amount of computation. Because the kernel function needs long distances tend to zero, 

especially for higher order derivatives of smooth functions. Figure 2-3 shows Gaussian 

kernel function and its first derivative curve [15]. 

Figure 2-2: belloid kernel function and its first derivative curve [15]. 
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2.3.2.3 Cubic spline and B-spline kernel function 

Cubic spline kernel function [5]: 

 
2 3

3

3 3
1 0 1

2 4

1
( , ) (2 ) 1 2

4

0 2

d

q q q

W r h q q

q




   




   






 

Eq. 2-21 

 

d  equals to 2710 h in 2D problem, and in 3D problem d  equals to 31 h . 

Based on the cubic spline smooth function, the B-spline kernel function is 

proposed by Monaghan and Lattanzi [66]: 

 
2 3

3

2 1
0 1

3 2

1
( , ) (2 ) 1 2

6

0 2

R R R

W R h R R

R


   




   






 

Eq. 2-22 

 

For one-dimensional, two-dimensional and three-dimensional problems, αd 

Figure 2-3: Gaussian kernel function and its first derivative curve [15]. 
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should equal to 1/h, 15/7πh2, 3/2πh3. The cubic spline is the most widely used kernel 

function in the existing SPH literature. The cubic spline kernel function is similar to the 

Gaussian kernel function; the support domain is narrow, too. When the distance between 

two particles exceeds 2h, the interaction between particles disappears and this property 

reduces a lot of calculations [22]. Because the second derivative of the cubic spline 

function is a piecewise linear function, the stability of the cubic spline function is worse 

than other higher-order kernel functions. Figure 2-4 indicates plot of B-spline kernel 

function and its 1st order derivative curve [15]. 

 

2.3.2.4 The fourth and fifth spline kernel functions 

The fourth and fifth spline smoothing functions are closer to the Gaussian kernel 

than the cubic spline functions and have better stability. 

Figure 2-4: plot of B-spline kernel function and its 1st order derivative curve [15]. 
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Eq. 2-23 

 

For one-dimensional, αd should equal to 1/24h [27]. 

 

The fifth spline smoothing function: 
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
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Eq. 2-24 

 

For one-dimensional, two-dimensional and three-dimensional problems, αd should 

equal to 120/h, 7/478πh2, 3/359πh3. The plot of fifth kernel function and its 1st order 

derivative curve [15] shows in Figure 2-6. 

Figure 2-5: the fourth spline kernel function and its 1st order derivative curve [15]. 
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2.3.3 Approximate accuracy of SPH method 

SPH is usually considered as a second-order precision method. Using the Taylor 

series to expand f(x) in x, Eq. 2-3 can be written as: 

 

  2

2

[ ( ) '( )( ' ) (( ' ))] ( ', ) '

( ) ( ') ' '( ) ( ' ) ( ', ) ' ( )

f x f x f x x x r x x W x x h dx

f x W x x dx f x x x W x x h dx r h



 

      

     



 

 

Eq. 2-25 

 

Because W(x-x’,h) is an even function, Eq. 2-25 is an odd function. The 

integration of function is equal to 0: 

 


 0'),'()'( dxhxxWxx

 

Eq. 2-26 

 )()()( 2hrxfxf 
 

Eq. 2-27 

Figure 2-6: plot of fifth kernel function and its 1st order derivative curve [15]. 
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Although the kernel function approximation has second-order accuracy, the 

discretized SPH approximation has second-order accuracy and must satisfy the following 

conditions: 

 

1

( , ) 1
N

j

j

j j

m
W x x h



   
Eq. 2-28 

 

 

1

( ) ( , ) 0
N

j

j j

j j

m
x x W x x h



    
Eq. 2-29 

 

Eq. 2-26 may not be true for all cases. If the kernel function’s support domain and 

the problem domain are interleaved, integration area of the smooth function is truncated 

by the boundary of the problem domain [31]. At this time, the surface integral term will 

no longer be zero. In this condition, SPH method does not have second-order accuracy. In 

another case, due to the particles in the support domain being non-uniformly distributed, 

summation of particles cannot exactly satisfy the above conditions [32]. 

2.4 Consistency of SPH method 

In theory, any numerical method should describe the physical problem as 

realistically as possible. The SPH method can completely use the continuity analysis 

theory of finite element method to analyze continuous and discrete forms of numerical 

formats. If an approximate form of a meshless particle method is capable of accurately 

regenerating a kth polynomial, this approximate form has Ck order continuity. 

2.4.1 Consistency in kernel approximation 

 If f(x) is sufficiently smooth, the applying Taylor series expansion of f(x’) gives 

us: 
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Eq. 2-30 

 Substituting Eq. 2-27 into Eq. 2-24: 
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Eq. 2-31 
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Eq. 2-32 

Consider the SPH kernel function approximate to the nth order of the field 

function, then the following equations can be obtained: 
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Eq. 2-33 

Where Mk is the k-th moments of the kernel function. In other words, any field function 

kernel approximation has n+1 order accuracy [34]. The SPH kernel function must satisfy 

the continuity condition of a series of integral forms represented by Eq. 2-32. These 

consistency conditions can be used to construct special forms of kernel functions. 

2.4.2 Consistency in particles approximation 

The particle approximation of Eq. 2-32 can obtain the corresponding discrete 

form of SPH particles: 
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Eq. 2-34 

 

Eq. 2-32 gives the particle continuity conditions. If the constructed SPH particle 

discrete format satisfies Eq. 2-32, this SPH particle discretization format can accurately 

approximate any field function to n+1 order accuracy. Then, particle approximation has 

n-order continuity [34]. 

In some special conditions, the continuity condition of the integral form and the 

continuity condition of the discrete form may not be established at the same time. In 

addition to the particle approximation format, the value of the smooth length, the smooth 

function selected, the distribution of the particles, etc. may affect the accuracy of the 

calculation [35]. The first and second formulas in Eq. 2-32 are the regularization 

conditions and symmetry conditions that must be satisfied by the discrete form of the 

kernel function. For the one-dimensional case, if the particles are regularly distributed in 

a symmetric form of a smooth function, the smooth length is the particle spacing, and for 

internal particles, the regularization conditions and symmetry conditions of the discrete 

form are established. So SPH particles approximation has second-order accuracy. On the 

contrary, if the initial particles in the support domain are irregularly distributed, the 

discrete form of the particles may not be able to reach the above conditions accurately. 

Therefore, the accuracy of the SPH method is determined by different formats of the 

kernel approximation and the particle approximation [52]. 
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2.5 SPH formulations for Navier-Stokes(N-S) equations 

Using the Lagrangian description, the governing equation of continuum 

mechanics includes the following series of equations: 

Mass conservation equation [4]: 

 d
u

dt


    

Eq. 2-35 

Momentum conservation equation [4], [90]: 

 
-

du p

dt






 
  

 
 

Eq. 2-36 

Energy conservation equation [4], [90]: 

 de p
u

dt 
    

Eq. 2-37 

ρ is the fluid density, u is the fluid velocity, p is the pressure,αis the direction.  

2.5.1 Particles approximation of density 

In the SPH method, the particle approximation of the density is very important 

because the density determines the distribution of the particles and the change in the 

smooth length. At present, there are two approximate methods of density in the SPH 

method. One is the density summation method. This method directly applies the SPH 

approximation to the density. For given particle i, the density of the particle obtained by 

the density summation method: 

 
i j ij

j

m W   Eq. 2-38 

Eq. 2-37 [4] describes the density of particles; i can be approximated by a 

weighted average of the densities of all the particles in its support domain. Using Eq. 2-
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37 as the SPH approximation of density, the discrete equation strictly satisfies the law of 

conservation of mass [36]. 

The second is the continuous density method, which is the expression of the 

solution density obtained from the SPH approximation of the continuous equation. For 

different transformation methods of the right term of the continuous equation, different 

density approximation equations can be obtained [4]: 
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Eq. 2-39 

The expression of particle approximation with unit gradient: 
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Eq. 2-40 

 

Because: 
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Eq. 2-41 

Eq. 2-39 could be written as: 
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Eq. 2-42 

 

Eq. 2-42 introduces the difference of velocity in discrete particle approximation; 

it is because it calculates the relative velocities between the particles in the support 

domain and can use the antisymmetric form of relative velocities to reduce the error 

caused by particle non-continuity. If the gradient operator is applied to the SPH 

approximation function, the most commonly used SPH continuity density equation is 

obtained: 
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Eq. 2-43 

The time rate of density relates to the difference of velocity between every 

particle in the support domain and the center particle. Two different density 

approximation methods have their own advantages and disadvantages. When the density 

summation method integrates over the entire problem domain, the quality is precisely 

conserved because the quality of the entire region is the sum of the particle mass when 

interpolating the integration. However, in the calculation of the continuous density 

method, the quality is not accurately conserved. Therefore, when using the summation 

method, edge effects occur when the particles are close to the boundary. This problem 

can be solved by setting up virtual particles at the boundary. The boundary effect does 

not only occur on the boundary of the same kind of media. If the problem has multiple 

substances, boundary effects also occur on the adjacent boundaries of different 

substances. Another disadvantage of the summation method is that we must first calculate 

the density of each particle to get other parameters, which leads to an increase in the 

amount of calculation. The quality of integrating over the entire problem domain may not 

necessarily exactly be conserved. Since it calculates other parameters without calculating 

the density of each particle first and easy to reduce the calculation time [37]. 

 

2.5.2 Approximation of momentum equation 

For conservation of momentum equation, there are three terms: viscous term, and 

pressure term, external force term.  

The pressure term is: 
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Eq. 2-44 

Transform pressure term: 
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Eq. 2-45 

Discrete right side of equation: 
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Eq. 2-46 

Substituting into Eq. 2-46: 
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Eq. 2-47 

Studies have shown that this symmetric form reduces errors due to particle 

inconsistencies. 

2.5.3 Approximation of energy equation 

In the Navier-Stokes equation, if the stress tensor is decomposed into isotropic 

pressure and viscous stress, the energy equation can be written as: 
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and 
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Eq. 2-49 

The following equation could be achieved: 
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Eq. 2-50 

 

Use the above equation to approximate the change rate of density: 
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Eq. 2-51 

 

Since there are many different expressions for the approximation of pressure 

work, there are many options for measuring the internal energy corresponding to the 

pressure work [42]. In general, the most commonly used calculation formulas have the 

following two forms: 
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CHAPTER 3 

 

CONTINUOUS AND DISCRETE SIMULATIONS OF 

 

MICRO-NEEDLES FOR EPIDERMAL DRUG DELIVERY 
 

As an emerging transdermal drug delivery device, microneedles demonstrate 

some superior potential and advantages over traditional metallic needles-on-syringes in 

skin injection and vaccine [1]. However, very few research papers are available. This 

project uses a high order continuous method, the spectral element method (SEM), and 

a low order discrete method, the Smoothed Particle Hydrodynamics (SPH), to investigate 

this new drug delivery system. The incompressible Navier-Stokes equations were solved 

with SEM under appropriate initial and slip boundary conditions for the transport of 

medicine inside microneedles of rectangular and circular cross-sections. In addition, 

Darcy-Brinkman equations and a concentration equation were solved with SEM under 

appropriate initial and boundary conditions for the infiltration of medicine solution 

through porous media of dermis tissue once a microneedle enters the skin. Meanwhile, 

the Lagrangian form of the Navier-Stokes equations were solved with the weighted 

interpolation approach via numerical integrations without inverting any matrices. Results 

from the mesh-based SEM and the mesh-free SPH simulations revealed technical details 

about the processes of delivery of medicine particles through microneedles and diffusion 

in the skin tissue, and the medicine concentration change with space and time. The 
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overall effect of medicine delivery under initial concentration and conditions were 

simulated and the effect of drug delivery were assessed. 

3.1 Introduction 

Traditional injection uses a syringe to insert liquid into the body. The purpose of 

medical injection is to pierce the material into the sufficient depth of the skin. This kind 

of injection needs to use a large number of syringe needles, and according to [61], clients 

reported that an average of 8.7% of injections employed shared syringe needles. Data 

from the Coalition for safe Community Needle Disposal showed that in 2011, 13.5 

million people in the United States produced 7.8 billion used sharps (needles, syringes, 

etc.) outside the traditional healthcare, and 1 million to 1.5 million of needles were used 

for illegal drug injections. Since blood borne infections, like HIV, HBV, and HCV, can 

be commonly spread by sharing intravenous syringes, a large number of substandard and 

illegal use of needles compares to the shared rate of 8.7%; the potential spread of these 

infections cannot be ignored. On the other hand, the application of the micro needle can 

to a large extent eliminate this from its source. 

Micro needles, which are recently developed by the Georgia Institute of 

Technology and the Centers for Disease Control and Prevention (CDC) [62, 63], are 

small patches that can be administered by untrained users. Small needles are placed on 

the patch of about one square centimeter. Instead of asking a nurse for a muscle injection, 

only with a press of a thumb, this kind of needle can be used for vaccine inoculation and 

local anesthesia. 

In this paper, both the spectral element method and the smoothed particle 

hydrodynamics method are applied to simulate the models of the micro needle. The 
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spectral element method used in computational fluid dynamics is explained in [15] and 

[45]. For spectral element models of the micro needle, the process is divided into two 

parts, the model of the flow in the micro-needle and the model of the solution flux inside 

human skin. Incompressible Navier-Stokes equations with slip boundary condition are 

solved inside the micro needle. The human skin is treated as porous media, so the Darcy-

Brinkman equation is solved to simulate this process. At the same time, the output data of 

the micro needle are taken as the initial conditions of the Darcy-Brinkman model. 

The mesh free method for large deformation problems of fluid simulation 

compared with the traditional grid method has obvious advantages, the traditional method 

unable to deal with a large deformation problem of fluid, because the local grid 

deformation is too large and will cause the computation result to distort. This simulation 

uses the SPH algorithm to simulate the movement of a drug’s molecule in the porous 

medium of the dermis after a single micro needle pierced skin. Micro needle compared 

with the traditional needle injection has obvious merits. Besides reducing the piercing 

pain, the drug will penetrate more uniform and faster. Two models illustrate these 

characteristics. Table 3-1 shows reference parameters of simulations.  
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Some of the original data come from students’ report [71], and all the parameters 

shown in Table above are confirmed from their citations. 

3.2 Methodology 

3.2.1 Discrete Modeling 

The Smoothed Particle Hydrodynamics is a weighted interpolation method [72] 

used to describe the motion of solid, liquid or gas in space with a discrete interpolation. 

The interpolating function is denoted as 𝑊(𝑟 − 𝑟′, ℎ) where h is the radius of the 

influenced region around position r′. The interpolating function is essentially a 

probability density function [73]. 

In this two-dimensional micro needle model, we use fixed points which are 

randomly distributed to represent the porous media of the dermal layer. Molecules move 

Table 3-1: reference parameters of simulations. 

Convection and Diffusion 

Diffusivity Coefficient of Lidocaine, D 1.38 × 10−8 m2/s [65] 

Fluid Flow 

Density of Lidocaine, 𝜌 999 𝑘𝑔/𝑚3 [66] 

Dynamic Viscosity of Lidocaine, 𝜂 0.001 𝑃𝑎 ∗ 𝑠 [67] 

Porosity, Φ 0.5 [68] 

Intrinsic Permeability of Skin, k 10−17 𝑚2 [69] 

Minimum Concentration Required at Nerves 0.004267 𝑚𝑜𝑙/𝑚3 [70] 

Initial Concentration at output of needle 42.67 𝑚𝑜𝑙/𝑚3 [71] 
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into a porous medium dermis, collide with porous media, and disperse in the dermis layer 

gradually. Human dermal thickness is generally around 2 mm; the model of the porous 

media thickness is 4 mm; the length of the micro needle is 600 µm; the base diameter is 

400 µm. When the depth of molecular particles is around 2 mm, they have entered the 

subcutaneous tissue and capillaries, and throughout the blood flow. By measuring the 

number of particles beyond 2 mm, we can calculate the concentration of the drug 

molecules in units of blood. 

The momentum equation, containing stress tensor σ, in the component form is 

shown as the following [79]: 

 
𝑑𝑣𝑎

𝑑𝑡
=

1

𝜌

𝜕𝜎𝑎𝑏

𝜕𝑥𝑏
+ 𝑓𝑎 Eq. 3-1 

where a, b stand for Cartesian components, 𝑓𝑎 is the body force, and the tensor stress 

𝜎𝑎𝑏 is consisted of the deviatoric stress 𝑆𝑎𝑏 and the volumetric stress 𝑃𝛿𝑎𝑏. Since the 

volumetric stress is easy to calculate, the following equation descripts how the change 

rate of the deviatoric stress occurs: 

 
𝑑𝑆𝑎𝑏

𝑑𝑡
= 2𝜇 (𝜖̇𝑎𝑏 −

1

3
𝛿𝑎𝑏𝜖̇𝑎𝑏) + 𝑆𝑎𝑐𝛺𝑏𝑐 + 𝛺𝑎𝑐𝑆𝑐𝑏 Eq. 3-2 

in which 𝛺𝑎𝑏 and 𝜖̇𝑎𝑏 are calculated by: 

 𝜖̇𝑎𝑏 =
1

2
(
𝜕𝑣𝑎

𝜕𝑥𝑏
+

𝜕𝑣𝑏

𝜕𝑥𝑎
) Eq. 3-3 

 𝛺𝑎𝑏 =
1

2
(
𝜕𝑣𝑎

𝜕𝑥𝑏
−

𝜕𝑣𝑏

𝜕𝑥𝑎
) Eq. 3-4 

The derivatives of velocity in Eq. 5-20 and Eq. 5-21 are calculated according to [80]: 
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(
𝜕𝑣𝑎

𝜕𝑥𝑏
)𝑖 = − ∑

𝑚𝑗

𝜌̅𝑖𝑗
𝑗

(𝑣𝑖
𝑎 − 𝑣𝑗

𝑎)
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝑏  

Eq. 3-5 

where 𝜌̅𝑖𝑗 =
𝜌𝑖+𝜌𝑗

2
. 

The momentum equation for the SPH scheme is: 

 

𝑑𝑣𝑖
𝑎

𝑑𝑡
= ∑ 𝑚𝑗 (

𝜎𝑖
𝑎𝑏

𝜌𝑖
2 +

𝜎𝑗
𝑎𝑏

𝜌𝑗
2 )

𝑗

𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝑏 + 𝑓𝑎 

Eq. 3-6 

3.2.1.1 Particles Interaction 

Interactions between particles are described with a pair-wise force field similar to 

the Lennard-Jones potential [80]: 

 𝒇𝑖𝑗 = 𝐶0 [(
𝑟0

|𝒓𝑖𝑗|
)

𝑝1

− (
𝑟0

|𝒓𝑖𝑗|
)

𝑝2

]
𝒓𝑖𝑗

|𝒓𝑖𝑗|
 Eq. 3-7 

where  𝐫ij = 𝐫𝐢 − 𝐫𝐣, 𝒓𝟎 is the initial distance between two different particles i and j. In 

this case, p1 = 12, p2 = 6, C0 is an adjustable constant. 

3.2.1.2 Velocity Evaluation 

The motion of the particle i is described in the equation below [82]: 

 

𝑑𝑟𝑖

𝑑𝑡
= 𝑣𝑖 + 𝜀 ∑ 𝑚𝑗(

𝑣𝑗 − 𝑣𝑖

𝜌̅𝑖𝑗
)𝑊𝑖𝑗

𝑗

 
Eq. 3-8 

in which 𝜀 (0 ≤ 𝜀 ≤ 1 according to different case) is a factor that averages the velocity 

of influence. 

3.3 Viscosity term 

In the SPH method, viscosity is essential for the results of numerical simulations, 

for different viscous term selections often achieve different numerical simulation results. 
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Therefore, how to select the proper viscous item is very important. It is necessary to 

select the proper viscous item according to the simulation model [39].  

3.3.1 Artificial viscosity 

To simulate the fluid dynamics problem, some special processing is needed to 

eliminate the non-physical oscillations and the numerical oscillations generated during 

the calculation. So, artificial viscosity is added into the SPH method. Artificial viscosity 

is usually added to the pressure term. So far, Monaghan's artificial viscosity is the most 

widely used in SPH-related literatures. It not only converts kinetic energy into heat 

energy, but also provides the shock wave surface dissipation in the formulas, and it can 

prevent non-physical penetration of particles when they are close to each other. The 

expression is： 
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Eq. 3-10 

 

In the artificial viscosity expression, α is a coefficient that needs to be tuned in 

order to introduce the proper dissipation. 

3.3.2 Laminar viscosity 

When a fluid is flowing through a channel such as a pipe or between two flat 

plates, either of two types of flow may occur depending on the velocity and viscosity of 
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the fluid: laminar flow or turbulent flow [39]. Laminar flow tends to occur at lower 

velocities. 

Laminar viscous stresses in the momentum equation can be expressed as: 
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Eq. 3-11 

Where u is the dynamic viscosity coefficient. The 0.01h2 term in the denominator is to 

prevent the denominator equal to 0. 

Use average density ( ) / 2ij i j   
 
to replace i  and 

j , Eq. 3-11 could 

be written as: 
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Eq. 3-12 

3.3.3 General viscosity 

The general form of N-S equation: 

 1 1du
g P

dt


 
      

Eq. 3-13 

 

  is the viscous stress tensor, which is proportional to the strain rate tensor  : 
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Eq. 3-14 

Where i and j represent coordinates, 1, 2, 3 in the three-dimensional space, corresponding 

to coordinates x, y, z; δij is the Dirac function. 
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3.4  Artificial compressibility 

The SPH method is used to deal with compressible flow problems. Pressures are 

calculated by equations of state according to changes in density and internal energy. For 

incompressible fluid, a slight change in density causes a large change in the pressure 

gradient, and the pressure is too sensitive to changes in density, which makes the 

calculation process very unstable and the required calculation time step is too small [42].   

The state of equation: 
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Eq. 3-15 

 

B is a parameter that depends on the specific problem: 

 2

0 /B c  
 

Eq. 3-16 

ρ0 is the reference density, c is the sound velocity, γ is the constant, normally 

equal to 7. The following state equations are usually used. Morris first proposed in the 

paper: 

  2)( cp   
Eq. 3-17 

Although the two forms of the equation are quite different, they are intrinsically 

related： 
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Eq. 3-18 
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As the density gradient changes are very small, so (ρ-ρ0)/ρ0 can be ignored. The 

speed of sound is a factor that must be carefully considered. To use an artificial 

compressed fluid to approximate a real fluid, the speed of sound must be much lower 

than the actual value. Therefore, the requirements for the speed of sound are: The speed 

of sound must be large enough that the characteristics of the artificial compressible fluid 

are sufficiently close to the real fluid; on the other hand, the speed of sound must be small 

enough to allow the increment of time step within the allowable range. Such adjustment 

however, restricts the sound speed to be at least ten times faster than the maximum fluid 

velocity, keeping density variations to within less than 1% [43], and therefore not 

introducing major deviations from an incompressible approach: 

 10max( , 2 )c u gh  Eq. 3-19 

 

3.5 Results and Discussion 

The three-dimensional model of the anesthetic injection was developed according 

to the procedures detailed in the Introduction. In order to compare the results, this section 

will discuss the results from the SPH Method and the SEM. 

3.5.1 Results for the SEM 

As it is mentioned before, the simulation of the solution flowing from the syringe 

into human skin is divided into two parts. 

3.5.1.1 Solution for Simulation of Micro-Needle 

In the first part, the length of the needle is set at 1 mm, the radii are set as 50 µm 

at the bottom, and 25 µm at the sharp (for rectangular cross-section, the widths of bottom 

and sharp are set as 50 µm and 25 µm). We set the flow as the pressure driven flow. As a 
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result, the initial velocity at the inlet is set at 0.0, the pressure of the inlet is set at 10.0 

kPa, and the outlet is imposed with the Neumann boundary condition. 

Figure 3-1 shows the models of the needles with circular and rectangular cross 

sections. By comparing the results from both of these two models and mapping their data 

as the initial conditions to our second part of the simulation, numerical solution of the 

Darcy-Brinkman equations, the results are almost the same. In this section, we take the 

data of the pressure and velocity from the circular cross-section. 

  

After the results are converged, Figure 3-2 shows the velocity contour on xz-

cross section, with the initial pressure of 10 kPa, the normalized velocity comes with a 

maximum value of 35.9 at the outlet. 

Figure 3-1: the models of needles with circular and rectangular cross sections [85]. 
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Figure 3-2: the pressure on xz-cross section [85]. 
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Figure 3-3: the contours of velocity on z-direction at the inlet (up) and outlet (down) 

[85]. 

Figure 3-3 shows the normalized velocity of z-direction at the inlet and the outlet. 

Due to the slip boundary conditions, the velocity near the wall is much smaller than at the 

middle area. Figures 3-3 to 3-4 come from the simulation of the model with the 3rd 

order. 
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Figure 3-4: the contours of pressure at the inlet (up) and outlet (down) [85]. 

Figure 3-3 shows the contours of pressure at the inlet and outlet of the needle. As 

mentioned before, the data from the outlet of the needle will project to become the input 

boundary and initial conditions of the next model. The polynomial order of the basis 

functions needs to be the same. For example, the 3rd order scheme of the needle can only 
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match the 3rd order model of human skin. When the 5th order simulation for human skin 

is analyzed, the order for the needle will also be increased to the 5th order. 

3.5.1.2 Solution for Simulation of Human Skin 

In this section, human skin is simplified as a cylinder. The top of the cylinder is 

treated as the cross section of the skin where the needle pierces. The bottom represents 

the interface of the dermis and the fat layer. In this case, we do not need to simulate all 

these areas from the surface of the skin to the bottom of the fat layer. It can largely 

reduce the number of elements in our models, which in turn will save time on running the 

code. There are two different schemes for simulation. The first one is single needle with 

the same number of elements and different order of the basis functions and initial 

conditions. The other one is multiple needles with a different number of elements, and the 

same order of the basis functions and initial conditions. 

3.5.1.2.1 Single Needle 

Figure 3-5(a) shows the contour map of the initial concentration for the single 

needle case. At time = 0, the initial concentration at the surface of the skin is set at 42.67 

mol/m3 according to Table 3-1. By doing some tests on different models, we find that by 

changing the ratio of the needle’s input area to the area of the x-y cross section of the 

model, the result’s range (maximum and minimum values of models) will also be 

seriously changed (see Figure 3-7). The result will become convergent when the ratio 

decreases to about 0.05. However, if we built models with a ratio of 0.05 or less, it will 

largely increase the number of elements or the order of the basis functions, which will 

take a much longer time to run our codes. 



45 

 

 

 
(a) 

 
(b) 

 

Figure 3-5: the initial contours of concentration with a different ratio of a needle’s 

input area to the area of x-y cross section of model [85]. (a): The model of human skin 

with a single needle at a ratio of 0.05. (b): The model of human skin with a single 

needle at a ratio of 0.1. 
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(a) 

 
(b) 

 

Figure 3-6: contour maps for the single-needle model at t = 60 sections with different 

ratios of needle input area to the area of the x-y cross section [85]. (a): the 

concentration of 4th order bases and 75 elements with a ratio of 0.05. (b): the 

concentration of 6th order bases and 45 elements with a ratio of 0.1. 

In Figures 3-6 (a) and (b), the maximum and minimum concentrations of the first 

cases are 6.370 × 10-4 and 1.000 × 10-5 mol/m3. On the other hand, for the second case, 
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the maximum and minimum concentrations are 7.318 × 10-4 mol/m3 and 5.843 × 10-4 

mol/m3, respectively. It seems that for this type of model, with every parameter due to 

references, the result for the concentration is much less than its necessary value 4.267 × 

10-3 mol/m3. Since the critical area for this model is the concentration at the interface 

between the dermis and the fat layers, we decide that instead of reducing the ratio, we 

will focus on the concentration of the critical area directly under the needle. To improve 

the result for our model, there are two possible ways. The first one is increasing the initial 

concentration, and the second way is keeping the sizes of the model but using multiple 

needles. Since even if the concentration requirement can be achieved by the first 

approach, the practical application needs not only concentration, but also enough dose. 

We decide to develop a model with four micro needles on top. Simultaneously, in this 

model, the critical area is the cross section of the dermis-fat layer interface under and 

between the needles. We try to find the concentration of the drug in this area, which is 

affected by multiple needles. The following paragraph will discuss the results from the 

models with four needles. 

3.5.1.2.2 Multiple Needles 

Based on the Single-Needle model, we develop another model with 4 needles. 

Figure 3-7 and Figure 3-8 show the modified models of the 6th order bases with 75 and 

243 elements. By comparing the results from these two models, the maximum and 

minimum concentration have the differences of 4.32% and 4.12%; due to this fact, it 

seems unnecessary to increase the number of elements or the order of the basis functions 

anymore. 
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(a): the model with 75 elements. 

 
(b): the model with 243 elements. 

 

Figure 3-7: the initial models of human skin with 4 needles [85]. 

After the result converges, the contour maps of concentration with the 6th order 

accuracy are shown in Figure 3-7. In Figure 3-7(a), the minimum value of concentration 

is 1.670 × 10-3mol/m3, which is lower than the minimum necessary value, while the 

maximum concentration is 5.296 × 10-3 mol/m3, which is beyond the required value. 
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Moreover, from Figure 3-7(b), the highest concentration located at the middle of the 

critical layer is also the middle of the 4 needles. The value is 5.151 × 10-3 mol/m3, which 

is 20.71% larger than the required concentration. 

 
(a) concentration with 6th order accuracy. 

 
(b) concentration at interface of the dermis and the fat layer. 

 

Figure 3-8: contour maps for 4-needle model at t = 60 sections [85]. 
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3.5.2 SPH simulation results 

In this section, we simulate a two-dimensional SPH model for the micro needle 

and compare the results with other modeling data. The total number of drug particles is 

1200. Due to the effect of body fluids, a 0.0005 N downward force is added on the drug 

particles. The drug particles and porous media particles have the same value of the mass. 

Blue particles are used to represent drug molecules, while white particles as a random 

distribution of the fixed point are used to simulate the porous medium. After the micro 

needle pierces the surface of the skin, particles of the internal drug will go through the 

porous medium and then get into the capillaries and transport to all parts of the body via 

blood flow. Figure 3-9(a) indicates the initial conditions for the micro needle simulation. 

In Figure 3-9(b) and Figure 3-9(c), drug particles dispersed in most of the upper part. 

With time increasing Figure 3-9(d), drug particles dispersed everywhere in the porous 

medium.  

Figure 3-10 is the number of particles with a depth beyond 2000 µm, which 

equals to the concentration change in the lower part of the middle. It is similar compared 

with [71] which come from the spectral element method. SPH model has a 0.0005 N 

downward force which signifies this model is closer to the actual situation. There are still 

some reasons that cause system errors. Firstly, the error is caused by using fixed random 

distribution particles to build the dermal layer of the porous medium structure. Secondly, 

due to the random distribution of the particles, the results have small differences every 

time. Thirdly, for the continuous modeling, the permeability of the skin can be defined 

exactly by a parameter; however, for the discrete modeling, it is hard to control this 

parameter with accurate measurement. 
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(a) Initial at t = 0 

 

 
(b) t = 10 sec 

 

 
(c) t = 20 sec 

 

 
(d) t = 30 sec 

 

Figure 3-9: the motion process of drug molecules. 

 

In this paper, one continuous (mesh-based) and one discrete mesh-free 

simulations using totally different formulations and methods were utilized to help 

understand some details of drug delivery in the microneedle. The diffusion speed of drug 

particles was found to be anisotropic from both simulations, especially in the vertical 

direction, although isotropic porosity was used in both simulations. This is mainly due to 

the initial momentum - pushing of the microneedle. At the center of the microneedle, the 
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concentration is higher than the surrounding areas from both simulations even under the 

same conditions. According to the initial concentration of 42.67 mol/m3 and the interior 

volume of the microneedle 2.51×10-11m3, the dosage of drug in the microneedle is 

1.072×10-9mol. That means there are 6.46×1014 drug molecules in total.  

A circular cone built with 6,460 points was used to represent the microneedle. 

There are 1,200 SPH points in the computational domain consisting of a cylinder with 4 

mm in height and 2.5 mm in radius; therefore, the volume of the microneedle in this 

simulation is 1.963×10-8m3. From the plot of three groups in the simulation we could 

achieve that in the mesh-free simulation that almost 50% of the medicine particles 

reached the deeper layer after 30 seconds. The average concentration in the deeper layer 

is about 0.0054 mol/m3. This result means that the dosage in the deeper layer is beyond 

0.004267 mol/m3, the minimum concentration in Table 1. The average concentration 

beyond 2mm in depth means drug particles already touch the blood, and the blood will 

carry drug particles and deliver to any part of the body. SPH results indicate the same 

conclusion with SEM and the reference work in [4] regarding the concentration at the 

interface of the dermis and fat layers. 

Using almost the same parameters as in SEM and SPH 2D simulations, but some 

differences in the results exist. The reasons include the following points: The SPH 

simulation of one microneedle indicates that almost half of the drug particles reached the 

capillary layer after 30 seconds. On the other hand, results from SEM show that drug 

particles almost spread out to most parts of the domain within 60 seconds. These 

differences are mainly attributed to different formulations and methods used. First, SEM 

used fully 3D computational model while SPH used a 2D. In order to make the result 
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more persuasive I built a 3D SPH simulation. Second, SEM is continuous but SPH is 

discrete in the model’s description. We use a different way to operate the discrete 

formations. Third, spatial resolutions are different. SEM uses finite elements and high 

order polynomial expansions for increased resolution, whereas SPH uses many randomly 

distributed discrete particles. Consider the limit of computation ability; use one particle to 

represent the molecule cluster. This is also an important reason in term of different 

results.  

Figure 3-10 indicates numerical result of 2D microneedle simulation. Because 

fixed particles are randomly distributed in the computational domain to represent porous 

media, it will generate fixed particles a little differently every time you run codes. There 

is a slight difference in the results of each generation. In order to avoid this difference in 

results, we ran it several times and plot results on one figure. There are three trials in 

Figure 3-10 and each trial represent one result. This figure demonstrates randomly 

distributed particles have no big effect on the results.  
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Figure 3-10: the number of particles that has a depth beyond 2000 um in the 2D 

model. 

3.6 3D microneedle simulation by SPH 

In order to further demonstrate that the microneedles make a significant sense to 

clinical medicine and fixed errors in 2D SPH simulation, we carried out the 3D SPH 

simulation which uses the same parameters in Table 1. The total number of molecules is 

about 12,000, the drug molecules are about 8000, and the rest is randomly distributed 

porous medium points. The height and radius of a cylinder computational domain are 

4 mm and 2.5 mm; therefore, the volume is 1.963×10-8 m3 same with 2D simulation. 

Figure 3-11 to Figure 3-14 indicate process of drug particles movement.  
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Figure 3-11: initial condition of 3D microneedle simulation. 

 

Figure 3-12: 20 seconds of 3D microneedle simulation. 
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Figure 3-13: 40 seconds of 3-D microneedle simulation. 

 

Figure 3-14: 60 seconds of 3D microneedle simulation. 

The figures demonstrate the entire process of the drug particles spreading from 

the initial setting to the drug molecules that filled out the computational domain. At the 

beginning, the drug molecules stay in the microneedles, and gradually spread towards the 
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cross-section of dermis-fat layer interface. The drug molecules gradually filled the entire 

model in 60 s. Results of SEM and SPH two methods are highly similar after comparing 

the two processes of diffusion, 60 s later, around 4,700 particles pass through the cross-

section of dermis-fat layer interface. About 6,300 particles pass through the cross-section 

of dermis-fat layer interface after 120 s Fig. 3-13. This proves the microneedles can 

replace the existing injection of the syringe. In this simulation, the critical area is the 

cross-section of dermis-fat layer interface under and between needles which determines 

the drug delivery dosage. Figure 3-15 indicates 60 secs cross-section of a 3-D 

microneedle simulation. Figure 3-15 shows the number of particles passes the fat layer. 

 

Figure 3-16: 60 secs cross-section of a 3-D microneedle simulation. 
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Figure 3-17: the number of particles passes the fat layer. 

 

3.7 Conclusion 

Compared with traditional injection syringes, micro needles are painless, easy to 

operate, and a possible alternative to avoid the spreading of blood borne infections. To 

search online, there are already micro needle products. Different kinds and shapes of 

needles [81, 82] and their clinical trials [83] are discussed in detail based on experimental 

tests and investigations. In this paper, numerical methods with high order accuracy are 

conducted to show a good agreement with these reference experimental data. 

This paper developed virtual models to simulate the flux of Lidocaine from the 

needle into human skin. The drug in the micro needle is simulated as a pressure driven 

Navier-Stokes equations with a slip boundary condition. Also, the drug spreading in 

human skin is treated as the Darcy-Brinkman equations. Since there are not too many 

numerical results to compare with, we do convergent tests for both h-refinement, p-
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refinement (SEM), and discrete method (SPH). The result shows the micro needle patch 

that with the current parameters, the drug can fully transfer to the required concentration. 

At the same time, our two-dimensional three-dimensional model of the SPH 

method also shows the match of concentration at the interface of the dermis and the fat 

layers with SEM and reference. The differences happen due to the initial setting of the 

model. Since there is a very small initial and boundary condition of pressure, all the drag 

particles are driven towards the bottom of the model. To minimize the error occurring by 

this setting, we just account for the number of particles moving through the critical 

section during 0 to 30 seconds for two-dimensional simulation and 0 to 60 seconds for 

three-dimensional simulation. The results show that at 50 seconds, the number of drag 

particles below the interface satisfies the requiremen
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CHAPTER 4 

 

CONSTRUCTING A THROMBUS MODEL WITH SPH 
 

The cardiovascular system is the kernel system of the physiological system. Due 

to people's daily dietary imbalances, smoking, and lack of exercise, the incidence of 

cardiovascular diseases is increasing. Thrombosis is the most direct factor cause of 

sudden cardiovascular and cerebrovascular diseases. This article discussed the methods 

of modeling vascular simulation and using SPH method simulate 25% stenosis blood 

vessel model and 75% stenosis blood vessel model. The numerical results of the 

simulation are important for understanding the details of the effect of thrombus on blood 

circulation. Modeling and simulating the blood vessel provides a guide for studying 

thrombus disease and an assistant tool for designing the medical equipment. 

Thrombosis may occur anywhere in the body where there are arteries. At the same 

time, this is also the main cause of the lack of oxygen in the heart, brain and other organs 

and accelerate the aging process. The World Health Organization (WHO) calls for 

prevention and cure of thrombosis to be health and longevity. Scientific research shows 

that health erythrocyte has a negative charge outside the membrane. Erythrocytes always 

maintain a distance from each other due to the mutually repulsive electric fields between 

the same type charges. Food habits, tobacco and alcohol will cause the charges on the 

erythrocyte membrane disappeared. Erythrocytes lose their mutual repulsive electric 

field, resulting in a large number of cell aggregation. It will also reduce the effective 
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surface area of the erythrocyte membrane and the oxygen-carrying capacity. Eventually, 

blood clots form in the blood vessels.  

Thrombosis can be divided into red, white and fibrin thrombus regarding traits. 

The red thrombus mainly consists of the erythrocyte and fibrin. The white thrombus is 

mainly composed of platelets and fibrin. The platelets adhere to and agglutinate on the 

damaged blood vessel wall, and at the same time, fibrinogen is converted into fibrin to 

form a thrombus. Fibrin thrombosis is caused by hyperthyroidism in the systemic 

coagulation system. When the blood vessels are blocked by embolism, the blood flow is 

interrupted; embolic diseases are formed. After thrombosis generated, the influence of 

thrombus on blood flow is difficult to study by experiment and observation.  

In this paper, in modeling and simulating the blood flow, vessel used the SPH 

method. SPH is an effective numerical method that can be used to solve a variety of 

difficult problems in computational mechanics. It is a fully Lagrangian meshless method 

ideal for solving deformation problems such as complex free surface fluid flows, but SPH 

is mainly used to simulate free-surface such as water waves, less application in 

physiological fluids. Due to these advantages, it is suitable to simulate a blood vessel 

model by SPH method achieve the ideal result. 

4.1 Introduction 

In this simulation, there are several advantages compared to the previous models 

such as:   

1. Erythrocyte could deform when a collision occurs. It is well known 

that erythrocyte could change their shape to pass through narrow 

capillaries and deliver oxygen into tissues and cells. In this model, 



62 

 

 

deformation will occur when the boundary or erythrocyte receive 

external forces or collisions.  

2. In this model, the periodic of external force is 0.8 s, close to the 

frequency of a heartbeat and vasoconstriction. 

3. In order to optimize the simulation effect, a shifting algorithm was 

added to the model to avoid the phenomenon of the local density 

being too low in the calculation process. 

4. In some existing vessel simulations, a constant velocity is applied to 

the elements directly as a drive force. These models are too simplified 

for real situations. In our model, we put drive force on the inlet 

surface of the vessel model and erythrocytes flow with the 

bloodstream in the vessel. 

There are also some advanced techniques applied to this thrombus simulation 

such as Linked-list search algorithm and symplectic algorithm. So the results of this 

simulation are very convincing. 

For this thrombus simulation, B-spline function is chosen for the kernel function. 

The blood flow appears as a laminar flow at low velocity in the vessel, and most particles 

move in a straight line along a direction parallel to the boundary of vessel. The flow rate 

of the blood is greatest at the center of the vessel and smallest near the boundary. Based on 

the simulation, laminar viscosity is selected as viscosity term in this simulation. There are 

about 50,000 timesteps in this simulation. Consider the accuracy and stability of the 

simulation; the symplectic algorithm is a good choice. Because symplectic algorithm 
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preserves geometric features, such as the energy time-reversal symmetry present in the 

equations of motion, it improves the resolution of long-term solution behavior.  

Dynamics boundary condition is applied to the vessel model to indicate the pressure 

of boundary particles, and the inlet and outlet use periodic boundary condition to imitate 

the inflow and outflow of the blood.  

The following sections will talk about the selection of time step algorithm, the 

selection of neighbor particles search algorithm, and some related problems.  

4.2 Time step 

Numerical integration of the discretized SPH equation requires a suitable time 

step. The selection of the time step is critical. If the time step is too small it will increase 

the calculation amount; if the time step is too long, it will lead to distortion or collapse of 

the calculation. Since the time step is related to the state change of material and directly 

affects the accuracy and stability of numerical calculation, the time step selected for 

explicit time integration must satisfy the CFL (Courant-Friedrichs-Levy) condition [55]. 

CFL condition means the time step must be less than a certain time in CFD; otherwise, 

the simulation produces incorrect results. In SPH, the CFL condition requires that the 

time step should be proportional to the minimum value of the distance between particles. 

Convert CFL to time step proportional to a minimum smooth length in the SPH: 

 
min ih

t
c
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Eq. 4-1 

 

Monaghan gives an expression that considers viscous dissipation and external 

force, respectively: 
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Eq. 4-2 
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Eq. 4-3 

 

In the equation, f is the force effect on unit mass. Use the equations above and add 

two coefficients λ1 = 0.4 and λ2 = 0.25 [60], the standard time step could be calculated by 

the following equation: 

 
1 1 1min( , )cvt t t      Eq. 4-4 

4.2.1 Verlet scheme 

The Verlet scheme is based on the common Verlet method. The predictor step 

calculates the variables according to: 
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Eq. 4-5 

 

However, every time step and variables are calculated according to: 
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Eq. 2-72 

  

Eq. 4-6 

 

This second part is designed to stop divergence of integrated values through time as the 

equations are no longer coupled.  

4.2.2 Symplectic scheme 

Symplectic integration algorithms are time reversible in the absence of friction or 
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viscous effects. They can also preserve geometric features, such as the energy time 

reversal symmetry present in the equations of motion, leading to an improved resolution 

of long term solution behavior [65]. The scheme used here is an explicit second-order 

Symplectic scheme with an accuracy in time of O(Δt2) and involves a predictor and 

corrector stage. During the predictor stage, the values of acceleration and density are 

estimated at the middle of the time step according to: 
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Eq. 4-7 

 

During the corrector stage 
1

2 /
n

adv dt


 is used to calculate the corrected velocity, 

and therefore the position of the particles at the end of the time step according to: 
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Eq. 4-8 

 

and finally, the corrected value of density 1 1/n n

a ad dt D    is calculated using the 

updated values of 1n

av   and 1n

ar
 . In this simulation, I choose the symplectic scheme for 

the time step algorithm. The symplectic scheme provides a more stable precision for a 

simulation which have large time steps. The symplectic scheme has two steps, one is the 

predictor stage which uses position and velocity from the last time step to predict the next 

half time step’s position and also for density of particles. The second step use velocity 

and position to correct the results.  

After these two steps, the result shows high stable property, which is very 

important for large scale and long simulation time models. 
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4.3 Nearest neighbor particle search 

In SPH method, the kernel function has a support domain which uses the selected 

particle as the center. The radius of the support domain is equal to kh. Particles in the 

selected particle’s support domain are called nearest neighbor particles. The first 

operation in every time step is to search the nearest neighbor particles of the selected 

particle. The process of finding the nearest neighbor particles is often called the nearest 

neighbor particle search (NNPS). In grid methods, once the grid is well-defined, the 

position of the grid node will not change. However, in the SPH method, the position of 

the discretized particle changes at each time step. Therefore, it is necessary to re-

determine the neighboring particles in the central particle support domain at each time 

step. 

4.3.1 All-pair search algorithm 

All-pair search, also called as direct particle search, is a straightforward NNPS 

method. Because this process of finding neighboring particles operates on all particles, 

the degree of complexity of the all-paired search method is 2( )O N . In the SPH interpolate 

operation, the NNPS process is performed in each time step operation. Therefore, the all-

pair search method consumes for a long time and is not suitable for calculating a large 

number of particles. 

4.3.2 Linked-list search algorithm 

Monaghan discusses the process of using the linked list search to implement the 

nearest neighbor particle search. When implementing the linked list algorithm, a 

temporary grid should be laid on the problem domain. The space size of the grid unit 

should be chosen in accordance with the space of the support domain. The linked list 
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search method distributes each particle within a grid cell and connects all the particles in 

each grid through a storage rule. If the average number of particles in each cell is small 

enough, the complexity of the linked list search method is ( )O N . The disadvantage of the 

linked list search method is when the smooth length is a variable, and the grid unit cannot 

adapt to each particle. However when the smooth length is a constant, the linked list 

search method is very effective.  

In this simulation, I use linked list search algorithm to calculate the nearest 

neighbor particles. There are four steps in this search algorithm: 

First, divide the computational domain into uniform grids and specify an index 

number for each grid. This index number is related to the spatial position of the grid. A 

simple index number can be the size of the grid's coordinates multiplied by space. 

For example, if we divide a space which the size is 2563, and the grid as position 

is (0x2, 0x3, 0x4), we set the index number to be calculated this way (0x2, 0x3, 0x4) ∙ 

(0x100, 0x100, 0x100) = 0x020304. So the index number of this grid with position (0x2, 

0x3, 0x4) should be 0x020304. 
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Figure 4-1: build grid index number [87]. 

Second, after every time step calculation, compute which grid and the index 

number of grid each particle belongs to based on the particle’s position. Then, put the 

index number of the grid in high 32 bit and put the index number of particles in low 32 

bit. So a new 64 bit number will be generated. 

Third, reorder the new 64 bits long int numbers. Due to the index number of the 

grid being set at high 32 bits, the index number of particles will continue in GPU’s 

memory. The order of the new 64 bits number is based on the index number of grids. 
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The last step, judge where the starting point is and end point for one grid. If the 

previous 64 bits index number has a different high 32 bits with the following 64 bits 

index number, it means it is the starting point for a new grid. 

In this way, it is easy to calculate the nearest particles for a huge number of 

particles simulation.  

4.3.3 Tree search algorithm 

The tree search method is very suitable for solving problems with variable smooth 

lengths. This algorithm constructs a tree through the position of the particles. Once the 

tree structure is constructed, it can efficiently search for the nearest neighbors. Therefore, 

the tree search method is particularly suitable for solving problems with a variable 

smooth length and a large number of particles. The degree of complexity of the tree 

search method is ( lg )O N N . 

4.4 Shifting algorithm 

To counter the anisotropic particle spacing, proposed a particle shifting algorithm 

to prevent the instabilities. The algorithm was first created for incompressible SPH, but 

can be extended to the weakly compressible SPH model used in this simulation. 

An improvement on the initial shifting algorithm was proposed by who used 

Fick’s first law of diffusion to control the shifting magnitude and direction. Fick’s first 

law connects the diffusion flux to the concentration gradient:  

 - FJ D C   Eq. 4-9 

Where J is the flux, C the particle concentration, and DF the Fickian diffusion 

coefficient [68]. Assuming that the flux, i.e. the number of particles passing through a 

unit surface in unit time, is proportional to the velocity of the particles, a particle shifting 
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velocity and subsequently a particle shifting distance can be found. Using the particle 

concentration, the particle shifting distance δrs is given by: 

 =-s ir D C   Eq. 4-10 

Where D is a new diffusion coefficient that controls the shifting magnitude and 

absorbs the constants of proportionality. The gradient of the particle concentration can be 

found through an SPH gradient operator: 
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Eq. 4-11 

The proportionality coefficient D is computed through a form proposed by. It is 

set to be large enough to provide effective particle shifting, while not introducing 

significant errors or instabilities. This is achieved by performing a Von Neumann 

stability analysis of the advection-diffusion equation: 
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Eq. 4-12 

Where Δtmax is the maximum local time step that is permitted by the CFL 

condition for a given local velocity and particle spacing. The CFL condition states that: 
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Eq. 4-13 

From equation above we can derive an equation to find the shifting coefficient D: 

 
i

D Ah u dt  Eq. 4-14 

Where A is a dimensionless constant that is independent of the problem setup and 

discretization and dt is the current time step. Values in the range from 1 to 6 are proposed 

with 2 used as default. 
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To counter this effect, proposed a free-surface correction that limits diffusion to 

the surface normal but allow shifting on the tangent to the free surface. Therefore, this 

correction is only used near the free surface, identified by the value of the particle 

divergence, which is computed through the following equation, first proposed by: 
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Eq. 4-15 

 

This idea is applied to the code by multiplying the shifting distance of Eq. 2-78 

with a free-surface correction coefficient AFSC: 
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Eq. 4-16 

where AFST is the free-surface threshold and AFSM is the maximum value of the 

particle divergence. The latter depends on the domain dimensions: 
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Eq. 4-17 

4.5 Boundary condition 

In the SPH method, an algorithm has a defect when the particles are close to the 

boundary. So the SPH method may not be suitable for all computational domains. This 

will affect the stability of the numerical simulation results and the accuracy of the 

calculation, so the boundary conditions need to be adjusted [44]. For the solid boundary 

condition, there is no universally accepted method. The existing methods generally lack 

strict precision analysis. It is difficult to balance the accuracy of calculations, the 

complexity of the computational area during the calculation. 
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4.5.1 The repulsive boundary conditions 

The repulsive boundary condition is the distribution of fixed virtual particles in 

the boundary area. When the fluid particles close to the boundary, the virtual particles 

exert a repulsive force in the opposite direction on the fluid particles in order to prevent 

non-physical penetration of fluid particles to the boundary. The repulsive force between 

two particles i and j can be expressed as: 
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Eq. 4-18 

 

D is a parameter that depends on the specific problem. Its dimension is roughly 

equivalent to the square of the speed. This method is simple and easy. The disadvantage 

is that the value of each parameter in the function Eq. 4-18 is not easy to determine and 

cannot accurately simulate the movement of particles near the boundary. If the parameter 

is not selected properly, the repulsion force will be too large or too small. 

Another type of repulsive force is proposed by Monaghan: 

 ( , ) ( ) ( )B x y y x   Eq. 4-19 

The expression of Γ(y) and χ(x) are: 
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Eq. 4-20 
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Eq. 4-21 

 

The function χ(x) is to ensure that the particles receive a constant force from the 

boundary when they move parallel to the boundary. Gomez-Gesteira et al. proposed to 

use boundary particles to balance the internal pressure and prevent the particles from 

crossing the boundary. The external layers of virtual particles have the same initial 

density as the particle in the calculation domain, and its speed is zero. The innermost 

virtual particles represent the solid boundary. In the initial state, they have the same 

density as the internal particles. Virtual particles on boundary layer calculate with 

internal particles together. The density of boundary particles is changing, but their speed 

is zero, which ensures that the boundary particles do not move. The advantage of this 

method is that the pressure on the boundary can be directly obtained by the simulation, 

and the precision is good. The disadvantage is that the velocity of particles which is close 

to the solid boundary is greatly affected by the boundary. The virtual particles are fixed 

and will produce larger numerical dissipation [51]. 
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Figure 4-2: the repulsive boundary condition [27]. 

4.5.2 Dynamic Boundary Condition 

This method sees boundary particles that satisfy the same equations as fluid 

particles. However, they do not move according to the forces exerted on them. Instead, 

they remain either fixed in position or move according to an imposed motion function. 

When a fluid particle approaches a boundary and the distance between its 

particles and the fluid particle becomes smaller than twice the smoothing length (h), the 

density of the affected boundary particles increases, resulting in a pressure increase. In 

turn, this results in a repulsive force being exerted on the fluid particle due to the pressure 

term in the momentum equation. Stability of this method relies on the length of time step 

taken being suitably short in order to handle the highest present velocity of any fluid 

Virtual particles 

Boundary particles 

Fluid particles 
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particles currently interacting with boundary particles and is therefore an important point 

when considering how the variable time step is calculated. 

4.5.3 Periodic boundary 

The main idea of periodic boundary conditions is that the number of particles is 

constant in the entire numerical simulation process. If there are particles moving out of 

the interface, the same particles must be returned to the model from the opposite 

interface. If the particles move outside of the boundary, the corresponding particles enter 

the boundary from the other side, thus ensuring that the number of particles in the system 

is constant. 

 

Figure 4-3: the periodic boundary condition [27]. 

 

Periodic boundary 
Missing part of support domain 

Generate missing part of support 

from the other side of the interface Periodic boundary 
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4.6 Result and discussion 

4.6.1 Parameters and details about simulation 

In this section, the 3-D thrombus simulation is established. There are three 

components in this model: erythrocyte as floating objects, blood flow as fluid particles, 

and vessel model as the boundary. The total number of particles in thrombus simulation 

is about 1 million. The erythrocyte is a round cake shaped object with a bulging edge. In 

thrombus simulation, the shape of erythrocyte model is the same as in reality. One 

erythrocyte consists of 1382 particles. The diameter and thickness are 8 μm and 2.5 μm.   

 

Figure 4-4: the vertical perspective of erythrocyte. 

 



77 

 

 

 

Figure 4-5: The horizontal perspective of erythrocyte. 

The length and diameter of the vessel model are 2 mm and 0.04 mm. In order to 

achieve satisfied results, a control group was added. There are two models, one is 25% 

stenosis of a cross-section blood vessel model and the other is 75% stenosis of a cross-

section blood vessel model.  

   

Figure 4-6: initial condition of the 25% cross-section stenosis blood vessel model. 
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Figure 4-7: initial condition of the 75% cross-section stenosis blood vessel model. 

The narrow part of the blood vessel represents the presence of a thrombus. 

Comparing the results of the two simulation models illustrate the impact of thrombosis on 

the blood flow. 

4.6.2 Velocity of blood flow in two models 

  Abstract floating objects from simulation, erythrocytes have obvious congestion 

before entering the stenotic channel of blood vessels in a 75% cross-section stenosis 

blood vessel model, as shown in Figure 4-8. However, the distribution of red blood cells 

is relatively uniform in 25% cross-section stenosis blood vessel model in Figure 4-9. 

This indicates that the thrombus has hindered the passage of the blood flow. There are 

simulation results that can also indicate the velocity of the blood flow in the 25% cross-

section stenosis blood vessel model is faster than the other. Slower blood flow is more 

conducive to the formation and growth of blood clots. Erythrocytes are the most abundant 

type of blood cells in the blood.  
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Figure 4-8: erythrocytes in 25% cross-section stenosis blood vessel model. 

They are also the most important mediators of oxygen transport in vertebrates, and 

they also have immune functions. When it is hard for erythrocytes to enter the tissue 

through the capillaries, it will cause local hypoxia. 

 

Figure 4-9: erythrocytes in 75% cross-section stenosis blood vessel model. 
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4.6.3 Compare results with other simulation and experimental data 

The presence of a thrombus results in a narrow cross-section of the blood vessel , 

and after the blood has flowed through the blocked part, a blood jet is formed and will 

create a small vortex near the wall of the blood vessel. The Oxford University’s 

researchers got similar result by DNS, as shown in Figure 4-11.  

 

Figure 4-10: cross-section of 75% stenosis blood vessel model. 

Actually, the starting vortex formed during early acceleration, at the jet front as 

the fluid accelerated through the stenosis, started to break up into elongated stream wise 

structures, though the flow remained laminar at this point. This phenomenon will only 

happen when high viscosity fluid passes a narrow channel. 
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Figure 4-11: pulsatile flow through the 75 % axisymmetric stenosis [88]. 

 

 

Figure 4-12: human normal blood pressure range [89]. 

The range of blood pressure in arterial blood from 20 mmHg to 60 mmHg from 

medical reference Figure 4-12. Convert the unit to Pascal, and the blood pressure is 

about 5333 Pa to 2666 Pa. This is the average value for the pressure of the arterial. 
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Figure 4-13: pressure of 75% cross-section stenosis blood vessel model. 

In my simulation, this means that the peak blood pressure for capillaries is about 

5666 Pa. In the 75% cross-section stenosis blood vessel model, the peak blood pressure 

of boundary stenosis part is around 9000~10000 Pa. Due to the presence of thrombus, the 

pressure at the thrombus site is much higher than the normal value. The simulation results 

match the experimental measurement. 
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Figure 4-14: peak pressure of the 75% cross-section stenosis blood vessel model. 

In the above figure, the plot indicates the peak pressure of blood vessel wall 

during the entire simulation process. At the beginning, the blood flow is motionless, so 

the pressure equal to 0, then a force is added on the inlet’s surface. After several secs, the 

system becomes more stable. The peak pressure of the 75% cross-section stenosis blood 

vessel is around 10000 Pa. The peak pressure of the 25% cross-section stenosis blood 

vessel is only around 5500 Pa. 

4.7 Conclusion 

It could be illustrated from the thrombus simulation results that with the blocked 

area increasing, the velocity of the blood flow slows down significantly before passing 

through the thrombus. Erythrocytes will be more easily deposited at the site of the 

thrombus, and further increasing the size of the thrombus. With age increasing, the 

elasticity of the blood vessel wall gradually weakens. On the one hand, the presence of 

thrombus will greatly hinder red blood cells from delivering oxygen causing hypoxia, and 
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on the other hand, with the increasing of thrombosis, it is very easy to cause the rupture 

of blood vessels.  

Due to the presence of thrombus, the pressure and shear force on the boundary 

near the thrombus will rise, which will promote the formation of new thrombus and 

promote its growth. This simulation study has analyzed the velocity of the blood flow and 

vascular wall pressure with the different size of the thrombus. The simulation results are 

compared with the experimental data and simulation data, confirming the correctness of 

the simulation results. Because the model is closer to the real situation of the human body 

than the previous blood vessel simulation model, the result of this simulation is more 

persuasive. The simulation provided the basis for further understanding and prevention of 

thrombosis formation conditions, formation site, and thrombosis. 
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CHAPTER 5 

 

CONCLUSIONS 

5.1 Summary 

In this dissertation, I use the SPH method to solve flows with different boundary 

conditions and scales in medical and biological engineering. In Chapter 2, literature 

reviews for the basic theory includes kernel function approximation and particle 

approximation. This chapter also introduces advanced techniques of the SPH method, 

such as viscosity term selection, boundary condition selection, and time steps selection. 

In Chapter 3, two-dimensional and three-dimensional simulations of the microneedle 

diffusion are presented. SPH result indicates the average concentration in deeper layer is 

about 0.0054 mol/m3, and SEM shows the minimum contraction at interface layer is 

about 5.296×10-3mol/m3. These results demonstrate that the dosage in the deeper layers in 

SEM and SPH models are beyond 0.004267 mol/m3, the minimum concentration. Results 

from the mesh-based SEM and the mesh-free SPH simulations revealed details about the 

processes of delivery of medicine particles through microneedles and diffusion in the skin 

tissue, and the medicine concentration change with space and time. The overall effect of 

medicine delivery under initial concentration and conditions were simulated and the 

effect of drug delivery were assessed.  

Chapter 4 is the modeling of blood vessel simulation with thrombus. By 

comparing the results of two simulations with 25% and 75% stenosis conditions in blood 
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vessel illustrate the impact of thrombosis on blood flow and blood vessel wall. Because 

the model close to the real situation of the human body than the previous blood vessel 

simulation model, the result of this simulation is more persuasive. The pressure of blood 

flow in 0.04 mm diameter blood vessel is around 5000 Pa, which matches the medical 

reference. The increase of blood pressure in blood vessel with 75% stenosis could be 

measured in this simulation. The peak pressure of blood in blood vessel with 75% 

stenosis is around 10000 Pa. The internal environment of a human is hard to observe and 

measure. Blood pressure is a very essential factor to cause cardiovascular and 

cerebrovascular diseases. This simulation provides an important reference for research of 

arterioles thrombus and the impact of arterioles thrombus on blood flow and pressure 

increasing.    

5.2 Future work 

Due to its Lagrangian character, the local resolution of SPH follows the particles 

flow, and it is convenient in representing the large density changes problems often 

encountered in fluid problems, engineering problems and some biological problems. 

Based on these characteristics [91], I will develop the microneedle and arterioles 

thrombus models, and try to use more particles to operate simulation. If using several 

million particles, it will bring some new challenges. First, the code needs to convert to the 

operating platforms from Windows to Linux. Most of the HPC centers use Linux as their 

operating system. The second, more GPUs should be added as calculation units. Mpi and 

openmp will also be included in these projects for accelerate the calculation [92]. Another 

development direction is that based on existing arterioles thrombus model, part of vessel 

stenosis could use viscous particles to replace stenosis pattern. In this way, this 
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simulation could also study the processing of thrombus formation and thrombus 

deformation.  
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