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ABSTRACT

A graph is outer-planar (OP) if it has a plane embedding in which all of the

vertices lie on the boundary of the outer face. A graph is near outer-planar (NOP)

if it is edgeless or has an edge whose deletion results in an outer-planar graph. An

edge of a non outer-planar graph whose removal results in an outer-planar graph is

a vulnerable edge. This dissertation focuses on near outer-planar (NOP) graphs. We

describe the class of all such graphs in terms of a finite list of excluded graphs, in a

manner similar to the well-known Kuratowski Theorem for planar graphs. The class

of NOP graphs is not closed by the minor relation, and the list of minimal excluded

NOP graphs is not finite by the topological minor relation. Instead, we use the

domination relation to define minimal excluded near outer-planar graphs, or XNOP

graphs. To complete the list of 58 XNOP graphs, we give a description of those

members of this list that dominate W3 or W4, wheels with three and four spokes,

respectively.

To do this, we introduce the concepts of skeletons, joints and limbs. We find

an infinite list of possible skeletons of XNOP graphs, as well as a finite list of possible

limbs. With the list of skeletons, we permute the edges of a skeleton with the finite

list of limbs to find the complete list of XNOP graphs. In this process, we also develop

algorithms in SageMath to prove the list of full-K4 XNOP graphs and prove that the

list of skeletons of XNOP graphs is finite.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In this dissertation, the graphs are undirected and finite. In a series of over

twenty papers, spanning over twenty years, Robertson and Seymour developed the

Graph Minor Theorem, a major result in the field of graph theory. Within this body

of work, they proved the following theorem, known as Wagner’s Conjecture.

Theorem 1.1. ([12]) Every infinite set of finite graphs contains two graphs, such that

one is a minor of the other.

This theorem tells us that if a class of graphs is closed under the minor relation,

then we can characterize the class by a finite number of excluded minor minimal

graphs. We call this finite set of graphs an excluded minor list.

In this dissertation, our goal is to find such a characterization of near outer-

planar (NOP) graphs, or graphs that contain an edge whose deletion results in an

outer-planar graph. We want to characterize the class of NOP graphs by finding

an excluded list of graphs that are not NOP. The following theorem and corollary

motivate our quest.

Theorem 1.2. ([9], [13]) A graph is planar if and only if it does not contain K5 or

K3,3 as a topological minor.

1
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The following corollary can be easily derived from this theorem.

Corollary 1.3. ([4]) A graph is outer-planar if and only if it does not contain K4 or

K2,3 as a topological minor.

This theorem and corollary are not just cornerstones in most graph theory

texts, but the main examples given in most discussions of the Graph Minor Theorem.

It is amazing that an entire class of graphs (planar or outer-planar) can be described

by excluding exactly two graphs. This has inspired us to find a similar class of graphs

in a minimal way. We use a modification of Theorem 1.2 and Corollary 1.3 to find

a finite list of minimal excluded near outer-planar graphs. Our main theorem is the

following:

Theorem 1.4. A graph is near outer-planar if and only if it does not dominate one

of the following 58 graphs: K3,3, D1, D2, D3, CV1, CV2, CV3, CV4, CV5, CV6, K2,4,

S1, S2, S3, S4, S5, S6, DE1, KF1A, KF1B, KF2A, KF2B, KF3A, KF3B, KF3C ,

KF3D, KF3E, KF3F , KF3G, KF3H , KF4A, KF4B, KF4C , KF4D, KF4E, KF4F ,

KF5A, KF5B, KF5C , KF5D, KF5E, KF6A, KF6B, KF6C , DE2, WF1, WF2, WF3,

TP1, TP2, TP3, TP4, TP5, TP6, CUBE, DH1, K5\e, CUBE/e.

1.2 Definitions

We base our terminology on [14]. A graph G is a triple (V,E, I) where V is a

set whose elements are called vertices ; E is a set disjoint from V whose elements are

called edges ; and I, called the incidence relation, is a subset of V ×E in which each

edge is in relation with exactly two distinct vertices, u and v, called its endpoints .

Thus, we exclude loops in this dissertation. The edge e with endpoints u and v is
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sometimes written uv. If vertex u is an endpoint of edge e, then u and e are incident .

Two vertices that are connected by an edge are adjacent . Likewise, two edges that

are connected by a vertex are adjacent . The degree of a vertex is the number of edges

incident to the vertex. The number of vertices of a graph G is the order of G and

is indicated by |V (G)| or |G|. If two edges are incident to the same pair of vertices,

then we call them parallel edges . A graph without parallel edges is called a simple

graph. The simplification of a graph G is the graph that results in deleting the least

number of edges from G such that the resulting graph has no loops or parallel edges.

A graph H is a subgraph of G if V (H) ⊆ V (G), E(H) ⊆ E(G), and I(H) ⊆ I(G). A

graph H is a proper subgraph of G if H ⊂ G and H 6= G. If H is a proper subgraph

of G, then G is a supergraph of H . If H ⊆ G and H contains all the edges of G

whose endpoints belong to V (H), then H is an induced subgraph of G. A subgraph

of given graph G is maximal for a particular property if it has that property but no

other supergraph of it that is also a subgraph of G also has the same property.

A trail is a sequence v0, e0, v1, e1, . . . , en, vn where each edge, ei, is incident

with vertices, vi and vi+1, and no edge is repeated. A path is a trail with no repeated

vertices. The length of a path is the number of edges it contains. The first and the

last vertices of a path are its endpoints . All other vertices of a path are its internal

vertices . Two paths are independent if no vertex of one is an internal vertex of the

other. An isomorphism between two graphs G and H is a pair of bijections, ϕ and

ψ, such that ϕ : V (G) → V (H) and ψ : E(G) → E(H), where (u, e) ∈ I(G) if and

only if (ϕ(u), ψ(e)) ∈ I(H).
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We call a graph connected if every pair of its vertices is connected by a path,

and disconnected , otherwise. The maximal connected subgraphs of a graph are its

components . A cut vertex in a graph is a vertex whose removal results in an increase

in the number of components. The connectivity of a graph G is (1) zero if a graph is

disconnected; (2) |G| − 1 if G is connected, but has no pair of distinct non-adjacent

vertices; or (3) the size of the smallest set of vertices that disconnects G if G is

connected, and has a pair of non-adjacent vertices. See Figure 1.1 for examples.

disconnected cut vertex

3-connected
no distinct

non-adjacent vertices

3-connected
distinct non-adjacent

vertices

Figure 1.1: Examples of connectivity.

There are several classes of graphs that we will use in this dissertation. The

examples of graphs listed in Figure 1.2 will play important roles in this paper. A

complete graph is a simple graph in which every pair of vertices is connected by an

edge. We denote complete graphs by Kn, where n is the number of vertices. A

bipartite graph is composed of two disjoint sets of vertices such that each edge is

incident to one vertex in each set. A complete bipartite graph is a simple bipartite
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graph in which each vertex is adjacent to every vertex in the other set. We denote a

complete bipartite graph by Kr,s where r and s denote the number of vertices in the

disjoint sets. A cycle on n vertices, denoted Cn, is a trail of n vertices in which no

vertices are repeated except the first equals the last.

Definition 1.5. A wheel, Wn, is obtained from a cycle, Cn, by adding a new vertex,

called the hub and joining every vertex of Cn to the new vertex. The cycle, Cn, viewed

as a subgraph of Wn is called the rim. The edges of the rim are the rim edges. The

edges that connect the hub to the rim vertices are called spokes.

The wheel, W3 is also known as K4.

Definition 1.6. The n-prism is a polyhedral graph that is the Cartesian product

Cn ×K2. In other words, it is obtained from two cycles of Cn, say C
1
n and C2

n, with

vertices v1i and v2i , respectively, for 1 ≤ i ≤ n, by adding an edge from v1i of C1
n to v2i

of C2
n for 1 ≤ i ≤ n. The edges of the cycles are called cycle edges. Each connecting

edge is called a spur. See Figure 1.2 for an illustration of a 3-prism.The 3-prism and

4-prism are also known as the triangular prism and the cube, respectively.

K4 K2,3 W4 3-prism

Figure 1.2: Examples of a complete graph (K4), complete bipartite graph (K2,3),
wheel (W4), and n-prism (3-prism).
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A planar embedding of a graph G is a drawing of G in the plane where the

vertices are represented by points, the edges by simple curves joining the endpoints,

and the edges intersect only at their endpoints. A graph is planar if it has a planar

embedding. In other words, a graph is planar if it can be drawn on the plane so that

its edges only intersect at common vertices. A graph is nonplanar if it is not planar.

The embedding a planar graph in the plane divides the plane into regions called faces .

One face is unbounded; we call this the outer face. A graph is called outer-planar

(OP) if it has a plane embedding in which all of the vertices lie on the boundary of

the outer face. The focus of this dissertation is to describe graphs that are one edge

away from being outer-planar in a finite manner.

To do this, we need the following relations on graphs. Edge contraction is an

operation where an edge e, and all edges parallel to it, are removed from a graph and

the two endpoints are identified to form a new vertex v. Any edges not parallel to e,

but adjacent to e before the contraction, are incident to v after the contraction. We

denote an edge contraction of G by G/e. Edge deletion is an operation in which an

edge is removed from a graph and vertex deletion is an operation in which a vertex

and its incident edges are removed, denoted by G\e and G− v, respectively. A graph

H is a minor of G if a graph isomorphic to H can be obtained from G by a sequence

of operations (possibly null), each of which is one of the following three operations:

contracting an edge, deleting an edge, or deleting a vertex. We denote that a graph

H is a minor of G by G >m H or H 6m G. Similarly, a topological minor is obtained

by a sequence of operations (possibly null), each of which is one of the following:

contracting an edge incident to a vertex of degree two, deleting an edge, or deleting
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a vertex. An edge, uv, is subdivided if it is replaced with a path, uwv of length two

through a new vertex, w. A graph G is a subdivision of another graph H , if a graph

isomorphic to G can be obtained by a sequence of subdivisions (possibly zero) of edges

of H . An alternate way to say that G contains a subdivision of H as a subgraph is to

describe H as a topological minor of G. A co-simplification of a graph G is the graph

G′ that results in a simplification of G, along with the contraction of the minimal

number of edges incident to a vertex of degree two such that no vertex of G′ has

degree two.

One of the main ideas of this dissertation is the following definition.

Definition 1.7. A graph is near outer-planar, or NOP, if it is edgeless or has an

edge whose deletion results in an outer-planar (OP) graph. A graph that is OP is

also NOP.

The graph G, shown in Figure 1.3, is NOP, but G\e is OP. Theorem 1.2 and

Corollary 1.3 motivate our quest for a finite list of NOP graphs. At the forefront of

this are the two graphs that make up the excluded outer-planar graphs - K2,3 and

K4.

G

e

G\e

Figure 1.3: A graph G is NOP.



8

Throughout this dissertation, we will look at subdivisions of K2,3 and K
4. The

following definition will be useful in our proofs.

Definition 1.8. Let K be a graph with a subdivision of K2,3 or K4. Observe that

K2,3 and K4 both have vertices of degree three. Also observe that by subdividing a

K2,3 or a K4, the vertices of degree three do not change degree. We refer to these

vertices in K2,3 and K4 and the corresponding vertices in K as branch vertices. In

K2,3, the branch vertices are the endpoints of three distinct paths, which we call the

legs of K2,3 or of K. A vertex on a leg of K that is not a branch vertex is called an

internal vertex.

The following lemma is easy to verify.

Lemma 1.9. A subdivision of K2,3 or K4 has three pairwise independent paths

between two branch vertices.

1.3 Finite Excluded List

In [10], we found that the class of NOP graphs is not closed under the taking

of minors. Otherwise, we could use Theorem 1.1.

The‘list of minimal graphs that are not NOP under topological minors is not

finite as shown in [10] due to the existence of Robertson chains, which we now define.

Definition 1.10. A Robertson chain of length k can be obtained from doubling the

edges of a path of length k, such that the ends of the Robertson chain are the ends

of the path.
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Definition 1.11. A quasi-ordering is a binary relation that is reflexive and transitive.

A quasi-order is well-quasi-ordered by ≤ if given a countable sequence, xk of X , there

are two elements xi and xj with i < j and xi ≤ xj .

Another important theorem that affirms the results of this dissertation is the

following.

Theorem 1.12. ([11]) For every positive integer k, the topological minor relation

well-quasi-orders the graphs that do not contain a topological minor isomorphic to the

Robertson chain of length k.

To describe the class of NOP graphs by a finite list of minimal non-NOP

graphs, we use the following operation and relation.

Definition 1.13. Suppose v is a vertex of G with exactly two distinct neighbors u

and w, which may or may not be adjacent to each other. Let n denote the minimum

of the number of uv edges and the number of vw edges in G. Suppressing the vertex

v in G is the operation of replacing v and all its incident edges with n new uw edges.

An example is given in Figure 1.4.
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b b b
u

e

v

f

w

(a) single edges suppress to a single edge

b b
u

e′
w

u

e

v

f

w

(b) same number of parallel edges

u

e′

w

u

e

v

f

w

(c) different number of parallel edges

u

e′

w

Figure 1.4: Suppression of v.

Definition 1.14. A graph H dominates a graph G, written G � H , if G can be

obtained from H by a sequence of operations each of which is one of the following:

• deleting an edge,

• deleting a vertex and all its incident edges, and

• suppressing a vertex with exactly two neighbors.

If H dominates G and is not isomorphic to G, then we say that it properly dominates

G and write G ≺ H . Note that if G is a topological minor of H , then G � H .

In [10], we proved the following proposition and used the subsequent definition.

Proposition 1.15. The class of NOP graphs is closed under domination.

Definition 1.16. A graph G is excluded near outer-planar abbreviated XNOP if it

is not NOP, but every graph properly dominated by G is NOP.
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1.4 Strategy to Complete the XNOP list

In [10], we proved that the following sets are finite and provided a complete list

of their members: nonplanar; disconnected; graphs with a cut vertex; and 2-connected

graphs that do not dominate W3. Our goal in this dissertation is to complete the list.

To do this, we shall look at 2-connected graphs that dominateW3 orW4. The following

concepts are key to our new findings and will be used frequently in the subsequent

chapters.

Definition 1.17. Let G be a 2-connected graph. A frame F of G is a simple subgraph

of G that is a subdivision of a 3-connected graph. The graph S is called the skeleton

of G if S is a maximal co-simplification of F . A graph that has a skeleton S is a

full-S. The vertices of G corresponding to the vertices of S are called the joints of G.

Any vertex of G that is not a joint is an internal vertex.

For example, G in Figure 1.5 is a full-K4.

b

b

b

G

Figure 1.5: A full-K4.

Definition 1.18. Let G be a 2-connected graph with a skeleton S, and let u and v

be two adjacent joints of G. The graph G′ = G−{u, v} may have a single component

or may have many components (see Figure 1.6 for an example). Let B′

0, B
′

1, ..., B
′

n
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be the components of G′, labeled such that the component of G′ that contains the

vertices of S is B′

0. Let J = G[V (B′

0)∪{u, v}]. A limb L of G is the induced subgraph

G[V (G)−V (B′

0)]. The bridges of J are the induced subgraphs Bi = G[V (B′

i)∪{u, v}]

for i ≥ 1. Note that: ∪Bi = L and ∩Bi = {u, v}, as shown in Figure 1.6.

b

b

b

u

v
G S = K4

b

b

G− {u, v} B′

0

b

u

v
L

b

u

v
B1 B2

u

v

Figure 1.6: L = G[V (B′

i) ∪ {u, v}] for i ≥ 1.

With this definition, we can deduce the following.

Remark 1.19. A graph with a skeleton dominates W3.

In Chapter 2, we will list all of the different types of limbs and prove that the

limb list is finite for XNOP graphs that dominate W3.

Since the skeletons we seek are 3-connected, we must understand how to

construct them from K4. The following operations and theorem are necessary.

Definition 1.20. The following operations are Barnette-Grünbaum Operations (BG-

operations):
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1. adding an edge uv, possibly a parallel edge, for u 6= v for u, v ∈ V (G),

2. subdividing an edge uv, by adding a vertex w, and adding an edge wx for u, v,

w, x ∈ V (G) and uv ∈ E(G),

3. subdividing two distinct, non-parallel (possibly adjacent) edges uv and wx by

adding vertices y and z, respectively, and adding the edge yz.

We say that a BG-operation is basic if its application creates neither a loop nor

a parallel edge. The following theorem and corollary are useful in our understanding

of skeletons.

Theorem 1.21. ([2]) A simple graph G is 3-connected if and only if G can be

constructed from K4 using basic BG-operations.

Corollary 1.22. Every skeleton has K4 as a topological minor.

A skeleton S of an XNOP graph G is a simple, 3-connected graph, as defined

in Definition 1.17. By Theorem 1.21, they can be constructed from K4 by basic

BG-operations. We need not look at nonplanar graphs or graphs that dominate W5

since in [10], we found all nonplanar XNOP graphs and proved that no XNOP graph

dominates W5. Hence, the skeleton of an XNOP graph that we seek is planar and

does not dominate W5.

Not every graph constructed from K4 by BG-operations will help us to com-

plete the list of XNOP graphs. The following lemma details which skeletons are

necessary and which are not. This lemma will be used in subsequent chapters on

skeletons.
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Lemma 1.23. A skeleton of an XNOP graph is NOP or XNOP, but it is not OP or

does not properly dominate an XNOP graph.

Proof. Since S is constructed from K4, then S has K4 as a minor and cannot be OP.

Also, if a skeleton S properly dominates an XNOP graph, then a nontrivial, full-S

also properly dominates an XNOP graph. So, S is NOP or XNOP, but not OP or

does not properly dominate an XNOP graph.

The graphs listed in Figure 1.7 are graphs that will be used in the proofs

in this dissertation. The graphs are listed in the order that they will be used and

separated by row to indicate the sections to which they belong. Since all possible

skeletons are constructed from K4, it is in the top row. The second row contains all

possible skeletons that are obtained from one BG-operation on K4. The details are

in Section 3.1. The third row contains all possible skeletons that are obtained from

one BG-operation on W4. The details are in Section 4.1. The fourth row contains

all possible skeletons that are obtained from one BG-operation on 3-prism and that

are not already listed in the third row. The details are in Section 4.2. The last row

contains all possible skeletons that are obtained from one BG-operation on the double

hub. The details are in Section 5.1.
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K4

W4 3-prism K∗

3,3

K5\e∗ W ∗∗

5 double-hub CUBE/e∗ 1-eared W ∗∗

4

1-eared 3-prism∗∗

CUBE∗

heptahedral∗∗ octahedral∗∗

Figure 1.7: Skeletons of XNOP graphs and other relevant 3-connected graphs.

From the possible skeletons listed in Figure 1.7, we examined the list to identify

which graphs can be skeletons of full-S XNOP graphs, which graphs are XNOP

(designated as ∗), and which graphs cannot be skeletons of XNOP graphs (designated

as ∗∗).
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In Appendix A, we list the 58 graphs that constitute the XNOP graphs.

Verifying that each of these is XNOP is tedious, so for the sake of brevity, we refer

the reader to Appendix B of [10]. We have verified the other 57 graphs, but do not

present the details here.

The set of all XNOP graphs, listed in Appendix A, may be divided into these

sets (with the known graphs listed in parentheses):

I. Nonplanar graphs (K3,3)

II. Disconnected graphs (D1, D2, D3)

III. Graphs with a cut vertex (CV1, CV2, CV3, CV4, CV5, CV6)

IV. 2-connected graphs that do not dominate W3 (DE1, K2,4, S1, S2, S3, S4, S5, S6)

V. 2-connected graphs that dominate W3, but not W4

(a) and have K4 as a skeleton (KF1A, KF1B, KF2A, KF2B , KF3A, KF3B,

KF3C , KF3D, KF3E , KF3F , KF3G, KF3H , KF4A, KF4B, KF4C , KF4D,

KF4E , KF4F , KF5A, KF5B, KF5C , KF5D, KF5E , KF6A, KF6B, KF6C ,

DE2)

(b) and have 3-prism as a skeleton (TP1, TP2, TP3, TP4, TP5, TP6)

(c) and have cube as a skeleton (CUBE)

VI. 2-connected graphs that dominate W4.

(a) and have W4 as a skeleton (WF1, WF2, WF3)

(b) and have double− hub as a skeleton (DH1)

(c) and have K5\e as a skeleton (K5\e)

(d) and have CUBE/e as a skeleton (CUBE/e)

VII. 2-connected graphs that dominate W5 (none)



17

In [10], we devoted a chapter to each of I–IV to show that each set is finite

and to present the complete list of its elements. In this dissertation, we prove that

the sets V and VI are finite.

We begin our proof of V and VI by looking at the smallest skeleton, K4, and

its possible limbs. We then look at the skeletons obtained by adding edges to K4

using one BG-operation, then two BG-operations, and so forth.



CHAPTER 2

FULL-K4 XNOP GRAPHS

This chapter is divided into three sections. In the first two sections, we look at

what types of limbs are possible or impossible for an XNOP graph that is a full-K4.

In the last section, we share the algorithm and results. We use symmetry to specify

which edges of K4 will be permuted with the types of limbs found in Section 2.1 to

reduce the programming load.

We will use the following illustration and definitions to prove the results about

XNOP graphs that have K4 as a skeleton.

Let G be an XNOP graph that is a full-K4 (See Definition 1.17). Throughout

this chapter, we will examine a particular limb L. Sometimes we will also focus on

the limbs that are adjacent to L. Other times, we will focus on the singular limb M ,

that is non-adjacent to L, as shown in Figure 2.1.

18



19

b

b

b bL
M

Figure 2.1: A representation of a full-K4, with a limb L, and its non-adjacent limb
M .

The following definition and remarks form the basis for many of the proofs

that follow.

Definition 2.1. Let u and v be the joints of the limb L of an XNOP graph G. We

say that L is 1-edge-separable from its joint u, or edge-separable, if there exists an

edge e ∈ E(L) such that L\e has no path from u to v in L\e. The edge e is called

a separating edge . We say that G\e edge-separates or separates a limb L from G if

L\e is edge-separable from its joint.

Remark 2.2. It is helpful to note the following points about an XNOP graph G that

is a full-K4:

• G\e is NOP for all e ∈ E(G) (see Definition 1.7)

• there exists f for f ∈ E(G\e) such that G\e\f is OP (see Definition 1.7)

• G\e\f does not dominate K2,3 or K4 (see Theorem 1.2)

• G\e or G\e\f separates at least one limb of G, otherwise G\e\f ≻ K4 (see

Theorem 1.2).
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Remark 2.3. A graph that properly dominates an XNOP graph by a single edge is

not XNOP.

2.1 Overview of All Possible Limbs of Full-K4 XNOP Graphs

To prove the main theorem in Section 2.3, we must first identify and prove

that the limbs in Figure 2.2 are the only possible limbs of a full-K4. Then, we will use

the algorithms in Section 2.3 to prove that the list of full-K4 graphs that are XNOP

is complete.

T

b

P2 DE

b

PE

b

PD

b

b b

KL

b b

KM

b

b b

LE

b b

ME

Figure 2.2: Limbs of a full-K4.

The proof of all possible limbs is long and in many cases, very similar. For

brevity, in this section, we outline the proof of all possible limbs with a listing of the

lemmas, corollaries, and proposition, with summary figures, but without proofs of the

lemmas, etc. We save the proofs of those lemmas, etc. for Section 2.2.

The first lemma gives us an upper bound on the structure of the limb. From

this lemma, we learn that, although a graph must dominate K4 or K2,3 to be XNOP,

a graph whose limb dominates K4 or K2,3 is not an XNOP graph, but properly

dominates one.
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Theorem 2.4. If a full-K4 graph G has a limb that dominates K2,3 or K4, then G

is non-planar or G properly dominates at least one of the following graphs: K2,4, S3,

S4, S5, S6, KF1A, KF1B, KF2A, KF2B.

The following definition and theorem are helpful in understanding the construc-

tion of a limb that does not dominate K4. Specifically, a limb of an XNOP graph

that dominates K4 must be series parallel and therefore constructed by subdividing

an edge or adding an edge in parallel to an existing edge.

Definition 2.5. ([7]) A graph is series parallel if it can be made from a loop, then

applying a sequence of one of the following operations:

• replace an edge by two edges in series or

• replace an edge by two edges in parallel.

Theorem 2.6. ([6], [7]) Excluding K4 yields a series parallel graph.

Now that we have the upper bound on limbs of a full-K4, we can look at

minimizing the types of bridges in a lemma and two corollaries. These can be proved

by observing that a contradiction to the lemma and corollaries results in a graph that

dominates K2,4. See Figures 2.3, 2.4, and 2.5, respectively.

Lemma 2.7. If a limb of a full-K4 graph G has two or more bridges with internal

vertices, then G dominates K2,4.
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bb

b

b

b b

not XNOP

bb

b

b

b b

not XNOP

Figure 2.3: Lemma 2.7 - a limb with two or more bridges with internal vertices
dominates K2,4.

The two following corollaries will be useful in later proofs and can be easily

derived.

Corollary 2.8. If a limb of a full-K4 graph G has more than one edge-disjoint x-y

path and an edge or path connects two x-y paths, then G ≻ K2,4.

bb

b

b

b b

not XNOP

Figure 2.4: Corollary 2.8 - no edge or path connects two edge-disjoint x-y paths.

Corollary 2.9. If a limb L of an XNOP graph G has a bridge with an internal vertex,

then if L has another bridge, it is a single edge.

b

b

b

b b b

b

b

b b b

b

b

b b

Figure 2.5: Corollary 2.9 - if G has a limb with a bridge with an internal vertex,
then all other bridges are edges.
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The following proposition is important in that it gives us an upper bound on

the number of bridges of a limb. The proof, along with the other proofs from this

section, is in Section 2.2 for brevity.

Proposition 2.10. A full-K4 graph that has a limb with more than two bridges is

not XNOP.

b

b

b b

not XNOP

b

b

b

b b

not XNOP

Figure 2.6: Proposition 2.10 - full-K4 with three bridges.

With the above general ideas on bridges, we can begin to investigate the bridges

in a more specific manner. Let G be a full-K4 graph with limb L. The limb L can be

edge-separable or not. First, we will explore when L is edge-separable. During this

discussion, we may discover some ideas about limbs that are not edge-separable, but

after Lemma 2.23, we will look seriously at limbs that are not edge-separable.

Suppose that G\e separates L from one of its joints as in Figure 2.7. Without

loss of generality, an edge-separation from a joint that results in a cut vertex at a joint

does not affect outer-planar properties and will not be depicted in further figures in

this dissertation. Since G\e is NOP, then it must dominate K2,3. By Lemma 2.4, we

assume that a single limb does not dominate K2,3. Then, a limb can dominate two

legs of K2,3, one leg of K2,3, or one edge of K2,3. We explore each of these scenarios,
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as well as whether each of these can be edge-separable or not, after this paragraph,

after Lemma 2.15, and after Lemma 2.21, respectively.

b

b

b b

Figure 2.7: An illustration of G\e that separates L from one or more of its joints.

Suppose that two of the legs, a K2,2, are in one limb. The pair of legs are in

a limb adjacent to L or they are not, as in Figure 2.8.

bb

b

b

b b b
b

b

b

b b

Figure 2.8: Illustrations of a pair of K2,2 legs in a limb of G\e.

The branch vertices (see Definition 1.8) of the subdivision of K2,2 are either

joints of their respective limbs or they are not. If both are joints, then G ≻ K2,4.

Hence, at least one branch vertex is not a joint. By Lemma 2.7 and Propo-

sition 2.10, if the limb has a bridge which dominates K2,2, then there are no other

bridges of the limb, or there is one other bridge, which consists of a single edge from

u to v. See Figure 2.9 for examples of limbs that are eliminated.
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b

b b

b b

b b

b b bb b

b b

b

b b

b b

Figure 2.9: Illustration of limbs that dominate K2,2 and are contradictions to
Lemma 2.7 and Proposition 2.10.

To recap, we have G\e which separates L from one of its joints; some limb

M , of G\e dominates K2,2; at least one branch vertex of the K2,2 is not a joint of

G; M has no more than two bridges; and if M does have two bridges, one is a single

edge. The next proposition and three lemmas eliminate some graphs with limbs that

dominate K2,2.

The following proposition is important to the remaining proofs and to reducing

the programming load. It can be proved by realizing that a graph that properly

dominates an XNOP graph is not XNOP. Note that KF1A and KF1B have exactly

one nontrivial limb (type LE or ME, respectively). If a limb of a full-K4 graph G

dominates a limb of type LE or ME, then G is not XNOP.

Proposition 2.11. If a full-K4 graph G has a limb which dominates a limb of type

LE or ME, then G dominates KF1A or KF1B.

The following lemma is easy to verify. See Figure 2.10.

Lemma 2.12. If a full-K4 graph G has two limbs each of which dominates a limb of

type KL or KM, then G properly dominates S4, S5 or S6.
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Figure 2.10: Lemma 2.12 - two limbs of KL or KM result in a graph that dominates
S4, S5, or S6.

The next two lemmas minimize a limb that dominates K2,2.

Lemma 2.13. If a full-K4 XNOP graph has a limb that dominates K2,2 but is not of

type LE or ME, then the limb must be edge-separable from a joint that is not a branch

vertex of the K2,2 subdivision.

b
b b

b

b

b b

b
b

b
b

b

b

b b

S1 S2

Figure 2.11: Lemma 2.13 - graphs with a limb that is not edge-separable, but
dominates K2,2 properly, dominate S1 or S2.

Lemma 2.14. If an XNOP graph has an edge-separable limb L, that dominates K2,2,

then L is either type KL or KM, and the non-adjacent limb to L must be type P2.
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Figure 2.12: Lemma 2.14 - graphs that properly dominate KF2A and KF2B.

With the above lemmas and the existence of graphs that dominate these types

of limbs in KF1A, KF1B, KF2A, and KF2B, we have proved that limbs of type KL,

KM, LE, or ME are possible and that an XNOP graph that has a limb that dominates

K2,2 must be type KL, KM, LE, or ME.

Now that we have all of the limbs that dominate K2,2, we can prove the

following lemma that will be useful in the remaining lemmas.

Lemma 2.15. If an XNOP graph has a limb L of type DE, then the non-adjacent

limb to L is also type DE.

b

b

b b

Figure 2.13: Lemma 2.15 - a limb of type DE has a non-adjacent limb of type DE.

We are still looking at an XNOP graph G such that G\e separates L from one

of its joints and G\e ≻ K2,3. By Lemma 2.4, we can assume that the three legs of

the K2,3 are not in one limb, and we have found all possible limbs that have two of

the legs of the K2,3 in one limb. Now, we will explore the possible limbs that have
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one leg of the K2,3. Since G\e ≻ K2,3, the limb M , that is non-adjacent to L, must

have an internal vertex as in Figure 2.14.

b

b

b bb

Figure 2.14: G\e ≻ K2,3 and the M has an internal vertex.

The limb M can be edge-separable or not. If it is edge-separable, then at least

one edge ofM is not part of a multiple edge. At a minimum, the limb could be a path

of length two, and at a maximum, the limb does not dominate K2,2. See Figure 2.15

for some potential limbs.

b

b

b

b

b

b

b

b

b

b

Figure 2.15: Potential limbs of M that have one leg of K2,3.

The following lemmas about limbs of type P2 are useful in improving the list

of possible limbs of a full-K4 XNOP graph.

Lemma 2.16. If a limb of an XNOP graph is edge-separable, has an internal vertex,

and does not dominate K2,2, then it is type P2.
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b b

b

b

b b bb

b

b

b b

b

b

b bb

G
b

b

b bb

G′

Figure 2.16: Lemma 2.16 - graphs with an edge-separable limb, which has internal
vertices and which does not dominate K2,2.

Lemma 2.17. If a limb of a full-K4 graph is type P2 and its non-adjacent limb is

type T, then G is not XNOP.

b

b

b bb

not XNOP

Figure 2.17: Lemma 2.17 - L is type T and M is type P2.

With the previous lemmas, we have proved (1) that limb-type P2 can be a

limb of a full-K4, (2) that other edge-separable limbs that do not dominate K2,2 and

that have internal vertices are not minimal, and (3) limbs of type T and type P2 are

not be in non-adjacent limbs of a full-K4 XNOP graph. There are no other possible

edge-separable limbs that can be a leg of K2,3.

Now we explore the limb M , that is not edge-separable and dominates one leg

of K2,3. We assume from Corollary 2.9 that M does not have more than two bridges.

We can also assume from Proposition 2.10, that if it has two bridges, then one is a

single edge. The nontrivial bridge can be edge-separable or not. We use the next
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three lemmas to establish some ideas about limbs that are not edge-separable. The

limbs in Figure 2.18 are a guide to the next lemmas.

b b b b b

Figure 2.18: Limbs that are not edge-separable and that dominate one leg of K2,3.

Lemma 2.18. If a limb of a full-K4 graph G consists of two bridges, one of which

has an internal vertex and is not edge-separable, then G is not XNOP.

b

b

b b
b

not XNOP

Figure 2.19: Lemma 2.18 - G has two bridges, one that is not edge-separable.

Hence, if a limb has two bridges, both must be edge-separable. We can also

prove the following about its non-adjacent limb in a similar proof to the previous

lemma.

Lemma 2.19. If a limb of an XNOP graph consists of two bridges, one of which has

an internal vertex, then the limb is type PE and the non-adjacent limb is trivial.
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b

b

b b
b

G
b

b

b b
b

G′

b

b

b b
b

XNOP

Figure 2.20: Lemma 2.19 - M has two bridges, one that is edge-separable and the
other trivial.

The following lemma is easy to verify by using the previous lemma and replac-

ing limb M with a limb of type PD, and the edge e with an edge of M .

Lemma 2.20. If a limb of an XNOP graph consists of a single, not edge-separable

bridge with an internal vertex, then the limb is type PD and the non-adjacent limb is

trivial.

b

b

b bb

G
b

b

b bb

G′

b

b

b bb

XNOP

Figure 2.21: Lemma 2.20 - M has one bridge that is not edge-separable.

With the proofs of the previous lemmas, we can prove another lemma about

a limb of type P2 that will be used later.

Lemma 2.21. A limb of a full-K4 XNOP graph G is type P2, if and only if its

non-adjacent limb is either type P2, KL, or KM.
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b

b

b bb b

XNOP
b

b

b bb b
b b

XNOP
b

b

b bb bb
b

b

XNOP

Figure 2.22: Lemma 2.16 - both L and M are type P2.

This corollary follows.

Corollary 2.22. If a limb of a full-K4 XNOP graph G is KL or KM, then G is KF2A

or KF2B.

With the conclusion of the previous lemma, we have found every possibility

of a limb that dominates one leg of K2,3. If a limb does not dominate a single leg

of K2,3, then the limb must dominate a single edge of the leg of K2,3. This can be

edge-separable or not. If it is not edge-separable, then it must be a limb of type DE,

which was addressed in Lemma 2.15. If it is edge-separable, then it must be type T.

The following lemma proves that a limb can be type T.

Lemma 2.23. If a limb of an XNOP graph is type T, then the non-adjacent limb has

an internal vertex and is not edge-separable.

b

b

b bb
b

(i)
b

b

b bb

(ii)

Figure 2.23: Lemma 2.23 - G for Figure 2.60.
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With the ideas from these theorems and lemmas, we can further investigate

the limbs of a full-K4. From Remark 2.2, we know that either G\e or G\e\f separates

a limb of G.

Suppose that G\e does not separate a limb, but G\e\f does. In this case, the

limb L must have at least two bridges or two paths. We have already investigated

limbs of this type with Lemma 2.15, Lemma 2.18, Lemma 2.19, and Lemma 2.20,

but we must make sure that we have investigated all of them. If the limb has two

bridges, then by Corollary 2.9, one bridge must be a single edge. The other limb must

be edge-separable by Lemma 2.18. If it is edge-separable and has an internal vertex,

then by Lemma 2.19, the limb of G must be type PE. If it is not type PE and it has

two bridges, then it must be type DE as in Lemma 2.33. Type DE is the minimum

limb of two bridges, so if the limb is not edge-separable, then the limb must have two

paths. If the limb is not edge-separable and has two paths, then the limb is type PD

by Lemma 2.20. There are no other possibilities of limbs of two bridges or two paths.

With this list of limbs, we can permute the limbs in Sage Math and verify that

we have all of the XNOP graphs that have K4 as a skeleton.

2.2 Proofs of All Possible Limbs of Full-K4 XNOP Graphs

Lemma 2.4. If a full-K4 graph G has a limb that dominates K2,3 or K4, then G

is non-planar or G properly dominates at least one of the following graphs: K2,4, S3,

S4, S5, S6, KF1A, KF1B, KF2A, KF2B.
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Proof. Suppose that L, with joints u and v, dominates K2,3 or K4, and G is not in

the list. Let P be the subdivision of K2,3 or K
4 in L. Let H be a subgraph of G such

that H ∪ L = G, H ∩ L = {u, v}, and H � K4\e.

The joints u and v share vertices with P or they do not. This gives us three

cases: P shares both joints, P shares exactly one joint, and P shares no joints as in

Figure 2.24.

Figure 2.24: Cases of P in the graph L ∪H .

Case (i): Suppose both u and v share vertices with P . Then G is nonplanar

or G dominates K2,4, KF1A, or KF1B. (The figures with the graphs associated with

the cases of this lemma are large. They are placed in Apendix B to save room and

to allow for clarity of the rest of the chapter.) See Figure B.1.

Case (ii): Suppose exactly one of u or v share vertices with P . Then G is

nonplanar or G dominates K2,4, S3, S4, S5, KF1A, or KF2A. See Figure B.2.

Case (iii): Suppose neither u or v share vertices with P . Then G is nonplanar

or G dominates K2,4, S5, S6, KF1B , or KF2B . See Figure B.3.

Proposition 2.10. A full-K4 graph that has a limb with more than two bridges is

not XNOP.
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b

b

b b b

b

b

b b

Figure 2.25: Full-K4 with three bridges.

Proof. Suppose that L is a limb with three bridges. From Corollary 2.9, L can only

have one bridge of length two or longer as in Figure 2.25.

Let e be an edge of G such that e ∈ E(L). Since G is XNOP, then G\e is NOP.

G\e dominates K4 or K2,3 and must be as in Figure 2.26. Without loss of generality,

an edge-separation of a joint that results in a cut vertex does not affect outer-planar

properties and will not be depicted in further figures of this proof.

b

b

b b b

b

b

b b b

b

b

b b

Figure 2.26: G\e for e ∈ E(L) for Figure 2.25.

(i)
b

b

b b b

(ii)
b

b

b b

(iii)
b

b

b b b

(iv)
b

b

b b

Figure 2.27: Four cases of G\e\f for f /∈ E(L) for Figure 2.26.
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Then, G\e\f is OP for some edge f ∈ E(G\e). Since G is a full-K4, then

G\e\f must separate at least one limb of G. Otherwise, it dominates K4. There are

at least two bridges in L\e, so f /∈ E(L\e). Without loss of generality, there are four

possibilities of G\e\f as depicted in Figure 2.27 (i)–(iv). The last possibility (iv) is

a contradiction, since it dominates K2,3 and is therefore not OP. We can also better

describe (i) and (ii), as we may assume from Lemma 2.4 that a single limb does not

dominate K2,3. In these two cases, the limb of G\e\f that is adjacent to all remaining

limbs does not have an internal vertex. Hence, it can have infinitely many bridges

of length one. In Figure 2.28 we show graph (i) with one, two, and three bridges of

length one, but only show one case of graph (ii).

(i′)
b

b

b b

(i′′)
b

b

b b

(i′′′)
b

b

b b b

(ii)
b

b

b b

(iii)
b

b

b b

Figure 2.28: Refinement of cases of G\e\f for Figure 2.27.

Since G is XNOP, G\f must not be OP. Then G\f dominates K2,3 or K
4. See

Figure 2.29. Since the removal of f separates a limb, then G\f should not dominate

K4. So, G\f ≻ K2,3. By Lemma 2.4, no limb of G can dominate K2,3 or K4, so

structurally, one of the limbs must dominate K2,2. Then a case of G\e\f must have

the same limbs that dominate K2,2. See three possibilities of Figure 2.29 (i′) in

Figure 2.30. However, if a single limb of G\e\f has a limb that dominates K2,2, then



37

all cases of G\e\f dominate K2,3, a contradiction to it being OP. Hence, a limb of G

does not have three or more bridges.

(i′) + e
b

b

b b

(i′′) + e
b

b

b b

(i′′′) + e
b

b

b b b

(ii′) + e
b

b

b b

(iii) + e
b

b

b b

Figure 2.29: G\f for f /∈ E(L) for Figure 2.28.
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b b

Cases of (i′)

b
b

b

b
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b b

b

b

b bb b
b

b

b

b bb

Cases of (ii′)

b
b

b

b

b bb

b b

b

b

b b

Case of (iii)

Figure 2.30: Cases of G\e\f from Figure 2.29 with limbs that dominate K2,2.

Lemma 2.13. If a full-K4 XNOP graph has a limb that dominates K2,2 but is not of

type LE or ME, then the limb must be edge-separable from a joint that is not a branch

vertex of the K2,2 subdivision.
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Proof. Suppose that a limb dominates K2,2, but is not type LE or ME and is not edge-

separable from a joint that is not a branch vertex of the K2,2. Then G dominates S1

or S2. See Figure 2.31.

b
b b

b

b

b b

b
b

b
b

b

b

b b

Figure 2.31: Graphs of a limb that is not edge-separable and that dominates K2,2.

Lemma 2.14. If an XNOP graph has an edge-separable limb L that dominates K2,2,

then L is either type KL or KM, and the non-adjacent limb to L must be type P2.

Proof. Let G be an edge-separable XNOP graph with a limb L that dominates K2,2.

We know that the limb does not dominate K2,3 or K4, and, by Lemma 2.13, it must

be edge-separable from a joint that is not a branch vertex of the K2,2. Let e be the

separating edge of L. So, G\e is NOP and dominates K2,3. By Lemma 2.12, none of

the remaining limbs of G\e can dominate K2,2. In order for G\e to dominate K2,3,

the limb that is adjacent to all of the remaining limbs must have an internal vertex.

See Figure 2.32. But, then G ≻ KF2A or G ≻ KF2B. Hence, a limb of a full-K4

XNOP graph that dominates K2,2 must be type KL or KM and the non-adjacent limb

is type P2.
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Figure 2.32: Graphs with limbs that strictly dominate limbs of type KL or KM.

Lemma 2.15. If an XNOP graph has a limb of type DE, then the non-adjacent limb

is also type DE.

Proof. Let L be a limb of type DE and let e be one of the edges of L. Since G is

XNOP, it follows that there is an edge f such that G\e\f is OP. Furthermore, since

G\e ≻ K4, G\e\f must separate a limb of G\e. There are three cases of G\e\f as

shown in Figure 2.33 (i) − (iii). Since G\e\f is OP, we can further refine the three

cases. For cases (i) and (ii), the limb that is adjacent to all of the other limbs must

not have an internal vertex. So, it can be of type T or type DE. See Figure 2.34.

b

b

b b

G\e
b

b

b b

G\e\f (i)
b

b

b b

G\e\f (ii)
b

b

b b

G\e\f (iii)

Figure 2.33: An illustration of G\e and the three cases of G\e\f .

b

b

b b

G\e\f (i′)
b

b

b b

G\e\f (i′′)
b

b

b b

G\e\f (ii′)
b

b

b b

G\e\f (ii′′)
b

b

b b

G\e\f (iii)

Figure 2.34: Refinement of the three cases of G\e\f from Figure 2.33.
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With these refinements, we can look at G\f by adding back the edge e. See

Figure 2.35. Since G\f is not OP, we can eliminate G\f (ii)− (iii) since these cases

are OP.

b

b

b b

G\f (i′)
b

b

b b

G\f (i′′)
b

b

b b

G\f (ii′)
b

b

b b

G\f (ii′′)
b

b

b b

G\f (iii)

Figure 2.35: G\f from Figure 2.34.

By adding back the edge f to G\f (i), we can refine G as shown in Figure 2.36.

It is noteworthy that both cases of G have a limb that is non-adjacent to L that has

no internal vertex.

b

b

b b

G (i′)
b

b

b b

G (i′′)

Figure 2.36: G from Figure 2.35.

We can further explore G by looking at what would happen if an edge d of

the limb non-adjacent to L is removed. See Figure 2.37. But, G\d (i′′) is OP, a

contradiction to the assumption that it should not be OP.
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b

b

b b

G\d (i′)
b

b

b b

G\d (i′′)

Figure 2.37: G from Figure 2.36.

If we reconstruct G from the only viable case of G\d, we find that if a limb is

type DE, then the non-adjacent limb is also type DE. See Figure 2.38

b

b

b b

G (i′)

Figure 2.38: G from Figure 2.37.

Lemma 2.16. If a limb of an XNOP graph is edge-separable, has an internal vertex,

and does not dominate K2,2, then it is type P2.

Proof. Suppose M is edge-separable with an internal vertex, does not dominate K2,2,

and is not type P2. See Figure 2.39 for possibilities and a general depiction of G.

Suppose further that G′ is a graph such that M is replaced by M ′, a limb of type DE.

It is easy to verify that G ≻ G′.
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G′

Figure 2.39: M is edge-separable, with internal vertices and does not dominate K2,2.

b

b

b

b bb

Figure 2.40: G\e for Figure 2.39.

Since M is edge-separable, let e be the edge of M such that G\e separates M

from its joint. The limb L that is non-adjacent to M must have an internal vertex as

in Figure 2.40, because G\e is not OP.

b

b

b b

b

b

b b

b

b

b bb

Figure 2.41: G\e\f for Figure 2.40.

Since G is XNOP, there exists f such that G\e\f is OP. The edge f /∈ M\e,

otherwise G is not OP. Furthermore, G\e\f must separate at least one other limb

or must separate the bridge with an internal vertex on the non-adjacent limb. See

Figure 2.41.
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But, if G ≻ G′ and no edge or vertex ofM other than e is deleted or suppressed,

then G′ must also be XNOP. Hence, G is not minimal, a contradiction. The graph

G′, as shown in Figure 2.39 is minimal.

Lemma 2.17. If a limb of a full-K4 graph is type P2 and its non-adjacent limb is

type T, then G is not XNOP.

Proof. Suppose that G is an XNOP graph with a limb L that is type P2, and a non-

adjacent limb M that is type T as in Figure 2.42. Let e be an edge of L. But, G\e is

OP unless one limb dominates K2,2. See Figure 2.43 (i). Suppose a limb dominates

K2,2. Let us call that limb N . If N dominates K2,2, then the limb can have one bridge

or two bridges. If it is two bridges, then by Proposition 2.11, G strictly dominates

KF1A or KF1B since one limb of G is type P2. See Figure 2.43 (ii). So, the limb

must have one bridge. By Lemma 2.14, the limb non-adjacent to N must have be

type P2. But, then G strictly dominates one of KF2A or KF2B, a contradiction. See

Figure 2.43 (iii). Hence, G\e is OP and G is not XNOP.

b

b

b bb

Figure 2.42: L is type T and M is type P2.
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b

b

b b

(i)

b b

b

b

b b

(ii)
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b
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b

(iii)

Figure 2.43: G\e for Figure 2.42.

Lemma 2.18. If a limb of a full-K4 graph G consists of two bridges, one of which

has an internal vertex and is not edge-separable, then G is not XNOP.

Proof. Let M be a limb with a bridge that is not edge-separable and a second trivial

bridge as shown in Figure 2.44.

b

b

b b
b

Figure 2.44: G has two bridges, one that is not edge-separable.

Let e be the trivial edge of M . Since G is XNOP, then G\e is not OP. Then,

there exists f ∈ E(G\f) such that G\e\f is OP. The edge f can be in any limb as

shown in Figure 2.45.
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b
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b b
b

G\e
b

b

b b
b

G\e\f (i)
b

b

b b
b

G\e\f (ii)
b

b

b b
b

G\e\f (iii)

Figure 2.45: G\e and the three cases of G\e\f for Figure 2.18.

But, only G\e\f (ii) is OP and only if the limb that is adjacent to all of the

other limbs does not have an internal vertex. Let us label this limb N . It does not

have an internal vertex, so it must be a limb of trivial bridges. It must not be more

than two by Proposition 2.10. Since the non-adjacent limb was edge-separable and

hence not type DE, the limb N also must not be type DE, by Lemma 2.15. So, N

must be a single edge. See Figure 2.46.

b

b

b b
b

Figure 2.46: G\e\f (ii) is OP.

But, this is a contradiction since G\f should not be OP, but it is, as shown in

Figure 2.47.
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b

b

b b
b

Figure 2.47: G\f (ii) is OP, a contradiction.

Lemma 2.19. If a limb of an XNOP graph consists of two bridges, one of which has

an internal vertex, then the limb is type PE and the non-adjacent limb is trivial.

Proof. Let G be an XNOP graph andM be a limb with a bridge that is edge-separable

with an internal vertex and a second trivial bridge as shown in Figure 2.48. Let G′

be a graph such thatM is replaced by M ′, a limb of type PE. It is easy to verify that

G ≻ G′. We divide this proof into two parts: (1) prove that M is type PE and (2)

prove that the non-adjacent limb is trivial.

b

b

b b
b

G
b

b

b b
b

G′

Figure 2.48: G and G′ have two bridges, one that is edge-separable and the other
trivial.

Let e be the trivial edge of M . Since G is XNOP, G\e is not OP. Then, there

exists f ∈ E(G\f) such that G\e\f is OP. Figure 2.49 shows the cases of G\e\f for

an f in each limb of G\e.
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b
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G\e\f (i)
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G\e\f (ii)
b
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G\e\f (iii)

Figure 2.49: G\e and the three cases of G\e\f for Figure 2.19.

But, G\e\f (i) is not OP, and the other cases are OP only if the limb that is

adjacent to all of the other limbs in each case does not have an internal vertex. Let

us label this limb N . In a manner similar to Lemma 2.18, N must be a single edge.

See Figure 2.50.

If G ≻ G′ and no edge or vertex of M other than e is deleted or suppressed,

then G′ must also be XNOP. Hence G′, not G, is minimal, and M must be type PE.

b

b

b b
b

G\e\f (ii)
b

b

b b

G\e\f (iii)

Figure 2.50: The cases of G\e\f that are OP.

By adding back edge e, we can look at G′\f (ii) and (iii) as shown in

Figure 2.51. But, G′\f (ii) is a contradiction since it should not be OP. Hence,

N must be a trivial limb as shown in Figure 2.52.



48

b

b

b b
b

G′\f (ii)
b

b

b b

G′\f (iii)

Figure 2.51: G′\f for Figure 2.50.

b

b

b b
b

Figure 2.52: G′ (ii) for Figure 2.51.

Lemma 2.21. A limb of a full-K4 XNOP graph G is type P2, if and only if its

non-adjacent limb is either type P2, KL, or KM.

Proof. Let L be a limb L of type P2, of G and let the edge e be an edge of L. Since

G is XNOP, G\e ≻ K2,3. So, a limb of G\e dominates K2,2 or the non-adjacent limb

M must have an internal vertex. See Figure 2.53.
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b

b bb

G

b
b

b

b

b b

G\e(i)

b b

b

b

b b

G\e(ii)
b
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b bb

G\e (iii)

Figure 2.53: G and G\e for L of type P2.
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If a limb of G\e dominates K2,2, then it can be an adjacent limb or a non-

adjacent limb to L as shown in Figure 2.54 case (i) and (ii). If K2,2 is a non-adjacent

limb, then G properly dominates KF1A or KF1B and is not XNOP, or G is KF2A, or

KF2B and M is of type KL or KM.

If the limb that dominates K2,2 is an adjacent limb, say N , then G must be as

in Figure 2.54 (ii). Since N ≻ K2,2, it must be of type KL, KM, LE, or ME. But, if it

is of type LE or ME, then G properly dominates KF1A or KF1B. If it is of type KL or

G, then there exists an edge d such that G\d is not OP. If G\d is not OP, then either

another limb of G\d ≻ K2,2 or the limb adjacent to N has an internal vertex. By

Lemma 2.12, if the limb dominates K2,2, then G is not XNOP. So, the limb adjacent

to N must have an internal vertex as in Figure 2.54. But, then G dominates KF2A,

or KF2B, and G is not XNOP.

b b

b

b

b bb

G(ii)
b

b

b bb
b

G\d(ii)

Figure 2.54: G and G\e for L of type P2.

The limb M is edge-separable or it is not. If it is edge-separable, then by

Lemma 2.16 and since it must have an internal vertex, it is not type T. So, it must

be type P2, KL, or KM.

If M is not edge-separable and has an internal vertex, then it must be type

PE or PD. But, by Lemma 2.18 and Lemma 2.19, if M is type PE or PD, L must
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be type T, a contradiction. Hence, if G has a limb that is type P2, its non-adjacent

limb must also be type P2, KL, or KM.

b

b

b bb b

b

b

b bb b

Figure 2.55: Both L and M are type P2.

Conversely, let L be a limb of type P2, KL, or KM, of G. If L is of type P2,

then we have already proven that the non-adjacent limb is of type P2. If the limb is

of type KL or KM, then let e be an edge of L that separates L from its joints. Since G

is XNOP, then G\e must not be OP. So, one of the limbs dominates K2,2 orM has an

internal vertex. If G is a full-K4, then by Proposition 2.11 and Lemma 2.12, a second

limb must not be of type KL, KM, LE, or ME. So, M must have an internal vertex.

The limb M can be edge-separable or not. If M is edge-separable, then it is of type

P2. If M is not edge-separable, then it is of type PE or PD. But, by Lemma 2.19 and

Lemma 2.20, L must be of type T, a contradiction. Hence, M must be of type P2.

b

b

b bb b

b

b

b bb b

Figure 2.56: Both L and M are type P2.
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Lemma 2.23. If a limb of an XNOP graph is type T, then the non-adjacent limb

has an internal vertex and is not edge-separable.

Proof. Suppose that the non-adjacent limbM is type T. See Figure 2.57 for a general

depiction of G.

b

b

b b

Figure 2.57: M is type T.

b

b

b

b bb

Figure 2.58: G\e for Figure 2.57.

Let e be the single edge of M . The limb L that is non-adjacent to M must

have an internal vertex because G\e is not OP as in Figure 2.58.

Since G is XNOP, there exists f such that G\e\f is OP. The graph G\e\f

must separate at least one other limb or must separate a bridge with an internal

vertex on the non-adjacent limb. See Figure 2.59 for three cases.

We can refine G by adding the edge e back to G\e\f to the three cases as

shown in Figure 2.60 and verifying that these cases are not OP per the definition of

XNOP. But, case (iii) is not possible since it is OP. This is the only case in which
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removing f results in separating M from its joint. So, removing an edge from M

must not separate M from its joint. Hence, M is not edge-separable.

b

b

b

b bb

(i)
b

b

b b

(ii)
b

b

b b

(iii)

Figure 2.59: Cases of G\e\f for Figure 2.58.
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(i)
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(iii)

Figure 2.60: Cases of G\f for Figure 2.59.

Of the other two cases of graph G\f , case (ii) is not OP, but case (i) is OP

unless the limb that is adjacent to all other limbs of G\f has an internal vertex. This

gives us two cases for G as shown in Figure 2.61. Case (i) has a limb of type T, and

two limbs that have internal vertices, one of them the limb non-adjacent to the one

of type T, and case (ii) has a limb of type PE non-adjacent to the one of type T.

b

b

b bb
b

(i)
b

b

b bb

(ii)

Figure 2.61: G for Figure 2.60.



53

2.3 Algorithms and Results of Full-K4 XNOP Graphs

In this section, we replace the edges of K4 with the limbs listed in Figure 2.2,

determine if the created graph is XNOP, and verify that the created graph is not

isomorphic to one already listed. We could do this by hand, but checking for the

XNOP property and also checking for ismorphism would be tedious. We use SageMath

to complete this long task and prove the following theorem.

Theorem 2.24. A 2-connected XNOP graph that is a full-K4 is one of the following

graphs: KF1A, KF1B, KF2A, KF2B, KF3A, KF3B, KF3C , KF3D, KF3E, KF3F ,

KF3G, KF3H , KF4A, KF4B, KF4C , KF4D, KF4E, KF4F , KF5A, KF5B, KF5C ,

KF5D, KF5E , KF6A, KF6B, KF6C, DE2.

Before we introduce the algorithms for limb permutation, we should remember

the definitions of near outer planar (Definition 1.7), excluded outer planar (Defini-

tion 1.16) and their associated algorithms.

We use Algorithm 1 to decide whether a graph is NOP by checking to see

if a graph is OP. To determine whether a graph is OP, the algorithm uses a built-

in function in SageMath called is circular planar. This algorithm has a linear time

complexity on the number of vertices based on the edge-addition planarity algorithm

of [3]. Based on the OP algorithm, we can prove that the NOP algorithm has

quadratic time complexity.
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Algorithm 1 Determining if a graph is NOP

A graph is NOP if ∃e→ G\e is OP for e ∈ E(G)
Input: A graph G
Output: True if G is NOP or False if G is not NOP

function isNOP(G)
if G is OP. then

return True
end if

for e ∈ E(G) do
if e /∈ G.multipleEdges then

if G\e is OP then

return True
end if

end if

end for

return False
end function

Proposition 2.25. Algorithm 1 has a quadratic time complexity.

Proof. Algorithm 1 has two main parts that contribute to the complexity. By [3], we

know that the test for OP has complexity O(n), where n = |V (G)|. Hence, the first

If-statement and the last If-statement have O(n) complexity. The For-loop executes

m = |E(G)| times. Within the For-loop, sits the If-statement with O(n) complexity,

so the time complexity for the For-loop can be found by examining mn.

If G is a simple, connected planar graph with n ≥ 3, then by Euler’s formula,

m ≤ 3n − 6. For the purposes of this dissertation, the graphs have at least four

vertices and are non-planar. They are not necessarily simple. The graph G must

fall into one of three categories - either no edges of G are parallel; some, but not all

edges of G are parallel; or all edges of G are parallel. If no edges of G are parallel,

then mn ≤ (3n − 6)n = 3n2 − 6n. The complexity in this case is O(n2). If some,
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but not all edges of G are parallel, then the number of times that the OP algorithm

is invoked reduces by the number of sets of parallel edges. Hence, m ≤ 3n − 6 − 1

and mn ≤ (3n − 7)n = 3n2 − 7n. The complexity in this case is O(n2). If all edges

of G are parallel, then G is not OP and the algorithm will not invoke the test for

OP. Hence, m ≤ 3n− 6. The complexity in this case is O(n). Therefore, the overall

complexity based on the worst case is O(n2).

To determine if a graph is XNOP, Algorithm 2 uses Algorithm 1 and two

built-in functions from SageMath, one that calculates the neighbors of a vertex and

another, that calculates the length of a set.

Algorithm 2 Determining if a graph is XNOP

A graph is XNOP if G is not NOP, but G\e is NOP for every e ∈ E(G) and a
suppression of every vertex of G with exactly two neighbors is NOP.
Input: A graph G
Output: True if G is XNOP or False if G is not XNOP

function isXNOP(G)
if G is NOP. then

return False
end if

for e ∈ E(G) do
if G\e is not NOP then

return False
end if

for v ∈ V (G) do
if |neighbors of v| = 2 then

supress v
if G supress v is not NOP then

return False
end if

end if

end for

end for

return True
end function
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Proposition 2.26. Algorithm 2 has a cubic time complexity.

Proof. Algorithm 2 has two main parts that contribute to the complexity. By Propo-

sition 2.25, we know that the test for NOP has complexity O(n2), where n = |V (G)|.

Hence, the the three If-statements that test for NOP have O(n2) complexity. The

outside For-loop executes m = |E(G)| times. Within the outside For-loop, there are

two loops in series - (1) an If-statement with O(n2) complexity and (2) another For-

loop. We will sum the complexity of each of these, then apply the outside For-loop.

Since we know the complexity of (1), we need only analyze the complexity of (2).

The inside For-loop executes n = |V (G)| times. Hence, the inside For-loop

has complexity nO(n2) = O(n3) complexity. Since the complexity of (2) is greater

than that of (1), and the loops are in series, the complexity of the loops within the

outside For-loop is O(n3).

The outside For-loop tests all edges. Hence, the overall complexity can be

found by examining mn3. If G is a simple, connected planar graph with n ≥ 3, then

by Euler’s formula, m ≤ 3n − 6. For the purposes of this dissertation, the graphs

have at least four vertices and are non-planar. They are not necessarily simple, but

we know from Section 2.1 that the only possible limbs of an XNOP graph are shown

in Figure 2.2. No limb in this list has more than two parallel edges. Hence, m ≤

2(3n−6) = 6n−12, and the overall complexity ismO(n3) ≤ (6n−12)n3 = 6n4−12n3.

Then, Algorithm 2 has complexity O(n4).

With these algorithms for NOP and XNOP, we can look at the programs for

permuting the limbs of a full-K4 XNOP graph G. We will need two algorithms to
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do this. In Algorithm 3, given two vertices of an edge of K4 and the specified limb

type, we change the edge of K4 to the limb type. Then, in Algorithm 4, we call

the makeLimb function from Algorithm 3 six times, once for each limb, to change all

edges of K4 to the limbs specified.

Algorithm 3 Create graphs with a new limb of type T, P2, DE, PE, PDE, KL1,
KL2, KM, KLE1, KLE2, or KME

This function replaces one specified edge of K4 with a limb type.
Input: K4, two joints of a limb of K4, and the limb type.
Output: a full-K4 graph with one limb of type P2 - KME and five trivial limbs
function makeLimb(graph, u, v, limbType)

Given G, with vertices u and v, change the edge from u to v to limbType.
end function

Algorithm 4 Create graphs with six limbs, each of type T, P2, DE, PE, PDE, KL1,
KL2, KM, KLE1, KLE2, or KME

This function uses Algorithm 3 six times to replace all of the limbs with a specified
limb type.
Input: K4 and six limb types.
Output: a full-K4 graph with six limbs of type T - KME.
function setAllLimbs(graph, L1, L2, L3, L4, L5, L6)

makeLimb{graph, 0, 1, L1}
makeLimb{graph, 0, 2, L2}
makeLimb{graph, 0, 3, L3}
makeLimb{graph, 1, 2, L4}
makeLimb{graph, 1, 3, L5}
makeLimb{graph, 2, 3, L6}
return graph

end function

Although, it would be easy to program each limb with the eleven types of

limbs and check that each graph created is XNOP, it would take a long time to decide

whether 116 = 1, 771, 561 graphs are XNOP, and then to check that the verified XNOP
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graph was not already on the steadily growing list of XNOP graphs. To reduce this

load, we look at symmetries of the graph based on permuting one limb, then two

limbs, etc., up to six limbs. We can also eliminate some limbs based on propositions

and lemmas from Section 2.1. We begin with one limb.

Let t be the number of nontrivial limbs of G for our permuations of limbs of

a full-K4. In Figure 2.62, we show a full-K4 with t = 1. Since all edges of K4 are

isomorphic, permuting the list of limbs in one limb of G results in the same list of

graphs as permuting the list in another limb. Hence, we need only permute the list of

limbs once for t = 1 as in Algorithm 5. Also, the input to the algorithm is K4, which

is a full-K4 with all limbs of type T, or (T,T,T,T,T,T). Hence, we need not permute

the limb T in subsequent algorithms.

Algorithm 5 List all full-K4 XNOP graphs with one limb permutation, up to
isomorphism.

For t = 1, permute all of the limb types T-KME in a full-K4.
Input: K4, L = [T, P2, DE, PE, PDE,KL1, KL2, KM,KLE1, KLE2, KME]
Output: full-K4 XNOPList for t = 1
for 1 ≤ i < 11 do

G = setAllLimbs(G, L[i], T , T , T , T , T )
if G is XNOP then

if G is not on XNOPList then
append G to XNOPList

end if

end if

end for

return XNOPList
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Figure 2.62: G for t = 1 in Algorithm 5.

The limbs of type KL and LE are not symmetrical and therefore have two

orientations. In Algorithm 3 and Algorithm 4, the limbs KL1, KL2, LE1, and LE2

indicate these orientations.

For t = 1, we found two non-isomorphic full-K4 graphs, (LE1,T,T,T,T,T) and

(ME,T,T,T,T,T), which are KF1A and KF1B, respectively.

When t > 1, the adjacency of each edge of K4 determines how many dis-

tinct graphs of a full-K4 can be permuted without repeating the permutation on an

isomorphic graph.

For t = 2, there are two non-isomorphic graphs as shown in Figure 2.63. We

can also reduce the programming load by not creating a graph for every permutation

in this case. For instance, (P2,DE,T,T,T,T) is the same graph as (DE,P2,T,T,T,T).

Hence, in the algorithm for t = 2, combinations can be verified instead of permuta-

tions, and the loop for the second limb begins at i and not at 1 as it will for other

loops in later algorithms.

The programming load can be further reduced by removing three limb types

overall and eliminating some combinations. By Proposition 2.11, a graph with a

limb that dominates limb type LE1, LE2 or ME dominates KF1A or KF1B. So, it

is redundant to check these limbs in subsequent algorithms. Also, by Lemma 2.12,
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graphs with two limbs of type KL or KM dominate graphs which are not full-K4

graphs. Hence, we need not run the algorithm on graphs with two limbs of type KL

or KM.

Algorithm 6 List all full-K4 XNOP graphs with two limb permutations, up to
isomorphism.

For t = 2, find all permutations of the limb types T-KM in a full-K4.
Input: K4, L = [T, P2, DE, PE, PDE,KL1, KL2, KM,KLE1, KLE2, KME]
Output: full-K4 XNOPList for t = 2
for 1 ≤ i < 8 do

for i ≤ j < 8 do

if not (i > 4 and j > 4) then
G = setAllLimbs(G, L[i], L[j], T , T , T , T )
if G is XNOP then

if G is not on XNOPList then
append G to XNOPList

end if

end if

end if

end for

end for

G = K4

for 1 ≤ i < 8 do

for i ≤ j < 8 do

if not (i > 4 and j > 4) then
G = setAllLimbs(G, L[i], T , T , T , T , L[j])
if G is XNOP then

if G is not on XNOPList then
append G to XNOPList

end if

end if

end if

end for

end for

return XNOPList
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Figure 2.63: G for t = 2 in Algorithm 6.

Algorithm 6 resulted in two non-isomorphic full-K4 XNOP graphs,

(P2,T,T,T,T,KL1) and (P2,T,T,T,T,KM), which are KF2A and KF2B , respectively.

For t = 3, there are three non-isomorphic graphs as shown in Figure 2.64. For

the first two cases in Figure 2.64, we can reduce the programming load by not creating

a graph for every permutation. For instance, (P2,DE,PE,T,T,T) is the same graph

as (DE,P2,PE,T,T,T). Hence, in the parts of the algorithm for those cases of t = 3,

combinations can be verified instead of permutations. So, the loop for the second

limb begins at i, instead of 1, and the loop for the third limb begins at j.

The third case has symmetries, but not the same as the first two cases. In

this case, of the three limbs that are replaced, two are non-adjacent to each other and

one is adjacent to the other two limbs. The two limbs that are non-adjacent to each

other are symmetric, so duplicates can be eliminated. In the loops, one of these limbs

will start at the counter for the other. See Algorithm 7. We can further reduce the

programming load by applying Corollary 2.22. Since a full-K4 XNOP graph with a

limb of type KL or KM must be KF2A or KF2B, then no other full-K4 graphs with

limb types KL or KM need be checked, for t > 2.
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Algorithm 7 List all full-K4 XNOP graphs with three limb permutations, up to
isomorphism.

For t = 3, find all permutations of the limb types T-PDE in a full-K4.
Input: K4, L = [T, P2, DE, PE, PDE,KL1, KL2, KM,KLE1, KLE2, KME]
Output: full-K4 XNOPList for t = 3
for 1 ≤ i < 5 do

for i ≤ j < 5 do

for j ≤ k < 5 do

G = setAllLimbs(G, L[i], L[j], L[k], T , T , T )
if G is XNOP then

if G is not on XNOPList then
append G to XNOPList

end if

end if

end for

end for

end for

G = K4

for 1 ≤ i < 5 do

for i ≤ j < 5 do

for j ≤ k < 5 do

G = setAllLimbs(G, L[i], L[j], T , L[k], T , T )
if G is XNOP then

if G is not on XNOPList then
append G to XNOPList

end if

end if

end for

end for

end for

G = K4

for 1 ≤ i < 5 do

for 1 ≤ j < 5 do

for j ≤ k < 5 do

G = setAllLimbs(G, L[i], L[j], T , T , T , L[k])
if G is XNOP then

if G is not on XNOPList then
append G to XNOPList

end if

end if

end for

end for

end for

return XNOPList
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Figure 2.64: G for t = 3 in Algorithm 7.

Algorithm 7 resulted in eight non-isomorphic full-K4 XNOP graphs,

(PE,PE,PE,T,T,T), (PE,PE,PD,T,T,T), (PE,PD,PD,T,T,T), (PD,PD,PD,T,T,T),

(PE,PE,T,PE,T,T), (PE,PE,T,PD,T,T), (PE,PD,T,PD,T,T), and

(PD,PD,T,PD,T,T), which are KF3A, KF3B, KF3C , KF3D, KF3E , KF3F , KF3G, and

KF3H , respectively.

For t = 4, there are two non-isomorphic graphs as shown in Figure 2.65. We

need not check the limbs of the first case, since by Lemma 2.23, if a limb is of type

T, then the non-adjacent limb cannot also be type T.

For the second case in Figure 2.65, we can reduce the programming load in a

manner similar to cases of t = 3 by noting the symmetry of two limbs of this case. In

the loops, one of these limbs will start at the counter for the other. See Algorithm 8.
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Algorithm 8 List all full-K4 XNOP graphs with four limb permutations, up to
isomorphism.

For t = 4, find all permutations of the limb types T-PDE in a full-K4.
Input: K4, L = [T, P2, DE, PE, PDE,KL1, KL2, KM,KLE1, KLE2, KME]
Output: full-K4 XNOPList for t = 4
for 1 ≤ i < 5 do

for 1 ≤ j < 5 do

for 1 ≤ k < 5 do

for k ≤ l < 5 do

G = setAllLimbs(G, L[k], L[l], L[i], L[j], T , T )
if G is XNOP then

if G is not on XNOPList then
append G to XNOPList

end if

end if

end for

end for

end for

end for

return XNOPList
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b b
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Figure 2.65: G for t = 4 in Algorithm 8.

Algorithm 8 resulted in six non-isomorphic full-K4 XNOP graphs,

(PE,PE,P2,P2,T,T), (PE,PD,P2,P2,T,T), (PD,PD,P2,P2,T,T), (PE,PE,DE,DE,T,T),

(PE,PD,DE,DE,T,T), and (PD,PD,DE,DE,T,T), which areKF4A,KF4B,KF4C ,KF4D,

KF4E , and KF4F , respectively.

For t = 5, there is one non-isomorphic graph as shown in Figure 2.66. Since

we are permuting five limbs, there are two sets of symmetric limbs, and one limb that
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does not share symmetry. The symmetries are in non-adjacent limbs. See Algorithm 9.

Algorithm 9 List all full-K4 XNOP graphs with five limb permutations, up to
isomorphism.

For t = 5, find all permutations of the limb types T-PDE in a full-K4.
Input: K4, L = [T, P2, DE, PE, PDE,KL1, KL2, KM,KLE1, KLE2, KME]
Output: full-K4 XNOPList for t = 5
for 1 ≤ i < 5 do

for 1 ≤ j < 5 do

for j ≤ k < 5 do

for 1 ≤ l < 5 do

for l ≤ m < 5 do

G = setAllLimbs(G, L[i], L[j], L[k], L[m], L[l], T )
if G is XNOP then

if G is not on XNOPList then
append G to XNOPList

end if

end if

end for

end for

end for

end for

end for

return XNOPList

b

b

b b

Figure 2.66: G for t = 5 in Algorithm 9.

Algorithm 9 resulted in five non-isomorphic full-K4 XNOP graphs,

(PE,P2,P2,P2,P2,T), (PD,P2,P2,P2,P2,T), (PE,P2,DE,DE,P2,T),

(PD,P2,DE,DE,P2,T), and (PE,DE,DE,DE,DE,T), which are KF5A, KF5B, KF5C ,

KF5D, and KF5E , respectively.
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For t = 6, there is one non-isomorphic graph as shown in Figure 2.67. Two

symmetries are programmed to reduce the load. One based on the first three limbs,

and the other based on the last three limbs. See Algorithm 10.

b

b

b b

Figure 2.67: G for t = 6 in Algorithm 10.

Algorithm 10 resulted in four non-isomorphic full-K4 XNOP graphs,

(P2,P2,P2,P2,P2,P2), (P2,P2,DE,DE,P2,P2), (P2,DE,DE,DE,DE,P2), and

(DE,DE,DE,DE,DE,DE), which are KF6A, KF6B, KF6C , and DE2, respectively.
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Algorithm 10 List all full-K4 XNOP graphs with six limb permutations, up to
isomorphism.

For t = 6, find all permutations of the limb types T-PDE in a full-K4.
Input: K4, L = [T, P2, DE, PE, PDE,KL1, KL2, KM,KLE1, KLE2, KME]
Output: full-K4 XNOPList for t = 6
for 1 ≤ i < 5 do

for i ≤ j < 5 do

for j ≤ k < 5 do

for 1 ≤ l < 5 do

for l ≤ m < 5 do

for m ≤ n < 5 do

G = setAllLimbs(G, L[i], L[j], L[k], L[n], L[m], L[l])
if G is XNOP then

if G is not on XNOPList then
append G to XNOPList

end if

end if

end for

end for

end for

end for

end for

end for

return XNOPList

This concludes the permutation of all of the limbs of a full-K4. The list of

27 full-K4 graphs in Theorem 2.24 have been verified by programming, to be XNOP

and complete.

In the next chapter, we revisit the idea of skeletons to find the next set of

skeletons that are one edge away from K4.



CHAPTER 3

K4 PLUS ONE EDGE

In the previous chapter, we found all XNOP graphs with K4 as a skeleton. To

find other XNOP graphs or prove that we have a complete list, we must look at other

possible skeletons of XNOP graphs, then use the skeletons found along with the limbs

found in Chapter 2 to find all of the XNOP graphs with skeletons of K4 plus one

edge. We do this with five sections. The first one gives us the usable skeletons of K4

plus an edge, which are W4 and 3-prism. The second and third examine the limbs of

XNOP graphs of W4 to find the complete list of full W4 XNOP graphs. Lastly, the

fourth and fifth sections prove the complete list of full 3-prism XNOP graphs in a

similar manner to Sections 3.2 and 3.3.

3.1 Skeletons of K4 Plus One Edge

In this section, we examine each of the possible BG-operations and determine

if these are feasible constructions of skeletons for an XNOP graph with K4 plus one

edge.

By symmetry, every resulting graph from BG-operations (1)-(3) to K4 is

isomorphic to one of the graphs shown in Figure 3.1.

68
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full-K4 full-K4 W4 3-prism K3,3

Figure 3.1: Examples of graphs of K4 plus an edge.

Hence, the addition of a single edge to K4 gives us two new types of skeletons

of XNOP graphs, W4, and 3-prism. We can rule out K3,3 since G would be nonplanar.

In the next two sections, we explore the limbs of W 4 and 3-prism to find the XNOP

graphs with those graphs as skeletons and prove that those lists are finite.

3.2 Overview of All Possible Full-W4 XNOP Graphs

In this section, we examine the full-W4 graphs that are XNOP. For brevity, we

only outline the theorems, lemmas and corollaries necessary to prove the complete

list of full-W4 XNOP graphs in this section. We save the detailed proofs of theorems,

etc. for Section 3.3. Although we can use programming to confirm our results, the

list of full-W4 XNOP graphs is small enough to prove without programming.

In Chapter 2, we found all possible limbs of a full-K4. Since W4 ≻ K4 as

shown in Figure 3.1, then the same limb list proved for K4 can be a starting point

for the list of possible limbs of a full-W4.

Also, since W4 ≻ K4, by Proposition 2.11, we need not consider limb types

LE and ME as possible limbs for a full-W4 XNOP graph. Furthermore, we can

eliminate limb types KL and KM since the replacement of an edge of W4 with either
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limb type KL or KM results in a graph that properly dominates KF2A or KF2B, by

Corollary 2.22.

To prove that we have the complete list of full-W4 XNOP graphs, we use the

following theorem, which can be proved with five lemmas and one corollary. To aid

the reader in understanding the long proof to the main theorem, many of the proofs

to the lemmas and corollary are in Section 3.3. Since W4 is a wheel, it is helpful to

recall the definition of a wheel (Definition 1.5). In particular, we refer to the rim and

spokes of W4.

Theorem 3.1. A full-W4 XNOP graph is one of the following graphs: WF1, WF2,

WF3.

Proof. Let G be a full-W4 XNOP graph that is not listed above. In Chapter 2, we

proved many propositions, lemmas and corollaries about the limbs of a full-K4. In

this chapter, we focus on the spokes of a full-W4 to prove that the list of full-W4

XNOP graphs is complete. The first lemma gives us an upper bound on the limbs of

the spoke of a full-W4.

Lemma 3.2. A full-W4 graph that has a spoke limb that is not edge-separable is not

XNOP.
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Figure 3.2: Lemma 3.2 - Full-W4 graphs with spoke limbs that are not edge-
separable are not XNOP.
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The proof of Lemma 3.2 is in Section 3.3. The following corollary to Lemma 3.2

is easy to verify.

Corollary 3.3. A limb that is a spoke of a full-W4 XNOP graph is of type T or P2.

We now have six basic graphs with spoke limbs of type T or P2 as shown

in Figure 3.3. Three of the graphs dominate WF1. The following lemma is easy to

verify.

Lemma 3.4. If a full-W4 graph G has two non-adjacent spoke limbs of type P2, then

G ≻WF1.

This gives us three cases to check for XNOP graphs. These are the only

possibilities for full-W4 XNOP cases that do not dominate WF1. We start with the

graph with two spokes of type P2, Figure 3.3, case (i) and the following lemma, whose

proof is in Section 3.3.
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Figure 3.3: There are six full-W4 graphs with spoke limbs of type T or P2.
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Lemma 3.5. A full-W4 XNOP graph with two adjacent spoke limbs of type P2

dominates S1.

Hence, G must have one or no spoke limbs of type P2. If G has exactly

one spoke limb of type P2, as in case (ii), then the following lemma applies. See

Section 3.3 for the details of the proof.

Lemma 3.6. A full-W4 XNOP graph with one spoke limb of type P2 dominates WF2.

Hence, Gmust have no spoke limbs of type P2, as in case (iii) and the following

lemma applies.

Lemma 3.7. A full-W4 XNOP graph with all spoke limbs of type T dominates WF3.

See Section 3.3 for the details of the proof.

By Corollary 3.3, the spoke limbs must be of type T or P2. Of the six cases

of these type, we have found that a full-W4 XNOP graph is WF1, WF2, or WF3.

3.3 Proofs of All Possible Full-W4 XNOP Graphs

Theorem 3.2. A full-W4 graph that has a spoke limb that is not edge-separable is

not XNOP.

Proof. Let G be a full-W4 XNOP graph with a limb L that is a spoke and that is not

edge-separable. So, L must be of type DE, PE, or PD as in Figure 3.4
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Figure 3.4: A full-W4 with a limb that is a spoke and that is not edge-separable.

Let e be an edge of L. Since G is XNOP, then G\e is not OP, and there exists

an edge f such that G\e\f is OP. The edge f must separate a limb on the outer rim

of G, and in cases (ii) and (iii), f must be of a limb adjacent to the L. Otherwise,

G\e\f is not OP as shown in Figure 3.5.
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Figure 3.5: The edge f must be an edge of the rim.

The graph G\e\f is OP, so the two remaining inner spoke limbs of G\e\f

must not have internal vertices as in Figure 3.6.

Since G is XNOP, then G\f is not OP. But, in each case, it is OP, as shown in

Figure 3.7, a contradiction. Hence, a limb that is a spoke of a full-W4 XNOP graph

is edge-separable.
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Figure 3.6: Refinement of G\e\f .
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Figure 3.7: G\f is OP, a contradiction.
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Lemma 3.5. A full-W4 XNOP graph with two adjacent spoke limbs of type P2

dominates S1.

Proof. Let G be a full-W4 XNOP graph with two spoke limbs of type P2 and let L be

the limb on the rim of G that is adjacent to the two spoke limbs of type P2. The limb

L is not edge-separable, otherwise, G is NOP and not XNOP as shown in Figure 3.8.

But, if L is not edge-separable, then G ≻ S1.
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Figure 3.8: Full-W4 graphs with two non-adjacent spoke limbs of type P2
dominates S1.

Lemma 3.6. A full-W4 XNOP graph with one spoke limb of type P2 dominates WF2.

Proof. Let G be a full-W4 XNOP graph with exactly one limb of type P2. The two

limbs on the rim of G that are adjacent to the spoke limb of type P2 must not be

edge-separable. Otherwise, G is NOP. But, then G ≻WF2.
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Figure 3.9: Full-W4 graphs with one spoke limb of type P2 dominates WF2.

Lemma 3.7. A full-W4 XNOP graph with all spoke limbs of type T dominates WF3.

Proof. Let G be a full-W4 XNOP graph with all spoke limbs of type T. All of the

rims of G must not be edge-separable. Otherwise, G is NOP. But, then G ≻WF3, a

contradiction.
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Figure 3.10: Full-W4 graphs with all spoke limbs of type T dominates WF3.

In the next two sections, we look at the only other skeleton that is one edge

away from K4, a 3-prism.
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3.4 Overview of All Possible Full-3-Prism XNOP Graphs

In the next two sections, we examine the full-3-prism graphs, or full-TP graphs,

that are XNOP. In this section, we provide a main theorem and an outline of its

lemmas and corollaries, but with no proofs of the lemmas and corollaries. We save

the proofs for Section 3.5, as there are many parts to the main theorem and the

proofs of the lemmas and corollaries can be long. Although we can use programming

to confirm our results, the list of full-3-prism XNOP graphs is small enough to prove

without programming.

In Chapter 2, we found all possible limbs of a full-K4. Since 3-prism ≻ K4 as

shown in Figure 3.11, then the same limb list proved for K4 can be a starting point

for the list of possible limbs of a full-TP.

Figure 3.11: 3-prism ≻ K4.

Since 3-prism ≻ K4, by Proposition 2.11, we need not consider limb types LE

and ME as possible limbs for a full-TP XNOP graph. Furthermore, we can eliminate

limb types KL and KM since the replacement of an edge of 3-prism with either

limb type KL or KM results in a graph that properly dominates KF2A or KF2B, by

Corollary 2.22.
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To prove that we have the complete list of full-TP XNOP graphs, we use the

following theorem, which can be proved with seven lemmas and one corollary. For

brevity, the proofs to the lemmas and corollary are in Section 3.5. In the following

theorem and proofs, it is also helpful to recall the definition of a prism (Definition 1.6).

In particular, we will refer to the cycles and spurs of a 3-prism.

Theorem 3.8. A full-3-prism XNOP graph is one of the following graphs: TP1, TP2,

TP3, TP4, TP5, TP6.

Proof. Let G be a full-TP XNOP graph that is not listed above. We will prove an

important lemma that gives us an upper bound on the limbs of the cycles of G, then

focus on the limbs of the spurs of G.

Lemma 3.9. If a limb of a cycle of a full-TP graph G is not edge-separable, then G

is not XNOP.
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Figure 3.12: Lemma 3.9 - Full-TP graphs with cycle limbs that are not edge-
separable are not XNOP.

This corollary follows.

Corollary 3.10. A limb of a cycle of a full-TP XNOP graph is of type T or P2.

Since we know that the cycle limbs must be of type T or P2, we can find all

combinations of the basic full-TP graphs with limbs of type T or P2. This gives us
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thirteen non-isomorphic cases for cycle limbs of type T or P2 as shown in Figure 3.13.

We can classify the graphs by locating the limbs of type P2 in relation to the cycle

that it is located and in relation to the face that it is located.

A number of these dominate TP1 or TP2, which gives us the two following

lemmas that are easy to verify.
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Figure 3.13: Full-TP graphs with cycle limbs of type T or P2.

Lemma 3.11. A full-TP graph with three limbs of type P2 all in one cycle dominates

TP1.

Lemma 3.12. A full-TP graph with three limbs of type P2, two of which are in one

cycle and one that does not share a face with another limb of type P2, dominates TP2.

We can now examine cases (i)-(iii) in the following lemma.
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Lemma 3.13. A full-TP graph that is not NOP, with two limbs, L and M , of type

P2 in one cycle and a limb N of type T in the opposite cycle such that N does not

share a face with L or M , dominates TP3.
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Figure 3.14: Lemma 3.13 - Full-TP graphs that are not NOP with two limbs of
type P2 in one cycle dominate TP3.

For case (iv), we have the following lemma.

Lemma 3.14. A full-TP graph that is not NOP, with two cycle limbs, L and M , of

type P2 such that L and M do not share a face, dominates TP4.
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Figure 3.15: Lemma 3.14 - Full-TP graphs that are not NOP with two limbs of
type P2 such that L and M do not share a face dominate TP4.

The lemma for cases (v) and (vi) is the following.

Lemma 3.15. A full-TP graph that is not NOP, with one cycle with exactly one limb

L of type P2 and the other cycle such that the limbs that do not share a face with L

are of type T, dominates TP5.
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Figure 3.16: Lemma 3.15 - Full-TP graphs that are not NOP dominate TP5.

For case (vii), we have the following lemma.

Lemma 3.16. A full-TP graph that is not NOP, with no cycle limbs of type P2

dominates TP6.
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Figure 3.17: Lemma 3.16 - Full-TP graphs that are not NOP and have no cycle
limbs of type P2 dominate TP6.

3.5 Proofs of All Possible Full-3-Prism XNOP Graphs

Lemma 3.9. If a limb of a cycle of a full-TP graph G is not edge-separable, then G

is not XNOP.

Proof. Let G be a full-TP XNOP graph with a cycle limb L that is not edge-separable

as in Figure 3.18. Let e be an edge of L. Since G is XNOP, G\e is not OP, and there

exists an edge f ∈ E(G\e) such that G\e\f is OP. It is easy to verify that the edge

f must be an edge of one of the spur limbs of G. See Figure 3.19.
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Figure 3.18: Lemma 3.9 - Full-TP graphs with cycle limbs that are not edge-
separable are not XNOP.
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Figure 3.19: G\e\f for Figure 3.18.

The graph G\e\f is OP, so the two cycle limbs that are adjacent to both

remaining spur limbs of G\e\f must not have internal vertices as in Figure 3.20.
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Figure 3.20: Refinement of G\e\f for Figure 3.19.
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Since G is XNOP, then G\f is not OP. But, in each case, it is OP, as shown

in Figure 3.21, a contradiction. Hence, a cycle limb of a full-TP XNOP graph is

edge-separable.
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Figure 3.21: G\f for Figure 3.20.

Lemma 3.13. A full-TP graph that is not NOP, with two limbs, L and M , of type

P2 in one cycle and a limb N of type T in the opposite cycle such that N does not

share a face with L or M , dominates TP3.

Proof. Let G be a full-TP XNOP graph with two limbs, L and M , of type P2 in one

cycle and a limb N of type T in the opposite cycle such that N does not share a face

with L or M as shown in Figure 3.22 (a). The cycle limb that is adjacent to L and

M must be of type T, otherwise G ≻ TP1. See Figure 3.22 (b). The spur limb that

is adjacent to both L and M must not be edge-separable. Otherwise, G is NOP as

shown in Figure 3.22 (c). But, then G ≻ TP3. See Figure 3.22 (d).
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Figure 3.22: Lemma 3.13 - Full-TP graphs that are not NOP dominate TP3.

Lemma 3.14. A full-TP graph that is not NOP, with two cycle limbs, L and M , of

type P2 such that L and M do not share a face, dominates TP4.

Proof. Let G be a full-TP XNOP graph with two limbs, L and M , of type P2 such

that L and M do not share a face as in Figure 3.22 (a). All other cycle limbs must

be of type T, otherwise, G dominates TP1, TP2, or TP3. See Figure 3.22 (b). The

spur limb that is adjacent to both L and M must not be edge-separable as shown in

3.22 (c). Otherwise, G is NOP. But, then G ≻ TP4. See Figure 3.22 (d).
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Figure 3.23: Lemma 3.14 - Full-TP graphs that are not NOP and have exactly one
limb of type P2 dominate TP4.
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Lemma 3.15. A full-TP graph that is not NOP, with one cycle with exactly one limb

L of type P2 and the other cycle such that the limbs that do not share a face with L

are of type T, dominates TP5.

Proof. Let G be a full-TP XNOP graph with one cycle with exactly one limb L of

type P2 and the other cycle such that the limbs do not share a face with L are of

type T as in Figure 3.24 (a). The two spur limbs that are adjacent to L must not be

edge-separable as shown in 3.24 (b). Otherwise, G is NOP. But, then G ≻ TP5. See

Figure 3.24 (c).
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Figure 3.24: Lemma 3.15 - Full-TP graphs that are not NOP and have no cycle
limbs of type P2 dominate TP5.

Lemma 3.16. A full-TP graph that is not NOP, with no cycle limbs of type P2

dominates TP6

Proof. Let G be a full-TP XNOP graph with no cycle limbs of type P2 as shown in

Figure 3.25 (a). All three spur limbs must not be edge-separable as shown in 3.25 (b).

Otherwise, G is NOP. But, then G ≻ TP6. See Figure 3.25 (c).
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Figure 3.25: Lemma 3.16 - Full-TP graphs that are not NOP and have no cycle
limbs of type P2 dominate TP6.



CHAPTER 4

W4 PLUS ONE EDGE AND 3-PRISM PLUS ONE EDGE

In Chapter 3, we found all XNOP graphs with W4 and 3-prism as a skeleton.

To find other XNOP graphs or to prove that we have a complete list, we must look

at other possible skeletons of XNOP graphs, then use the skeletons found, along with

the limbs found in Chapter 2 to find all of the XNOP graphs with skeletons of W4

plus one edge and 3-prism plus one edge. We do this with four sections. In the first

two sections, we examine the skeletons of W4 plus an edge and 3-prism plus an edge,

respectively. In the third section, we look at the double hub, one of the skeletons

found in the two previous sections, and proof the complete list of full double hub

XNOP graphs. Lastly, we look at the 1-eared wheel and 1-eared prism and prove

that no XNOP graphs exist with these as a skeleton.

4.1 Skeletons of W4 Plus an Edge

We begin with W4. By symmetry, every resulting graph from BG-operations

(1)-(3) to W4 is isomorphic to one of the graphs shown in Figure 4.1, Figure 4.2, or

Figure 4.3.
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full-W4 full-W4 K5\e

Figure 4.1: Examples of graphs of W4 + f , where f is of type (1).

full-W4 W5 full-W4 double hub

nonplanar full-W4 double hub

Figure 4.2: Examples of graphs of W4 + f , where f is of type (2).

CUBE/e nonplanar 1-eared W4 nonplanar

1-eared W4 CUBE/e

Figure 4.3: Examples of graphs of W4 + f , where f is of type (3).

Hence, the addition of a single edge to W4 gives us five new types of skeletons

of XNOP graphs, K5\e, W5, the double hub, the 1-eared W4, and CUBE/e. Two of
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these, K5\e and CUBE/e are XNOP. We will explore the double hub and 1-eared

W4 as skeletons of XNOP graphs in Sections 4.3 and 4.4, respectively. Although W5

should be considered as a skeleton in the same manner as the double hub and 1-eared

W4, no XNOP graph dominates W5, as proved in [10].

4.2 Skeletons of 3-Prism Plus an Edge

Now we explore skeletons that are constructed by adding an edge f to 3-prism.

By symmetry, every resulting graph from BG-operations (1)–(3) to 3-prism is

isomorphic to one of the graphs shown in Figure 4.4, Figure 4.5, or Figure 4.6.

full-3-prism double hub full-3-prism double hub full-3-prism

Figure 4.4: Examples of graphs of 3-prism+f , where f is of type (1).

full-3-prism full-3-prism full-3-prism 1-eared W4 1-eared W4

CUBE/e nonplanar CUBE/e 1-eared W4 nonplanar

Figure 4.5: Examples of graphs of 3-prism+f , where f is of type (2).
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1-eared prism 1-eared prism CUBE nonplanar nonplanar

1-eared prism 1-eared prism nonplanar 1-eared prism 1-eared prism

nonplanar CUBE 1-eared prism

Figure 4.6: Examples of graphs of 3-prism+f , where f is of type (3).

Hence, the addition of a single edge to 3-prism gives us two new types of

skeletons of XNOP graphs, the 1-eared prism, and CUBE. The CUBE is an XNOP

graph and needs no further exploration. We explore the 1-eared prism as a skeleton

of an XNOP graph in Section 4.4.

4.3 Full-Double-Hub XNOP Graphs

In this section, we examine the full-double hub graphs, or full-DH graphs, that

are XNOP. We use lemmas to prove the main theorem below.

The following definition is helpful in this chapter.
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Definition 4.1. A vulnerable edge of a graph G is an edge g of G such that G\g is an

outer-planar graph. An edge whose deletion does not result in an outer-planar graph

is called a non-vulnerable edge.

The following main theorem uses the definition in one of the two lemmas below.

Theorem 4.2. A full-DH XNOP graph is DH1.

Proof. The double-hub has exactly one vulnerable edge. We focus on this edge g as

a limb L = σ(g) of a full-DH and use this to assess the properties of the other limbs.

See Figure 4.7 for an illustration of the vulnerable limb of a full-DH.
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b

b

b

L

full-DH

b

b

b

b

b

b

Figure 4.7: G and G\e for an edge-separable L.

Lemma 4.3. The non-vulnerable limbs of a full-DH XNOP graph are edge-separable.

Proof. Let G be a full-DH XNOP graph, and let M be a non-vulnerable limb of G.

It is easy to verify that if M is not edge-separable, then G\e for e ∈ E(M) is not OP.

Then if G\e\f is OP, the edge f is an edge of the vulnerable limb L and the inner

limbs of G\e\f have no internal vertices. But, then G\f is also OP, a contradiction.

Figure 4.8 shows an example of one of the nine non-vulnerable limbs of G. The other

cases are easy to verify.
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G\f is OP

Figure 4.8: A non-vulnerable limb of G is edge-separable.

Hence, all limbs of G are edge-separable except the vulnerable limb of G. The

vulnerable limb can be edge-separable or not. The following lemma proves that it is

not.

Lemma 4.4. If a full-DH graph G has a vulnerable limb that is edge-separable, then

G dominates WF1 or K2,4.

Proof. Let G be a full-DH XNOP graph with a vulnerable limb L that is edge-

separable. Then G\e is not OP for some e ∈ E(L). So, one or more of three limbs

must contain an internal vertex as shown in Figure 4.9.
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Figure 4.9: G\e is not OP.
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But, if either of the limbs in Figure 4.9 (a) or (c) have an internal vertex, then

G ≻WF1. See Figure 4.10. So, the internal vertex must be as in Figure 4.9 (b). But,

then G ≻ K2,4, see Figure 4.10, a contradiction.
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Figure 4.10: Refinement of G\e shows that G dominates an XNOP graph.

This corollary follows.

Corollary 4.5. The vulnerable limb of a full-DH XNOP graph is not edge-separable.

Hence, all non-vulnerable limbs of G are edge-separable and the vulnerable

limb is not edge-separable. But, then G ≻ DH1.
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4.4 Full-1-Eared-Wheel or Full-1-Eared-Prism XNOP Graphs

In this section, we use an approach similar to the one in Section 4.3. We look

at the vulnerable edges and the non-vulnerable edges to proof the following main

theorem.

Theorem 4.6. No XNOP graph is a full-1-eared-wheel or a full-1-eared-prism.

Proof. We divide this theorem into two sections, one on the full-1-eared-wheel,

or full-EW, and one on the full-1-eared-prism, or full-EP. We start with the full-EW.

As in our proof of the full-DH XNOP graphs, we look first at the vulnerable

edges of a 1-eared-wheel. There are two vulnerable edges, which are symmetric as

shown in Figure 4.11
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full-EW
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Figure 4.11: G and G\g for an edge-separable L = σ(g) for the vulnerable edge g.

This lemma gives us a starting point for the non-vulnerable limbs of a full-EW.

Lemma 4.7. The non-vulnerable limbs of a full-EW are edge-separable.

Proof. Let G be a full-EW XNOP graph. Let L and M be the two vulnerable limbs

of G. It is easy to verify that if a non-vulnerable limb N of G is not edge-separable,

then G\e for e ∈ E(N) is not OP. Then if G\e\f is OP, the edge f is an edge of L

or M and the inner limbs of G\e\f have no internal vertices. But, then G\f is also
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OP, a contradiction. Figure 4.12 shows an example of one of the nine non-vulnerable

limbs of G. The other cases are easy to verify.
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Figure 4.12: A non-vulnerable limb of G is edge-separable.

Hence, all limbs of G are edge-separable except the two vulnerable limbs of G.

The vulnerable limbs can be edge-separable or not. The following lemma proves that

if a full-EW is XNOP, then the vulnerable limbs are not edge-separable.

Lemma 4.8. If a full-EW graph G has a vulnerable limb that is edge-separable, then

G dominates WF1, TP3, or TP4.

Proof. Let G be a full-EW XNOP graph with a vulnerable limb L that is edge-

separable. Then G\e is not OP for some e ∈ E(L). So, one or more of three limbs

must contain an internal vertex as shown in Figure 4.13.
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Figure 4.13: G\e is not OP.
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But, if the limb in Figure 4.13 (a) has an internal vertex, then G ≻WF1. See

Figure 4.14. So, the internal vertex must be as in Figure 4.13 (b) or (c). But, in

these cases, if the internal limbs have internal vertices, then the second vulnerable

limb M must not be edge separable, otherwise G\e is OP for some edge e ∈ E(M).

See Figure 4.14.
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Figure 4.14: Refinement of G\e shows that G dominates an XNOP graph.

In the case of Figure 4.14 (b), if M is not edge-separable, then G ≻ TP3. So,

G must be as in case (c), but then G ≻ TP4. See Figure 4.14.

This corollary follows.

Corollary 4.9. The vulnerable limbs of a full-EW XNOP graph are not edge-separable.
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Hence, all non-vulnerable limbs of G are edge-separable and the vulnerable

limbs are not edge-separable. But, then G properly dominates TP5. Since we have

addressed all limbs of a full-EW and found no full-EW XNOP graphs, we have proved

the first part of the proof.
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Figure 4.15: G ≻ TP5.

We now focus on graphs that are full-1-eared-prisms. As in our proof of the

full-EW XNOP graphs, we look first at the vulnerable edges of a 1-eared-prism. There

is one vulnerable edge as shown in Figure 4.16.

b

b

b

b

b

b

b

b

L

full-EP

b

b

b

b

b

b

b

b

Figure 4.16: G and G\e for an edge-separable L.

The following lemma on the non-vulnerable limbs is our starting point.

Lemma 4.10. The non-vulnerable limbs of a full-EP are edge-separable.

Proof. Let G be a full-EP XNOP graph. Let L be the vulnerable limb of G. It is easy

to verify that if a non-vulnerable limb M of G is not edge-separable, then G\e for
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e ∈ E(M) is not OP. Then if G\e\f is OP, the edge f is an edge of L and the inner

limbs of G\e\f have no internal vertices. But, then G\f is also OP, a contradiction.

Figure 4.17 shows an example of one of the eleven non-vulnerable limbs of G. The

other cases are easy to verify.
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Figure 4.17: A non-vulnerable limb of G is edge-separable.

Hence, all limbs of G are edge-separable except the vulnerable limb of G. The

vulnerable limb can be edge-separable or not. The following lemma proves that if a

full-EP is XNOP, then the vulnerable limb is not edge-separable.

Lemma 4.11. If a full-EP graph G has a vulnerable limb that is edge-separable, then

G dominates TP1 or TP2.

Proof. Let G be a full-EP XNOP graph with a vulnerable limb L that is edge-

separable. Then G\e is not OP for some e ∈ E(L). So, one or more of three limbs

must contain an internal vertex as shown in Figure 4.18.
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Figure 4.18: G\e is not OP.

But, if the limbs in Figure 4.18 (a) and (c) have an internal vertex, then

G ≻ TP2. See Figure 4.19. So, the internal vertex must be as in Figure 4.18 (b). But,

then G ≻ TP1, a contradiction. See Figure 4.19.
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Figure 4.19: G\e is not OP.

This corollary follows.

Corollary 4.12. The vulnerable limb of a full-EP XNOP graph is not edge-separable.
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Hence, all non-vulnerable limbs of G are edge-separable and the vulnerable

limb is not edge-separable. But, then G ≻ TP3. We have addressed all limbs of a

full-EP graph and found no full-EP XNOP graphs.
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Figure 4.20: G ≻ TP3.

We have examined both the full-1-eared-wheel and the full-1-eared-prism and

found no XNOP graphs. Hence, there is no need to search for XNOP graphs with

skeletons that have the 1-eared-wheel or the 1-eared-prism as a minor.



CHAPTER 5

DOUBLE-HUB PLUS ONE EDGE

In Chapter 4, we found all XNOP graphs with double hub plus an edge and

proved that no XNOP graph has a 1-eared wheel or a 1-eared prism as a skeleton. To

find other XNOP graphs or to prove that we have a complete list, we must look at

other possible skeletons of XNOP graphs, then use the skeletons found, along with

the limbs found in Chapter 2 to find all of the XNOP graphs with skeletons of double

hub plus one edge. We do this with two sections. In the first section, we examine

the skeletons of the double hub plus an edge. Lastly, we look at the heptahedral

and octahedral, the skeletons found in the previous section, and proof that no XNOP

graphs exist with these as a skeleton.

5.1 Skeletons of Double-Hub Plus One Edge

Theorem 5.1. No skeleton of an XNOP graph properly dominates the double-hub.

The addition of two edges to K4 results in four new skeletons of XNOP graphs:

K5\e, the double-hub, CUBE/e, and the CUBE. The graphs K5\e, CUBE/e, and

the CUBE are XNOP. Therefore, they need no further exploration. The double-hub

is a confirmed skeleton, as there is one XNOP graph with the double-hub as a skeleton.

So, S must be a graph that can be constructed from K4 with at least three edges.

101
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We use the double-hub, along with the BG-operations to find this skeleton of XNOP

graphs.

1

1

22
3

3
1

1

2

2 3

3

Figure 5.1: Two drawings of the double-hub with labeled symmetries.

The double-hub can be drawn as in Figure 5.1 to observe its symmetries. Every

resulting graph from BG-operations (1)-(3) to the double-hub is isomorphic to one

of the graphs shown in Figure 5.2, Figure 5.3, or Figure 5.4.

full-DH full-DH ≻ K2,4 full-DH ≻ K5\e

nonplanar full-DH full-DH full-DH

Figure 5.2: Graphs of DH+f , where f is of type (1).
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full-DH ≻ K2,4 ≻ K2,4 ≻ K2,4 nonplanar

full-DH nonplanar full-DH ≻WF1 ≻WF1

heptahdral nonplanar ≻ CUBE/e
nonplanar

nonplanar

heptahedral ≻ K2,4 full-DH full-DH full-DH

≻W5
≻W5 nonplanar full-DH ≻W5

full-DH full-DH ≻W5 full-DH ≻W5

Figure 5.3: Graphs of DH+f , where f is of type (2).
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≻ 1-eared W4 ≻ 1-eared W4 ≻WF1

≻ CUBE/e
nonplanar octahedral

nonplanar ≻ 1-eared W4 nonplanar ≻WF1

≻ CUBE/e
nonplanar

≻ WF1

≻ CUBE/e
≻ CUBE

nonplanar nonplanar ≻ 1-eared W4 nonplanar

≻ WF1 ≻ 1-eared W4 ≻WF1

≻WF6

nonplanar ≻WF6

nonplanar nonplanar ≻WF1

≻WF6

nonplanar nonplanar

nonplanar nonplanar nonplanar ≻ K2,4

≻ WF1

≻ WF6

≻WF1

Figure 5.4: Graphs of DH+f , where f is of type (3).
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Hence, the addition of a single edge to the DH gives us two new types of skele-

tons of XNOP graphs, the heptahedral, the octahedral. We explore the heptahedral

and the octahedral as skeletons of an XNOP graph in the next section.

5.2 Full-Heptahedral or Full-Octahedral XNOP Graphs

In this section, we use an approach similar to the ones in Sections 4.3 and 4.4.

We look at the vulnerable edges and the non-vulnerable edges to prove the following

main theorem.

Theorem 5.2. No XNOP graph is a full-heptahedral or a full-octahedral.

Proof. We divide this theorem into two sections, one on the full-heptahedral,

or full-HH, and one on the full-octahedral, or full-OH. We start with the full-HH.

We look first at the vulnerable edge of the heptahedral as shown in Figure 5.5
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Figure 5.5: G and G\e for an edge-separable L.

This lemma gives us a starting point for the non-vulnerable limbs of a full-HH.

Lemma 5.3. The non-vulnerable limbs of a full-HH are edge-separable.

Proof. Let G be a full-HH XNOP graph. Let L be the vulnerable limb of G. It is

easy to verify that if a non-vulnerable limb M of G is not edge-separable, then G\e
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for e ∈ E(N) is not OP. Then if G\e\f is OP, the edge f is an edge of L and the inner

limbs of G\e\f have no internal vertices. But, then G\f is also OP, a contradiction.

Figure 5.6 shows an example of one of the twelve non-vulnerable limbs of G. The

other cases are easy to verify.
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Figure 5.6: A non-vulnerable limb of G is edge-separable.

Hence, all limbs of G are edge-separable except the vulnerable limbs of G.

The vulnerable limb is edge-separable or not. The following lemma proves that if a

full-HH is XNOP, then the vulnerable limb is not edge-separable.

Lemma 5.4. If a full-HH graph G has a vulnerable limb that is edge-separable, then

G dominates K2,4 or WF1.

Proof. Let G be a full-HH XNOP graph with a vulnerable limb L that is edge-

separable. Then G\e is not OP for some e ∈ E(L). So, one or more of four limbs

must contain an internal vertex as shown in Figure 5.7.
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Figure 5.7: G\e is not OP.

But, if the limbs in Figure 5.7 (a), (c), or (d) have an internal vertex, then

G ≻WF1. So, the internal vertex must be as in Figure 5.7 (b). But, then G ≻ K2,4.
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Figure 5.8: G\e shows that G dominates an XNOP graph.
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This corollary follows and is easy to verify.

Corollary 5.5. The vulnerable limb of a full-HH XNOP graph is not edge-separable.

We have proved that all non-vulnerable limbs of G are edge-separable and the

vulnerable limb is not edge-separable. But, then G properly dominates S1 as shown

in Figure 5.9.
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Figure 5.9: G ≻ S1.

Since we have addressed all limbs of a full-HH and found no full-HH XNOP

graphs, we have proved the first part of the proof.

We now focus on graphs that are full-octahedrals. As in our proof of the full-

HH XNOP graphs, we look first at the vulnerable edges of a octahedral. There is one

vulnerable edge as shown in Figure 5.10
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Figure 5.10: G and G\e for an edge-separable L.
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The following lemma on the non-vulnerable limbs is our starting point.

Lemma 5.6. The non-vulnerable limbs of a full-OH are edge-separable.

Proof. Let G be a full-OH XNOP graph. Let L be the vulnerable limb of G. It is easy

to verify that if a non-vulnerable limb M of G is not edge-separable, then G\e for

e ∈ E(M) is not OP. Then if G\e\f is OP, the edge f is an edge of L and the inner

limbs of G\e\f have no internal vertices. But, then G\f is also OP, a contradiction.

Figure 5.11 shows an example of one of the twelve non-vulnerable limbs of G. The

other cases are easy to verify.
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Figure 5.11: A non-vulnerable limb of G is edge-separable.

Hence, all limbs of G are edge-separable except the vulnerable limb of G. The

vulnerable limb can be edge-separable or not. The following lemma proves that if a

full-OH is XNOP, then the vulnerable limb is not edge-separable.
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Lemma 5.7. If a full-OH graph G has a vulnerable limb that is edge-separable, then

G dominates K2,4, S5, or WF1.

Proof. Let G be a full-OH XNOP graph with a vulnerable limb L that is edge-

separable. Then G\e is not OP for some e ∈ E(L). So, one or more of three limbs

must contain an internal vertex as shown in Figure 5.12.

b

b

b

b

b

b

b

b

b

(a)

b

b

b

b

b

b

b

bb

(b)

b

b

b

b

b

b

b

b

b

(c)

b

b

b

b

b

b

b

b
b

(d)

Figure 5.12: G\e is not OP.

But, if the limbs in Figure 5.12 (a) and (c) have an internal vertex, then

G ≻ WF1. So, the internal vertex must be as in Figure 5.12 (b) or(d). If it is as in

case (b), then G ≻ K2,4. And, if it is as in case (d), then G ≻ S5. Hence, G is not a

full-OH XNOP graph.
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Figure 5.13: G\e is not OP.

This corollary follows and is easy to verify.

Corollary 5.8. The vulnerable limb of a full-OH XNOP graph is not edge-separable.

We have proved that all non-vulnerable limbs of G are edge-separable and the

vulnerable limb is not edge-separable. See Figure 5.14. But, then G ≻ S1.
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Figure 5.14: G ≻ S1.

In conclusion, we have addressed all limbs of a full-OH graph and found no

full-OH XNOP graphs. We have also examined both the full-heptahedral and the

full-octahedral and found no XNOP graphs. Hence, there is no need to search for

XNOP graphs with skeletons that have the heptahedral or the octahedral as a minor.



CHAPTER 6

CONCLUSIONS

6.1 Summary

This dissertation supplies another link in the chain of excluded or forbidden

graph characterization. By using the domination relation, we described a finite list

of minimal XNOP graphs. To do this, we introduced the concept of skeletons, limbs,

and joints. We also developed algorithms for testing whether or not a graph is NOP or

XNOP. With these algorithms, we replaced edges of skeletons with limbs and proved

the complete list of full-K4 XNOP graphs. Finally, we introduced the concept of

vulnerable edges to prove that the list of 58 XNOP graphs is complete.

6.2 Future Work

From Theorem 2.6 we found that excluding K4 yields a series parallel graph. A

natural extension of the work with near outer-planar graphs and series parallel graphs

would be to find an excluded list for near series parallel graphs. From preliminary

work, the excluded near series parallel graph (XNSP) list is not minor-closed and

not finite under topological minors. It is the author’s belief that near series parallel

graphs are closed under domination and that the XNSP list is finite. Also, since

K2,3 is allowed, no graphs that are XNSP have subdivided edges, and the skeleton
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ideas developed in this dissertation can be used, but with different specifications.

Algorithms for testing whether a graph is series parallel have been proved at linear

complexity. We can adapt these to SageMath, if necessary. It is the author’s

conjecture that the number of XNSP graphs will be fewer than the number of XNOP

graphs.

Another idea for future work was found while generating the list of possible

skeletons of XNOP graphs. We found an infinite list of 3-connected NOP graphs,

which we call bubble graphs. These graphs have a couple of unique features. Let G be

a bubble graph. There exists an edge e on a face with the largest number of vertices,

such that G\e is OP. The edge e, a vulnerable edge, lies on two faces, F1 and F2. The

length of a face of a plane graph G is the length of the walk in G that bounds it. For

the graphs that we have listed, we observe that the faces of G that are not F1 or F2

are of length three or four. There may be a relationship between these graphs and

fan graphs, which are a key element of maximal outer-planar graphs in [1]. Figure 6.1

shows the first fifteen bubble graphs with one vulnerable edge depicted with dashed

lines. The author would like to characterize these graphs in the future.
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K4 W4 3-prism W5 double-hub

1-eared W4 1-eared 3-prism heptahedral octahedral

Figure 6.1: The first fifteen bubble graphs, or skeleton graphs that are NOP, and a
vulnerable edge.
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LIST OF XNOP GRAPHS
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APPENDIX B

PLANAR EXAMPLES OF GRAPHS WHOSE LIMBS

DOMINATE K2,3 OR K4
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Planar Examples of Graphs of Theorem 2.4.

≻ K2,4

b

≻ K2,4 ≻ K2,4 ≻ KF1A ≻ KF1A

b

≻ KF1A

b

≻ K2,4

≻ KF1A

≻ KF1B

b

≻ KF1B

b

≻ KF1B

b

b

≻ K2,4

b

b

≻ K2,4

Figure B.1: Planar, full-K4 graphs with limbs of K2,3 or K4, of case (i), in the
graph L ∪H .
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≻ KF1A ≻ K2,4

b

≻ KF2A

b

≻ S4 ≻ S3

≻ KF2A ≻ KF2A

b

≻ S3

b

≻ S3

b
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b

≻ KF2A

b
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b
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b

b
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b
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b

b
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b
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b
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≻ S5

b

b
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b

b

≻ S5

b

b

≻ KF2A

b

b

≻ KF2A

Figure B.2: Planar, full-K4 graphs with limbs of K2,3 or K4, of case (ii), in the
graph L ∪H .
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≻ KF1B ≻ KF2B ≻ K2,4 ≻ S5 ≻ S5

≻ KF2B ≻ KF2B ≻ S6 ≻ KF2B ≻ S5

≻ S5 ≻ S6 ≻ KF2B

b

≻ S6

b

≻ S6

b

≻ KF2B

b

≻ KF2B

Figure B.3: Planar, full-K4 graphs with limbs of K2,3 or K4, of case (iii), in the
graph L ∪H .
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[13] Wagner, K., Über eine Eigenschaft der ebenen Komplexe, Math. Ann. (1937),
114: 570-–590

[14] West, D., Introduction to Graph Theory, 2nd Edition, Pearson Education Inc,
New Jersey, 2000



Index

adjacent edges, 3
adjacent vertices, 3
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edge contraction, 6
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edge-separable, 19
edges, 2
endpoints of an edge, 2
endpoints, path, 3
excluded near outer-planar, 10

faces, 6
frame, 11
full-S, 11

hub, 5

incidence relation, 2
incident, 3

independent paths, 3
isomorphism, 3

joint, 11

legs, 8
length, path, 3
limb, 12

minor, 6

near outer-planar, 7
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planar embedding, 6
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skeleton, 11
spokes, 5
spur, 5

128



129

subdivided, 7
subgraph, 3
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