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Abstract

We argue several decompositions of w-regular sets into rational Gs sets.
We measure the complexity of w-regular sets by the number of rational Gy sets
obtained by the decompositions. Barua (1992) studied a hierarchy R,(n =
1,2,3,--), where R, is a class of w-regular sets which are decomposed into n
rational G; sets forming a decreasing sequence. On the other hand, Kaminski
(1985) defined a hierarchy B,,,(m = 1,2,3,-- -}, where B, is a class of w-regular
sets which are decomposed into 2m rational Gg sets not necessarily forming a
decreasing sequence. Already it is reported that B,, = Ry, by Takahashi(1995).
And besides we show B,, — Ra,, where B, is a class of w-regular sets whose
defining condition is more lenient than that of Ry,. In conclusion, we state
that various hierarchies are reduced to four types of hierarchies.

1. Introduction

Barua[l] obtained some important results about a hierarchy of w-
regular sets R,(n =1,2,3,---), where R, is a class of w-regular sets
L satisfying (1) below:

There exist rational Gs sets Gy, Gh,+++,Gp-1 such that

Gp2G1 2+ 2Gr

and

n—1

L= U (Gi—Gi1). (1)

t.even
In the meanwhile, Kaminski[2| had researched some hierarchies of
w-regular sets B,, RB,, LB,, and LRB,; (n =1,2,3, ), where
B, is a class of w-regular sets L satisfying (2):
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There exists rational Gs sets Ay, By, -+ -, An, By, such that
L = -Ul(Ai — By). (2)

There are differences in appearance between (1) and (2). In (1)
the component sets constructing L are linearly ordered w.r.t. set
inclusion, whereas in (2) the component sets don’t have any order
w.r.t. set inclusion.

Recently, Takahashi[5] has shown that B, = Ry, (n = 1,2,3,-- ).
The truth is that B, and LRB,;; have mutually dual relation, and
besides RB,, and LB,, are dual. Therefore we define a class of w-
regular sets £, which is the dual class of R,,. Moreover, we define
two classes R, and L;, of w-regular sets whose component sets are not
rational G, but rational F,. And then we consider mutual relation
among four classes R,, £,, R,, and L,.

2. Preliminary and background

Let 3 be an alphabet containing at least two elements. We denote
the set of all words over ¥ including the empty word ¢ by £*. ©*
without ¢ is denoted by £*. Let w be the set of all natural numbers.
A mapping from w to ¥ is called an w-word over ©. By £“ we denote
the set of all w-words over ¥. An w-word @ € X% is written as
a = aqpoag--- where o = a(i) (¢ = 0,1,2,---). We call a subset
of ¥* (¥, resp) a language (w-language) over . For A C T* and
B C ¥* U X we define the catenation of A and B as

AB={zyeX*UX z€ A, ye€ B}.
The w-power of L C ¥* is an w-language defined as
LY = {zox122--- € ¥ |2 € L —{e} for all icw}.

For z € ¥* and z € Z*U X% if 2 = zy for some y € ¥* US¥, z is
called an initial segment of z, and we denote the relation by z < 2.

Definition 2.1. For each z € ¥*, we define an open base for x as
follows:
Ny={aeZ|z < a}.
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An w-language A C ¥ is an openset of the product topology
on ¢ if A= UgcpN, for some B C &*. An w-language is closed if
its complement is open. Let G (F') denote the set of all open (closed)
sets. Fy (Gg) is the set of all denumerable unions (intersections) of
closed (open) sets. G, (Fys) is the set of all denumerable unions
(intersections) of Gs (F,) sets, respectively. The rest of the Borel
- hierarchy is defined in the same manner.

Definition 2.2. For a given ¥-table M = (Q, X, 6, qp), we define
the following sets:

For ¢ € Q and u € %, let R(q,u) = {6(q,v) | v < u}. We also
define M, = {R(q,u) | 6(¢q,u) = q for some u € £}, and set
R(M) = Ugeq M,.

Definition 2.3. Given a Y-table M = (Q, %, 8, qo) and an w-word
a € 2, the run r of M on « is a mapping from w to Q such that
7(0) =q0, r(n+1)=46(r(n),a(n)) forn >0.

Then we formulate a set of states occurring infinitely many times
while M runs on a € T¥, as follows:

In(a, M) = {q € Q| card(r™'(g)) = Ro}-

Given a finite automaton (M, F), we call the w-language L((M, F)) =
{a € Z¢| In(a, M) N F # ¢} (which is Biichi-accepted by (M, F)
a rational Gs set. A rational F,; set is a set whose complement is a

rational G5 set. We denote the set of all rational G sets (F, sets,
resp) by Oz (O4) (cf. Kobayashi et al.[3]).

For a given -table M = (Q,%,6,q) and a family of state sets
F CR(M), we call (M, F) a Muller automaton. Given a Muller au-
tomaton (M, F), we define the w-language Muller-accepted by (M, F)
as follows:

L((M,F)) ={a x| In(a, M) € F}.

Kaminski[2] studied the following four classes.

Definition 2.4. We define four classes RB,,, B,,, LB,, and LRB,,
of w-regular sets as follows.
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(a) Le RB, (n>1)

&4 There exist rational Gg sets Ay, By, -+, An—1, Br-1, As
such that ' »
L=1J (A, — Bi) U A,.
i=1

(b) LB, (n>1)
&L There exist rational G; sets Ay, By, -+ -, Ay, B, such that

L= (A —By).
i=1
(¢) LeLB, (n>1)
&L There exist rational G sets Bi1, Ag, By, -+, Ay, By, such
that n
L:—BIU U (A’L_BZ))
=2

where —B; = Bj.

(d) L €« LRB,, (n > 2)
&Ly There exist rational Ggssets By, Ay, By, - -+, An_1, B_1, An
such that

n—1
L=-BUJ (4 - B)U A,
i=2

On the basis of the Biichi-McNaughton theorem, we can conclude
that any w-regular set is in F,5s N Gs,. Accordingly, by restricting the
number of quantifiers to 2 in the theorem of Kuratowski[4, §37. III],
we obtain the following corollary.

Corollary 2.5. A set A C X% is in both Fys and G, if and only
if there exists a countable transfinite ordinal i such that

1
A= U (Gr—Gr)
Aeven
with decreasing sequence Gy 2 G1 2 --- 2 G, where each G 15 a G
set in X*. Here if u is even, let G, = ¢.

Corresponding to the ordinal number ., Barua[l] defined the class
D, +1 which consists of such set A’s as mentioned in Corollary 2.5. In
particular, D; = Gys. He constructed a class R,(n > 1) of w-regular
sets taking the finite ordinal n € w as p, as Definition 2.6.(a).
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Definition 2.6.
(a) For each n > 0 we define a class R,+; of w-regular sets as
follows.
Lisin Ry iof there exist rational Gy sets Gy, G, -+, Gy,
such that
Go2G12--2G, and

n

L= U (Gi—Gi).

G, G1,- -+, Gy are called the component sets of L. In particular,
Ri=0Os.

We define a class £,, as the dual class of R,,.

(b) For each n > 0 we define a class £, of w-regular sets as
follows. ,

Lisin £, 4 iff there exist rational Gs sets Gy, G, -+, G
such that

Go2G12---2G, and

n
L=-GyU |J (Gi — Git1).
1:0dd
The Barua hierarchy R, (n > 1) is composed of w-regular sets
whose component sets are all multiplicative (Gs). Hence, by replac-
ing the multiplicative sets by the additive (F,) sets, we define two
classes of w-regular sets whose component sets are all rational F,.
(c) For each n > 0 we define a class R, of w-regular sets as
follows. |
Lisin R, ¢ iff there exist rational F, sets Fgy, Fy, -+, F},
such that
Fop2F2---2F, and

n

L= (Fi—Fi).

1.even
(d) For each n > 0 we define a class L, of w-regular sets as
follows. .
Lis in Lnty iff there exist rational F, sets Fy, Iy, -, Fy,
such that
Fp2F2---2F, and

L=-FoU {J (F— Fi1).
i:0dd
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From the definitions, we immediately obtain the following two lem-
mas.

Lemma 2.7. Forn>1

(3») Ly, C Ly,

(b) R, C Ry,

(C) Ln - Ln+1-

These inclusions turn out to be proper in Theorem 3.6.

Lemma 2.8.
(a) LeL, f L €R,
(b) LeL, if LeR,.

As for RB,,B,,LB,,,LRB,.,; and R,, L, (n = 1,2,3,--), we
have already known the following theorem.

Theorem 2.9. (Takahashi[5, Theorem 3.11]) Forn >0
(a) RBni1= Ronya,
(b) Bn+1 = Ransa,
(C) LBrni1 = Longty,
(d) LRB.i2 = Lonyo.

The following result is obtained using D, C D41 for any n > 1.

Theorem 2.10. (Barua[l, Theorem 6.3])
O3=R1CR3CR3CRyC---.

3. Various kinds of hierarchies

Recently, the close relations between the Barua hierarchy and the
Kaminski hierarchy were shown by Takahashi[5]. The component sets
constructing an w-regular set in the Barua hierarchy always make a
decreasing sequence w.r.t. set inclusion. But the component sets con-
structing an w-regular set in the Kaminski hierarchy don’t necessarily
make a decreasing sequence. Therefore we investigate an intermedi-
ate decreasing condition of these two modes. That is, we consider the
following four kinds of classes of w-regular sets which are composed of
component sets A;, B; (i = 1,2, ---,n) with the alternately decreasing
sequence
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(*) Bl :_)BZ 2 QBn,

instead of the successively decreasing sequence

(#¥) A12 B12 A2 2By D+ D A, D B,

required in the definition of R,,, £,,. We can conclude that there is no
distinction between the classes constructed with decrements (x) and
(¥x). In other words, even if we consider Kaminski’s four kinds of
classes of w-regular sets, we can assume decrement (%) or (**) accord-
ing to the situation. Furthermore we can determine some relations
among R—,L—,R—, and L—classes. Consequently we can conclude
the existence of four hierarchies {R,}, {£,}, {R,}, and {L,}.

Definition 3.1. We define four classes of w-regular sets as follows.
(@) LERB, (n>1)
&Ly There exist rational G;s sets Ay, By, -+, A,_1, Ba_y, A,

such that

n~1
BlgBQQ"'QBn_l and L = U(Az_Bz)UAn
i=1

(b) Le B, (n>1)
ety There exist rational Gs sets Aj, B, -+, A,, B, such that

Bl QBQQ QBn and [ = U(Az‘_Bz)
i=1
(c) Le LB, (n>1)
& There exist rational G sets By, Ay, By, .-, A,, B, such
that

Blnggan and L:—31U U(Az—Bz)
‘ i=2

(d) L € LRB, (n > 2)
&L There exist rational Gg sets By, Ag, By, -+, An_1, Bn_1, Ay,

such that

‘ n—1
BlgBQQ"'QBn_l and L:—81U U(Az—BZ)UAn
i=2

We note the difference between Definition 2.4 and Definition 3.1.
In Definition 2.4, the component sets do not necessarily possess de-
creasing property. On the other hand, in Definition 3.1 the component
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sets always have an alternate decreasing property. First, we prove the
following theorem.

Theorem 3.2. Forn >1

(a) RB, = Rau-1,

(b) BTE - RQTL)

(C) [an — E?n—l)

(d) LRBpi1 = Lon.

Proof. First we demonstrate point (b). Let L be in B, i.e.,

L=(A—B)U-U(A, — By)

for some rational G sets A1, By, -, A, B, with By O By O --- D By,
Construct rational Gs sets G; (¢ =0,1,---,2n — 1) as follows.

For ] = 0, 1,' R { B 1, set GQJ‘ = U?:j+1(Ai U Bz) and G2j+1 =
Bjy1 UUL42(Ai U B;). Then we immediately see that Gy O G, 2
+++ D Ggp—1. Furthermore, L can be transformed as follows?.

L = A-By By - Bn+Ay-By-Bs---Bo+-+++ An-1- Bno1- By
+ A, - By
= (("'((Al'§1+A2)BQ+A3)FB+"'+Anu1)§n—l+An)§n
= ((-+-((A1-B1- A2+ A9)By - A3+ A3) B3 - Ay + -+ + An-i)
B, 1Ay + Ay B,
= A1-B1-Ay-By-Az--- A, By,

+ Ay By-As--- A, By

+ An—l ) Fn—l ’ Zn ’ Bn

+ An : —Bn
2n—1
= U (Gi— Giy)

i.even

Hence B,, C Rj,. Since the reverse inclusion is trivial, we obtain
point (b). Point (a) is a corollary of point (b). Points (d) and (c) are
also obtained similarly to points (b) and (a). 1

From Theorem 2.9 and Theorem 3.2 we obtain Theorem 3.3. Theo-
rem 3.3 indicates that the alternate decreasing property of component
sets is not essential.

14, ., — indicate union, intersection, and complement, respectively.
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Theorem 3.3. Forn >1

(a) RB,= RB,,

(b) B, = B,,

(¢) LB, = LB,,

(d) LRB,,1 = LRB, ;.

Note: In Theorem 3.3, it is obvious from the definitions that the
left-hand sides are included in the right-hand sides.

In the following, we study the relations among four classes R, £,, R,
and L,,.

Lemma 3.4. Forn >1

(a) Ron = Ry,
(b) R2n—1 = ﬁ?n—l,
(C) L2n = £2’ﬂ)

(d) Loy1 = Ron—1.
Proof. We prove only point (a), because points (b), (c) and (d)
are also proved in the same manner.
L € Ry,

«—  There exist rational F,; sets Fy, Fy,- -+, F5,_1 such that
2n—1

Fo2F12:- 219 1 and L= |J (Fi— Fiq1).

i.even

(—L There ekist rational Gs sets Gy, Gy, -, Gon_1 such that
2n—1
Go2G12---2G0-1 and L= | (G;— Gi).
For :=0,1,---,2n — 1, let
9| Gi =X~ Fgn_1)—; for only if part, and let
Fi =¥ — G(Zn—l)—i for if part.
— L eRy, i

Lemma 3.5. Forany n>1
(a-) R, = R'n—H 7/]3(‘ L, = Ln+17
(b) Rn = R Zﬁ L, = £n+l-

Proof. We prove only point (a), because point (b) is proved sim-
ilarly to point (a).
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(only if part): We assume R,, = R, ;1. Then the following equiva-
lence holds.

LeL,
«— LeR, by Lemma 2.8
«—— LeR, by the assumption
—— L €L, by Lemma 2.8

(if part): This is proved in a similar manner to the only if part. §

Theorem 3.6. Forn >1

(a,) Rn C Rn+1,

(b) Ln C £n+1)

(C) R, C Rn+11

(d) L, C Ln+1.

Proof. By Lemma 2.7, it suffices to show that the inclusions are
strict.

(a) follows from Theorem 2.10 (Barua[l, Theorem 6.3]).

(b) Suppose L, = L, for some n > 1. Then we would have
Ryn = Rn41 from Lemma 3.5 (b). This contradicts point (a).

(cf) Suppose R,, = R, for some even n > 1. Then we have the
following.

Rnt1 = Lnpi by Lemma 3.4 (d)
= L, by Lemma 3.5 (a)
= L, by Lemma 3.4 (c)
C Ly | by point (b)
= R, by Lemma 3.4 (b)
= R, by assumption
= R, by Lemma 3.4 (a)

This contradicts point (a). Hence R, C R, ;; for any even n > 1.
The proof can be given similarly for odd n > 1.

(d) If L, = Lpy for some n > 1, then we have R, = R, by
Lemma 3.5 (a). This contradicts point (c). i

4. Concluding remarks

We present our results as the diagram in Fig.1, which shows that
the hierarchy studied by Wagner[6] and Kaminski[2] coincides with

The existence of class Ly, and the proof of (c) were suggested by Professor H. Yamasaki (private
communication).
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that studied by Barua[l]. Kaminski’s hierarchy is based on the density
of designated state sets of Muller automata. On the other hand,
Barua’s hierarchy is based on classical descriptive set theory. Since
these two hierarchies coincide with each other in spite of the different
backgrounds, we can conclude that the classes form a stable hierarchy
of w-regular sets.

-—+RB2 By---~ RB;--

> e

LB;--— LRBy-~ LB, --~ LRB;-~ LB3--— LRB4-» -
| I | | I I

LBi—— LRBy— LBr— LRBy— LBy LRB— - -
| I I I | I

Ly —— Ly — L3—— L4 —+ L5— L5—
I | I I I |

RB,— B; RBy—— By —— RB;3 B;

I | I | I I
RB;--~ B;---~RBy---~ By~ RB3---= B3 --- ~

The arrows used here express strict inclusion.

---~ shows already known results. —— shows new results.

Fig.1.
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