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Small-angle neutron scattering with polarization analysis reveals that Fe3O4 nanoparticles with 90
Å diameters have ferrimagnetic moments significantly reduced from that of bulk Fe3O4 at 10 K,
nominal saturation. Combined with previous results for an equivalent applied field at 200 K, a
core-disordered shell picture of a spatially reduced ferrimagnetic core emerges, even well below the
bulk blocking temperature. Zero-field cooling suggests that this magnetic morphology may be
intrinsic to the nanoparticle, rather than field induced, at 10 K. © 2010 American Institute of
Physics. �doi:10.1063/1.3358049�

I. INTRODUCTION

Magnetic nanoparticles are highly desirable for applica-
tions including magnetic media, hyperthermia treatment of
cancer, and magnetically directed drug delivery. While the
optimal level of magnetic coupling or “cross-talk” between
nanoparticles can vary dramatically, common to all these ap-
plications is a need to predict and either control or work
within the framework of these magnetic interactions. How-
ever, magnetic coupling is dependent not only on the physi-
cal separation and three-dimensional packing arrangement of
the nanoparticles but also on their internal magnetic struc-
tures of which less in known. Magnetically distinctive shells,
for example, have been shown to significantly impact both
coupling strength1 and stability.2

Magnetite �Fe3O4�, a ferrimagnet of moment comparable
to that of nickel, is both resistant to oxidation and biocom-
patible when synthesized under appropriate conditions. Our
sample consists of highly monodisperse, 90 Å diameter
Fe3O4 nanospheres, prepared similar to Ref. 3, with empha-
sis on monodispersity over biocompatibility. Slowly precipi-
tated from solution, the nanoparticles self assemble into face-
centered cubic crystallites4 with order of up to 1 �m.
Reduction in their magnetic moments compared to bulk
Fe3O4 has led to hypotheses of a disordered, magnetically
inactive shell.5–8 Recently, however, an ordered magnetic
shell 10 Å�2 Å thick, canted at 90° to the ferrimagnetic
core, was detected in an applied field of 1.2 T at 200 K.9 The
aim of this work is to determine if this internal magnetic
arrangement changes as the temperature drops below the
blocking temperature of 65 K, as determined by magnetom-
etry.

Polarization analyzed small-angle neutron scattering

�SANS� is an ideal technique because it can detect the dis-
tribution and orientation of magnetic structures with subna-
nometer resolution. Depending on the direction of the sample
moment relative to the neutron spin, a scattering neutron
may either undergo spin inversion �spin flip �SF� +− and −
+�� or remain in its original orientation �non-spin-flip �NSF�
++ and −−�. Measurement of all four possible cross sections
�++,+−,−+,−−� enables full separation of the scattering
originating from nuclear structure �N2�, the magnetic struc-
ture of moments parallel with an applied field �M2

X
=M2

PARL�, and the magnetic structure of moments oriented
in the two remaining perpendicular directions �M2

Y+M2
Z

=M2
PERP, assuming M2

Y=M2
Z�.10,11 The observed scattering

intensity, I, a function of scattering wave vector, Q, is pro-
portional to the squared absolute value of these spatial Fou-
rier transforms defined as

N,MJ�Q� = �
K

�K,Je
iQ� ·R� K, �1�

where J is any Cartesian coordinate, � is the structural or
magnetic scattering length density, and R� K is the relative
position of the Kth scatterer.

II. EXPERIMENTAL DETAILS

A SANS experiment with polarization involves applica-
tion of an external magnetic field that defines the axis about
which neutron magnetic moments randomly align parallel or
antiparallel �arbitrarily denoted as + or ��. Polarization is
accomplished with an FeSi supermirror cavity, followed by
an electromagnetic precession coil employed to reverse ori-
entation at will. Neutron spin analysis of the divergent beam
after interaction with the sample is made possible by a 3He
spin filter.12,13 The four scattering cross sections are collected
on a two-dimensional �2D� position sensitive detector. Aftera�Electronic mail: kathryn.krycka@nist.gov.
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correcting for the efficiencies of the supermirror, flipper, and
3He analyzer, data taken under zero-field cooled conditions
at 10 K in a 0.15 T field are shown in Fig. 1.

To most easily interpret these images, we note that spin-
scattering selection rules9,10 simplify at several key orienta-
tions in SANS geometry. With the incoming beam along Z,
the applied field along X, and the detector set within the X-Y
plane, we have

I�=0°
++,−− = N2 �2�

I�=90°
++,−− = N2 + M2

PARL � 2NMPARL, �3�

I�=0°
+−,−+ = M2

Y + M2
Z = 2M2

PERP, �4�

I�=90°
+−,−+ = M2

Z = M2
PERP, �5�

where � is the angle between the X axis and the projection of
Q onto the X-Y plane.

Sector slices of �10° about �=0°, 90°, taken from the
2D data of Fig. 1, embody the features contained within Eqs.
2–5. Figure 2�a� clearly depicts the + /− interference term of
NMPARL in I++,−− along the vertical ��=90°� axis, compared
to only N2 in I++,−− along the horizontal ��=0°� axis. Figure
2�b� shows a twofold increase in I+−,−+ along the horizontal
��=0°� compared to I+−,−+ along the vertical ��=90°�, which

indicates that the magnetic structure along the two directions
perpendicular to the applied field are equivalent, as expected.

III. RESULTS

Additional processing of these sector slices allows for
the complete separation of N2, M2

PARL, and M2
PERP.11 Spe-

cifically, we use

N2 =
�I�=0°

++ + I�=0°
−− �

2
, �6�

M2
PARL =

�I�=90°
−− − I�=90°

++ �2

16N2 , �7�

M2
PERP =

�I�=0°
+− + I�=0°

−+ + I�=90°
+− + I�=90°

−+ �
6

. �8�

N2 �Fig. 3�a�� does not change as a function of field and, as
such, it is used as a standard by which to normalize the data
under different field condition. Its Bragg peak at 0.08 Å−1

arises primarily from the �111� face-centered cubic reflection
of the nanoparticle lattice of length 136 Å. In comparing
M2

PARL and M2
PERP �Fig. 3�a� and 3�b�, respectively�, it is

clear that as the applied field is decreased, the net magnetism
along the field direction decreases while simultaneously re-
appearing as an increase in the moments perpendicular to the
applied field. The reason M2

PARL adopts a Bragg peak similar
to N2 is that long-range magnetic ordering, with periodicity
of the parent nanoparticle array, is induced when all the
nanoparticle moments are forced to align by application of a
strong applied field. The nanoparticle lattice structure, how-
ever, is not imposed on M2

PERP �and these magnetic correla-
tions peak at a lower-Q value, consistent with shorter-range
magnetic correlations�.

FIG. 1. �Color online� The four cross sections for Fe3O4 nanoparticle scat-
tering at 10 K, 0.15 T after correcting for the efficiencies of the polarizing
elements. NSF scattering �++,−−� is dominated by N2 and the interference
term, NMPARL. SF scattering �+−,−+� contains only magnetic scattering
information.

FIG. 2. �Color online� Sector slices of the 2D data. �a� Note the magnitude
of NMPARL in comparison with N2 as both N and MPARL originate from
similar structure factors. �b� The 2:1 M2

PERP scattering along �=0° and 90°,
respectively, indicates that the magnetic structure along the two directions
perpendicular to the applied field are equivalent.

FIG. 3. �Color online� Separation of N2, M2
PARL, and M2

PERP. �a� N2 and �b�
M2

PARL have similar Bragg peaks at 0.080 Å−1 arising from the �111� re-
flection of the face-centered cubic lattice of nanoparticles. �c� M2

PERP has an
increase in low-Q scattering that indicates short-range correlations exist be-
tween nanoparticles.
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The Bragg peak ratio of M2
PARL:N2 �Fig. 3�a� and 3�b��

provides a means by which to measure the net magnetic mo-
ment of each nanoparticle, independent of the sample vol-
ume or mass. For this analysis we assume the structural �
does not vary from the bulk value for Fe3O4 of 6.97
�10−6 Å−2,14 while the magnetic � can deviate somewhat
from its bulk value of 1.46�10−6 Å−2, corresponding to a
magnetization of 5.13�105 A /m. If the ferrimagnetic cores
occupy exactly the same region as their host nanoparticles,
then bulk values would produce a M2

PARL:N2 intensity ratio
0.044. Experimentally, we find this ratio to be 0.032, 0.025,
and 0.0027�0.001 at 10 K and fields of 1.2, 0.15, and 0.016
T, respectively. This means that even at conditions of nomi-
nal saturation the ferrimagnetic nanoparticle moment is sig-
nificantly reduced from bulk.

This reduced ferrimagnetic moment could be explained
by either a uniform reduction in moment across the entire
nanoparticle or by a ferrimagnetic core reduced in spatial
extent. In comparison, at 200 K, 1.2 T a M2

PARL:N2 ratio of
0.031�0.001 was measured, while perpendicular magnetic
scattering revealed the presence of ordered, canted magnetic
shells 10�2Å thick, leading to a core-shell model of mag-
netism. 9 Given the similarity of the 1.2 T M2

PARL:N2 ratios
at 10 K and 200 K, we propose that the two underlying
ferrimagnetic structures are in all likelihood equivalent in
nominally saturating fields below and above the bulk block-
ing temperature. The 10 K state, however, differs from the
200 K state in that no scattering evidence for ordered per-
pendicular magnetic shells was observed.9 This additionally
suggests the probably disordering5–8 of the magnetic shell
upon zero-field cooling to 10 K.

IV. CONCLUSIONS

In summary we have employed SANS with full polar-
ization analysis to measure the ferrimagnetic moment of
magnetite nanoparticles below their blocking temperature
under a variety of fields. Under nominal saturation, a ferri-
magnetic moment significantly reduced from bulk was mea-
sured that is consistent with application of the same magnetic
field at 200 K. Taken together, this suggests a ferromagnetc
core that is reduced in spatial extent within its parent nano-
particle.

Additional experiments, with emphasis on SF scattering
from which it is possible to directly access the magnetic

moments perpendicular to the applied field, have helped to
clarify the role of temperature on magnetic core-shell behav-
ior at high fields. For the future, we are especially keen to
determine whether robust magnetic shells exist under re-
duced field conditions where devices incorporating the nano-
particles will typically be operated, especially at very low
temperatures.
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