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Abstract 2 

 Accurate ion microprobe analysis of oxygen isotope ratios in garnet is possible if 3 

appropriate standards are employed to correct for instrumental bias, a component of which 4 

depends on the cation chemistry of the analyzed mineral.  In this study, 26 garnet standards 5 

(including 14 new standards) that span the compositional range of pyrope, almandine, 6 

grossular, spessartine, and andradite were analyzed repeatedly by ion microprobe to develop 7 

a new method of correcting for instrumental bias in garnets. All analyses were normalized to 8 

a single master garnet standard (UWG-2) before bias from cation composition was 9 

considered. Bias due to cation composition in garnet was found to correlate with grossular 10 

content in pyralspite garnets and with andradite in ugrandite garnets. Bias is correlated with 11 

molar volume in garnets of all compositions in this study. Although this correlation is 12 

suitable as a correction scheme for bias, a more accurate correction scheme based on the 13 

grossular and andradite compositions of garnet is proposed.  This method reproduces the bias 14 

of all but one standard to within a range of 0.4‰, an accuracy that is on the same order as the 15 

reproducibility (±0.3‰, 2 S.D.) of the master garnet standard UWG-2, but that remains an 16 

independent source of error. The new correction scheme is used to successfully reproduce 17 

laser fluorination analyses along a traverse of a polymetamorphic, zoned skarn garnet from 18 

the Adirondack Mountains.  While previous analyses were at the mm-scale, the new data 19 

resolve a gradient of δ
18

O of 2.1‰ over 16 µm. If experimentally derived diffusion 20 

coefficients are correct, these new results show that granulite-facies metamorphism was 21 

significantly faster than previously assumed and the thermal peak was less than 5 Myr. 22 

 23 

 24 
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1. Introduction 25 

 Metamorphism in hydrothermal systems or skarns is often accompanied by radical 26 

shifts in fluid composition and temperature over short time scales (e.g., Taylor and O'Neil, 27 

1977; Bowman, 1998). In response to these changes, garnets and other minerals may form 28 

oscillatory zoning patterns in their major and trace element chemistry (e.g., Yardley et al., 29 

1991; Jamtveit et al., 1993) as well as their oxygen isotope ratios (e.g., Clechenko and 30 

Valley, 2003). These micro-scale chemical and isotopic variations can be used to reconstruct 31 

ancient metamorphic fluid regimes. In particular, the oxygen isotope ratio of metamorphic 32 

garnet is a powerful tracer of hydrothermal systems because of the strong isotopic contrast 33 

between meteoric and most magmatic fluids (Valley, 1986) and the ability of garnet to 34 

preserve these ratios because of slow intragranular diffusion (e.g., Coghlan, 1990; Lancaster 35 

et al., 2009). However, the scale of isotopic heterogeneity within skarn minerals is generally 36 

much smaller that the volume of material required for analysis by conventional methods. 37 

Because of this, skarn garnets are an excellent target for oxygen isotope analysis by ion 38 

microprobe, and two studies have used single-collector ion microprobes to show that garnets 39 

preserve a detailed oxygen isotopic record of hydrothermal fluid history (Jamtveit and 40 

Hervig, 1994; Crowe et al., 2001). 41 

 The most recent generation of multicollector ion microprobes has allowed significant 42 

advances for in situ oxygen isotope analysis both in terms of reduced analysis spot size and 43 

in analytical precision. Analyses of minerals with limited cation solid solution, such as zircon 44 

and quartz, have improved from ± 2‰ (2 S.D.) on 30 µm diameter pits (e.g., Valley and 45 

Graham, 1991) to ± 0.7‰ (2 S.D.) on 20 µm pits (Cavosie et al., 2005) to ± 0.3‰ (2 S.D.) on 46 

10 µm pits (Kelly et al., 2007; Kita et al., 2009; Valley and Kita; 2009). For ultra-small spots 47 
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(< 1µm in diameter) Page et al. (2007) attained a precision of ± 2‰ (2 S.D.). The smaller 48 

spot sizes and better precision can be attributed to improvements in technology and to 49 

refinements in technique, which include tuning and operation of the instrument, sample 50 

preparation, and standardization (Kita et al., 2009; Valley and Kita, 2009). For some 51 

minerals, including magnetite and hematite, the orientation of the crystal lattice has been 52 

shown to affect the instrument bias (Huberty et al. 2009), however, the data reported here 53 

show that any such orientation effect is smaller than the grain-to-grain precision of ±0.3‰ 54 

that is regularly attained for randomly orientated grains of garnet. Due to the significant 55 

instrument bias inherent in ion microprobe analysis (e.g., Shimizu and Hart, 1982), accurate 56 

measurements of stable isotope ratios must be empirically corrected by regular and frequent 57 

analysis of well-characterized reference material. Because variable cation composition of 58 

some minerals or glasses contributes to the instrumental bias (the "matrix effect" or 59 

instrumental mass fractionation e.g., Eiler et al., 1997; Valley and Kita, 2009), most ion 60 

microprobe studies of oxygen isotope ratios have been confined to phases of limited solid 61 

solution (e.g., zircon, quartz, calcite). In addition, many papers that address instrumental bias 62 

and propose correction schemes were developed for a previous generation of single-collector 63 

ion microprobes that made use of extreme energy filtering with only one collector and 64 

relatively low mass resolution (e.g., Hervig et al., 1992; Riciputi and Paterson, 1994; Eiler et 65 

al., 1997; Riciputi et al., 1998). Under these conditions, the instrumental bias can be in 66 

excess of 50‰ for δ
18

O. More recently, Vielzeuf et al. (2005a) addressed the issue of bias in 67 

a large-radius multicollector ion microprobe, specifically in aluminous Fe
2+

-Mg-Ca garnets, 68 

and developed a new correction scheme to allow relatively accurate analyses of these 69 

compositions (± 1-2‰, 30-50µm pits). The instrument bias for these analyses at high mass-70 
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resolution (MRP~2500) and low energy offset was significantly lower, below 7‰. The 71 

cation compositional range of the standards introduced by Vielzeuf et al. (2005a) are 72 

sufficient to address the instrumental bias in Al-rich Fe
2+

-Mg-Ca (pyralspite) garnets 73 

commonly found in metasedimentary, metamafic, and some igneous rocks. There are several 74 

studies that have established oxygen isotope zoning in garnets of these compositions (e.g., 75 

Kohn et al., 1993, 1994, 1997; Skelton et al., 2002; Peck and Valley, 2004) and some that 76 

have made use of ion microprobe analysis of zoned pyralspite garnets (Vielzeuf et al., 77 

2005a,b; Martin et al., 2006; Lancaster et al., 2009). However, hydrothermal skarn garnets 78 

are most commonly Ca-rich with variable Fe
3+

/Al (ugrandite) and the Vielzeuf et al. (2005a) 79 

standard set and correction scheme does not extend to these compositions. 80 

The present study uses new, higher precision analyses by the latest generation 81 

multicollector ion microprobe (ims-1280) to examine instrumental bias systematically from 82 

26 garnet standards covering a wide range of solid solution, including more Ca-rich grossular 83 

and andradite compositions. This study has three main goals: 1) to increase the range of 84 

possible applications of this method; 2) to develop more straightforward, flexible and 85 

accurate correction schemes; and 3) to use these methods to place constraints on the rate of 86 

oxygen diffusion in garnet. We have applied our new correction procedure in the analysis of 87 

an oscillatory-zoned garnet from the Willsboro Mine, a polymetamorphosed garnet-diopside-88 

wollastonite skarn from the Adirondack Mountains, New York, USA, described by 89 

Clechenko and Valley (2003). 90 

 91 

2. Garnet Standards 92 
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 In this study, 27 garnet standards were used to evaluate matrix effects in oxygen 93 

isotope analysis by ion microprobe (Table 1).  All of these standards were evaluated for 94 

oxygen isotopic homogeneity by ion microprobe, and for cation homogeneity by electron 95 

microprobe (Supplementary Table A). Oxygen isotope ratios were determined by laser 96 

fluorination for all new standards, and in some cases existing standards were analyzed as 97 

well for comparison to values in the literature. The standards used in this study and their 98 

average cation and isotopic compositions and observed isotopic variability are recorded in 99 

Table 1; cation compositions are shown in Figure 1; electron microprobe analyses, cation 100 

variability and formula calculation are found in Table A, supplementary electronic materials. 101 

 Five garnet standards (Fig. 1) from Eiler et al. (1997) provide near-end-member 102 

compositions for grossular (GrsSE) and spessartine (SpsSE) garnets as well as slightly more 103 

dilute almandine (AlmSE & AlmCMG), and one intermediate almandine-pyrope (UWG-2) 104 

that is an extremely well-characterized standard for laser fluorination analysis of δ
18

O 105 

(Valley et al., 1995). Vielzeuf et al. (2005a) increased the cation compositional range of ion 106 

microprobe garnet standards, particularly along the pyrope-almandine join by including an 107 

end-member pyrope from the Dora Maira quartzite (PypDM) and five more intermediate 108 

compositions (PypMM, PypAk, PypAA, Bal509, β114). In addition, they included one more 109 

standard on the almandine-grossular join (2B3). Detailed information on the origins of these 110 

standards as well as chemical composition and unit cell dimensions can be found in Vielzeuf 111 

et al. (2005a).  112 

  In addition to these existing standards, we introduce 6 garnet standards from eclogitic 113 

xenoliths in kimberlite with intermediate almandine – pyrope compositions and from 7 to 61 114 

mol % grossular. Standards 13-63-21, 13-62-27, 13-62-29, 13-63-20, and 13-63-44 were 115 
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separated by Dan Schulze from xenoliths found in the Blaauwbosch kimberlite, South Africa 116 

(Ford, 1987; Schulze et al., 2003). Standard R-53 is from an eclogitic xenolith found in the 117 

Roberts-Victor kimberlite (Garlick et al., 1971; MacGregor and Manton, 1986). To 118 

supplement the grossular-rich standard (GrsSE) used by both Eiler et al. (1997) and Vielzeuf 119 

et al. (2005a), we introduce three more grossular-rich garnets (92W-1, 10691, AF749A) from 120 

garnet-diopside-wollastonite skarn metamorphosed to the granulite faces (Willsboro-Lewis 121 

skarn belt, Adirondack Mts., Kohn and Valley, 1998). An additional grossular-rich sample, 122 

MexGrs (Riciputi et al. 1998) was also analyzed but was excluded from the standard set 123 

because of numerous inclusions. Finally, to investigate matrix effects on the grossular-124 

andradite join, we include four more standards (92Lew-2, 92Lew-7, 92Lew-8, 92Lew-10) 125 

with the compositional range And49-91, from the same skarn belt (Kohn and Valley, 1998). 126 

 127 

3. Analytical Methods 128 

3.1 Sample Preparation 129 

Garnet standards were crushed by hand, cast in 25 mm epoxy disks, and polished. All 130 

garnet standards and samples were mounted within 5 mm of the center of the epoxy disk, and 131 

all mounts include multiple grains of the UWG-2 standard at the center of the mount. 132 

Standards vary in grain size from ~150 µm to up to 5 mm, depending on the nature of the 133 

source material; between 3 and 36 grains of each standard were mounted in standard blocks. 134 

A zoned grossular-andradite garnet from the Willsboro wollastonite skarn (Adirondack 135 

Highlands, New York) that was previously analyzed for traverses of δ
18

O at mm-scale by 136 

laser fluorination (garnet 1a of Clechenko and Valley, 2003) using a thin saw-blade 137 

technique (Elsenheimer and Valley, 1993) was also prepared for ion microprobe analysis. 138 
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The Willsboro sample consists of a 700 µm thick polished wafer of rock (thick section) 139 

attached to a glass microscope slide with superglue from which a ~1 mm wide strip of 140 

material that represents a core to rim garnet transect had been removed and analyzed in chips 141 

by laser fluorination. The portion of the garnet immediately adjacent to this transect was 142 

removed from the slide with acetone and cast in the center of an epoxy disk containing the 143 

UWG-2 standard and repolished for ion microprobe analysis.  144 

3.2 Electron Microprobe 145 

 Cation chemistry of garnets was determined using the CAMECA SX51 electron 146 

microprobe at the University of Wisconsin - Madison. Garnets were analyzed in point beam 147 

mode with an accelerating potential of 15 kV and 20 nA beam current. The counting time 148 

was 10s on peak and 5s on both sides, off-peak. Natural and synthetic silicate and oxide 149 

standards were used. Data were reduced using the Probe for Windows software (Donovan et 150 

al., 2007), and oxygen was calculated by stochiometry. Fe
2+

/Fe
3+

 was estimated by charge-151 

balance, assuming no site vacancies or OH substitution (Afifi and Essene, 1988). Chemical 152 

analyses of all garnet standards are presented in Supplementary Table A and summarized in 153 

Table 1. 154 

3.3 Laser Fluorination 155 

Analysis of oxygen isotopes to calibrate ion microprobe analyses for new standard 156 

material was performed on 1-2 mg garnet chips that were treated overnight at room 157 

temperature in the sample chamber with BrF5, then individually heated with a CO2 laser in 158 

the presence of BrF5 to release O2, which was cryogenically purified, converted into CO2, 159 

and analyzed on a Finnigan MAT 251 mass spectrometer (Valley et al., 1995). Isotopic ratios 160 

are reported in per mil (‰) notation relative to standard mean ocean water (VSMOW). 161 
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Accuracy and analytical precision were verified during each session by multiple analyses of 162 

the garnet standard UWG-2 (Valley et al., 1995). Raw standard δ
18

O values for each session 163 

were corrected to the accepted UWG-2 value (δ
18

O = 5.80‰ VSMOW) and the same 164 

correction was applied to samples. The average uncorrected δ
18

O value (± 2 S.D.) of UWG-2 165 

was 5.59 ± 0.08‰ (n=5). 166 

3.4 Ion Microprobe 167 

3.4.1 Analysis Conditions 168 

 Oxygen isotopic analyses were performed on the WiscSIMS CAMECA ims-1280 169 

high-resolution, multi-collector ion microprobe at the University of Wisconsin – Madison in 170 

10 analytical sessions over the course of over 2 years. A 
133

Cs
+
 primary ion beam (20 kV 171 

total accelerating voltage) was focused to a diameter of 10 µm on the gold-coated sample 172 

surface. Secondary O
-
 ions were accelerated away from the sample by –10 kV and the 173 

analysis site was centered under a uniform electron field generated by a normal-incidence 174 

electron gun for charge compensation. Primary ion intensities were ca. 2-3 nA. The 175 

secondary ion optics were configured similarly to those reported in Kita et al. (2009) in order 176 

to achieve high secondary ion transmission. Instrument parameters include: transfer lens 177 

magnification of 200, contrast aperture (CA) 400 µm diameter, field aperture (FA) 4000 x 178 

4000 µm square, entrance slit width 122 µm, energy slit width 40 eV, and exit slit width 179 

500µm. At these conditions, both the primary ion spot image transferred to the FA window 180 

and the crossover image through the CA and entrance slit were almost fully transmitted 181 

compared to fully opened conditions. The intensity of 
16

O was 2 to 3 x10
9
 cps depending on 182 

the primary intensity (ca. 10
9
 cps/nA). Mass resolving power (MRP, M/ M), measured at 183 

10% peak height, was set to ca. 2200, enough to separate hydride interferences on 
18

O. Two 184 
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Faraday cups (FC) were used to measure 
16

O and 
18

O simultaneously and the amplifiers on 185 

each were equipped with 10
10

 and 10
11

 Ω resistors, respectively. The base line of the FC 186 

amplifiers was measured at the beginning of each analytical session; drift during the day was 187 

insignificant compared to the noise level of the detectors (≤1000 cps for the 
18

O FC with 10
11

 188 

Ω resistor, Kita et al., 2009). The magnetic field was regulated by a Nuclear Magnetic 189 

Resonance (NMR) probe with stability of mass better than 10 ppm/10 hours. At each analysis 190 

position, any small misalignment of the secondary optics due to changing stage position was 191 

automatically re-tuned before analysis.  Instrument stability during each analytical session is 192 

documented by repeated analyses of the UWG-2 standard (Supplementary Table B). 193 

3.4.2 Standardization 194 

Minerals with limited solid solution (e.g., quartz, calcite, zircon) are corrected for 195 

instrument bias by adjusting the raw data by a factor (α
18

OSIMS) obtained by analyzing a 196 

standard of the same mineral and chemical composition embedded in the same mount. 197 

Blocks of typically 4 standard analyses (different spots on one or more grains) are made 198 

before and after each set of sample analyses. In order to isolate the variation of bias 199 

generated by matrix effects within the garnet family from other sources of bias such as 200 

variability of instrument conditions over time, raw data from all garnet analyses (sample and 201 

compositional standard) were first corrected using the bracketing analyses of the UWG-2 202 

standard that is embedded in each sample mount.  A fractionation factor (α
18

O*SIMS) is 203 

calculated from the bracketing analyses of UWG-2 relative to the accepted value of UWG-2 204 

on the VSMOW scale (5.80‰, Valley et al., 1995) following equation 2.1 in Kita et al. 205 

(2009).  206 

 207 
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18O*SIMS
1 18ORAW 1000

1 ( 18OVSMOW 1000)
      (3.1) 208 

A preliminary δ
18

O value for each sample (or compositional standard) is then 209 

calculated using α
18

O*SIMS and equation 2.5 of Kita et al. (2009).  210 

18O* 1 18ORAW /1000 / 18O *SIMS 1 1000    (3.2) 211 

 This preliminary corrected value is denoted as δ
18

O* and is the same as δ
18

OVSMOW 212 

only for garnets with the same bias (or chemical composition) as UWG-2 and δ
18

O*  213 

increasingly differs from the VSMOW scale as garnet compositions (and biases) differ from 214 

that of UWG-2. The use of a preliminary correction to δ
18

O* allows comparison of data 215 

between standard brackets or between different analysis sessions, but does not take into 216 

account the bias generated by chemical variability among garnets. This bias observed in the 217 

25 other (secondary) garnet standards (vs. UWG-2) can be expressed in permil deviation 218 

from the bias observed in the analysis of UWG-2 with the following relation: 219 

(bias rel. UWG-2) ≈ δ
18

O* - δ
18

O (3.3) 220 

where δ
18

O is the isotopic composition of the standard on the VSMOW scale as determined 221 

by laser fluorination. Because the bias, δ
18

O* and δ
18

O generally differ by less than 10‰ 222 

(and in most cases, they differ by much less) this approximation is accurate to within 0.1‰ 223 

(Kita et al. 2009).   224 

 For analyses of sample garnets, a correction is applied based on the compositional 225 

dependence of bias observed among standards analyzed during the same analysis session. 226 

Different possible correction schemes are compared in section 5.4. In addition to isolating 227 

compositional effects from other sources of bias, this correction method allows us to use a 228 

single, particularly well-characterized standard (UWG-2) to evaluate spot-to-spot 229 
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reproducibility of analyses by emulating the standard-sample-standard bracketing correction 230 

schemes used to ensure high precision and accuracy oxygen isotopic analyses of other phases 231 

such as zircon, calcite, and quartz. Finally, using UWG-2 as a “master standard” allows a 232 

significant practical advantage in that only one standard need be embedded in each sample 233 

mount, and other standard material used to evaluate or correct for matrix bias can be reused 234 

in separate standard mounts as long as they are also corrected to UWG-2. The external errors 235 

of bracketing UWG-2 analyses were typically 0.2-0.4‰ (2 S.D.) for 10µm diameter analysis 236 

pits. After ion microprobe analysis, the bottoms of all pits were examined by scanning 237 

electron microscope in secondary electron imaging for inclusions and cracks that might affect 238 

the measured oxygen isotope ratios, and classified as “regular” or “irregular” according to 239 

Cavosie et al. (2005). All data used in this study are exclusively from pits that were observed 240 

to be “regular” (inclusion and crack-free). 241 

3.4.3 Sputter test 242 

 Eiler et al. (1997) observed a strong correlation with a single collector ion microprobe 243 

between the bias and sputter rate of glasses of various compositions and albite, and used this 244 

correlation as the foundation of a kinetic model to predict matrix effect bias. To compare the 245 

sputter rate of sample material with instrument bias, we conducted a sputtering rate test on a 246 

subset of garnet standards. The primary Cs
+
 ion beam was focused into a point beam and 247 

rastered over a 30 x 30 µm region for 60 minutes. The dimensions of the pits were measured 248 

at nm-scale using a Zygo white-light profilometer. The rastered pits were found to have flat 249 

bottoms, and the depth was by taken as the average depth of the center portion of four 250 

transects through the center of each square pit. The reproducibility of this measurement was 251 

on the order of 2-3 nm for a single pit.  252 
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 253 

4. Results 254 

 Garnet standards were analyzed in ten sessions from April 2006 to August 2008, with 255 

between 3 and 25 standards analyzed per session. Each standard was analyzed between 4 and 256 

20 times per session and bias data were corrected by the average bias calculated from the 257 

bracketing UWG-2 analyses. Instrumental bias measured on UWG-2 ranged from 1.5 to 258 

4.6‰ between analysis sessions, but varied by less than 0.6‰ within a single session 259 

(average reproducibility = ±0.3‰ 2 S.D.). Spot to spot reproducibility of secondary standards 260 

ranges from ±0.2 to ±0.8‰ (2 S.D.) with an average reproducibility of 0.4‰ (2 S.D., Table 261 

1). More than half of the standards, spanning the entire compositional range, displayed 262 

variability on the same order as the analytical uncertainty (≤ 0.4‰, 2 S.D.). The observed 263 

variability in a number of standards greater that analytical uncertainty is likely due to some 264 

small degree of natural heterogeneity.  The bias relative to UWG-2 for each standard in each 265 

session is reported in Table 2, and detailed data from each analysis session can be found in 266 

Table B of the electronic supplementary materials. When standards were analyzed multiple 267 

times over the 28-month period, bias relative to UWG-2 was found to vary on average by 268 

±0.3‰ and in all cases less than ±0.7‰.  269 

The component of instrumental bias caused by matrix effects (i.e., bias rel. to UWG-270 

2) of garnet standards in this study ranges from -1.1‰ for near end-member pyrope and 271 

almandine standards to +7.1‰ for the most andradite-rich standard. Low-Ca (grossular + 272 

andradite < 20 mol%) standards (pyrope, almandine, and the single spessartine) have a very 273 

limited range of bias (1.5‰) out of the total range of 8.2‰.  In Al-rich, Mg-Fe
2+

-Ca garnets, 274 

bias ranges 4‰ (-1.1 to +2.9‰ relative to UWG-2) and correlates with the grossular content 275 
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(Fig. 2a) as previously described by Vielzeuf et al. (2005a). However, in grossular-andradite 276 

garnets bias ranges an additional 4.2‰ (+2.9 to +7.1‰ relative to UWG-2) and is inversely 277 

correlated with the grossular content (Fig. 2b) and positively correlated with the andradite 278 

content.  Data from the sputter test are presented in Table C and are plotted in Figure A of the 279 

electronic supplementary materials; no correlation was found between sputter rate and bias 280 

for garnets, in contrast to single detector data at high energy offset for albite and silicate 281 

glasses (Eiler et al., 1997). 282 

5. Discussion 283 

5.1 Comparison with previous work 284 

 There is a broad correlation in the magnitude and sign of instrumental biases among 285 

standards of similar composition used in this study and Vielzeuf et al. (2005a). However, 286 

there are significant differences in the measured bias values between the two studies. The 287 

total range in bias varies up to 6.3‰ in Vielzeuf et al. (2005a) but varies only 4.0‰ over the 288 

same compositional range in this study. The bias on UWG-2 ranges between 1.5 and 4.6‰ 289 

between analysis sessions in this study, whereas it varies from -4.8 to 0.5‰ in Vielzeuf et al. 290 

(2005a). Although the different ranges of UWG-2 values (range = 3.1 vs. 5.3‰) suggests 291 

greater variability in instrument conditions in one study, the differences in bias between the 292 

two multicollector ion microprobe studies are small when compared with the -60.4‰ bias 293 

generated by the analysis of UWG-2 on a single collector ion microprobe at high energy 294 

offset (Eiler et al., 1997). A more detailed comparison between the present study and that of 295 

Vielzeuf et al. (2005a) is somewhat confounded by different standardization techniques. 296 

Vielzeuf et al. (2005a) did not run a specific standard (such as UWG-2) as frequently as in 297 

this study to correct for small instrumental drifts and simply reported instrumental bias for 298 



15 

each standard relative to the VSMOW scale. Because of this, measurements of instrumental 299 

bias for every garnet standard (UWG-2 and other standards) within and among analysis 300 

sessions include changes in instrumental conditions and may not be directly compared.  301 

5.2 Bias and garnet composition 302 

 Instrument bias in garnets is strongly correlated with Ca-content in Al-rich garnets  303 

and appears to be approximately linear for compositions of less than ~30 mol.% grossular 304 

(Fig. 2a). However, compositions of greater than 30 mol.% grossular affect bias to a lesser 305 

degree. Bias changes ~ 2‰ relative to UWG-2 between 0-30 mol.% grossular, but only 306 

increases an additional ~2‰ between 30-90 mol.% grossular. This non-linear relationship 307 

between bias and composition is consistent with similar trends observed in feldspars, 308 

pyroxenes, olivine, and carbonates (Valley and Kita, 2009)  In Ca-rich garnets, bias is 309 

inversely correlated with grossular (Al) content (Fig. 2b) and positively correlated with 310 

andradite (Fe
3+

), with one clear outlier (MexGrs). The instrumental bias measured for 311 

MexGrs is consistently > 1‰ greater than the four other grossular-rich garnets of similar 312 

composition in this study. Ion microprobe analyses of MexGrs suggest that the garnet itself is 313 

not strongly variable in oxygen isotopic composition (±0.7‰ 2 S.D.). However, unlike any 314 

other garnet in this study, MexGrs contains a substantial number of inclusions. Although 315 

these inclusions are easy to avoid with the ion microprobe, the calibration by laser 316 

fluorination analysis constitutes a mixture of garnet and inclusion material. For this reason 317 

we exclude MexGrs as a standard material in our calibration, although we show the data for 318 

completeness. 319 

 Vielzeuf et al. (2005a) recognized a correlation between the Ca content of Al-rich 320 

garnets and bias in most of their analysis sessions. This observation is largely based on one 321 
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Ca-rich standard (GrsSE). The addition of more Ca-rich standards in this study confirms the 322 

strong correlation between Ca (grossular) and bias, and indicates that Fe
+3

 (andradite) has an 323 

even stronger effect on instrumental bias. 324 

5.3 Bias and molar volume  325 

 Andradite and grossular have a substantially larger unit cell dimension than the other 326 

garnet end-members in this study. In order to test a correlation between molar volume and 327 

instrument bias (a possibility proposed by Vielzeuf et al., 2005a), the molar volume of each 328 

garnet standard was estimated as a weighted average of the molar volumes of end-members 329 

assuming ideal mixing. Volume data for pyrope, almandine, grossular, and andradite are 330 

taken from Robie and Hemingway (1995) and volume data for spessartine and uvarovite are 331 

from Diella et al. (2004). Physical properties of garnet such as unit cell dimension have long 332 

been successfully approximated from chemical data (e.g., Novak and Gibbs, 1971). The 333 

calculated molar volume for each standard can be found in Table 1, and agree well with the 334 

molar volumes determined for the subset of standards with published volumes determined by 335 

X-ray diffraction (Vielzeuf et al. 2005a). 336 

 The instrumental bias for the garnet standards in this study is well correlated with the 337 

calculated molar volume (Fig. 3). A least-squares linear regression of the data for all 26 338 

standards (excluding MexGrs) yields an R
2
 value of 0.95. However, there is substantial 339 

variability of the data about the best-fit line, greater than the degree of observed 340 

heterogeneity in both cation and isotopic composition of the garnet standards. As in the study 341 

of Vielzeuf et al. (2005a), the lone spessartine-rich standard (SpsSE) lies well below the 342 

correlation between molar volume and bias line. However, SpsSE is not an outlier in the 343 

correlation between grossular and bias among Al-rich garnets (Fig. 2a).  344 
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 Although the correlation between molar volume and bias provides a simple linear 345 

relationship, it does not explain the relatively large degree of variability observed among 346 

standards of similar cation composition, particularly those rich in grossular (even without 347 

MexGrs). One possibility in the case of greater observed bias than that predicted by 348 

calculated molar volume is the presence of an end-member such as hydrogrossular or 349 

hydroandradite that is analytically difficult to measure, but has a strong effect on molar 350 

volume. However, there is no evidence of a significant detectable hydrogen-bearing 351 

component (in the form of silica deficiency) for any of these standards.  Although molar 352 

volume may provide a strong control on bias, one or more additional second-order effects 353 

may be responsible for the observed variability. 354 

5.4 Correction scheme 355 

 Correlations between physical properties and instrumental bias have been reported 356 

before (Hervig et al. 1992, Eiler et al. 1997, Riciputi et al. 1998). These workers noted a 357 

correlation between atomic mass and bias but also observed that the presence of residuals of 358 

up to 10‰ made this correlation unsuitable as a correction scheme.  Most recently, Vielzeuf 359 

et al. (2005a) reported a correlation between molar volume and bias for garnets. However, 360 

because of limited standards, this correlation was deemed unsuitable as the basis for a 361 

correction scheme.  362 

 With the increased number of standards in this study, the observed correlation 363 

between calculated molar volume and bias could be used as a basis for correction. A least-364 

squares linear regression of the data for 25 standards (not including the 2σ SpsSE ) yields the 365 

relation: 366 

 Bias (‰ relative to UWG-2) = 0.426 x calc. molar volume (cc/mol) - 49.42        (5.1) 367 
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with an R
2
 value of 0.97 (2 S.E. of the estimate = 0.88‰). This represents a substantial 368 

improvement in comparison to the correction scheme of Vielzeuf et al. (2005a) that was 369 

based on a linear interpolation of the bias of four standards that bracket the sample in 370 

almandine, pyrope, grossular, and spessartine content. The relation between bias and molar 371 

volume described by equation (5.1) reproduces the measured composition of 75% of the 25 372 

standards used to within ±0.5‰ of their accepted value, 85% to within ±0.6‰, and 95% to 373 

within 0.7‰. Despite the extension in compositional range offered by this correction scheme, 374 

the improvement in accuracy (± 0.88‰ 2 S.E. of the estimate based on 25 garnets) is still 375 

substantially worse that the precision of the method as evidenced by typical reproducibility 376 

of standard analyses on the order of  ±0.4‰ (2 S.D.). 377 

 Another possible correction scheme is based on compositional variables, particularly 378 

the strong correlation between bias and grossular content in pyralspite garnets and andradite 379 

in ugrandite garnets. Riciputi et al. (1998) showed that instrumental bias in grossular-380 

andradite garnets in single-collector ion microprobes could be estimated using a linear 381 

interpolation of bias along the Al-Fe
3+

 chemical join, and suggested that this be the basis of a 382 

correction scheme. In this study, the relationships between bias and grossular among 383 

pyralspite garnets and between bias and andradite in ugrandite garnets are non-linear (Fig. 4).  384 

However, both are well-modeled with simple polynomial functions, with far less variability 385 

than the linear regression between molar volume and bias. This non-linear relationship is 386 

similar to that observed among other silicates and carbonates (Valley and Kita, 2009). The  387 

instrumental bias of the nineteen standards with less than 5 mol.% andradite (including 388 

SpsSE) can be related to the mole fraction of grossular (+minor uvarovite) with the following 389 

relation: 390 
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 Bias (‰ relative to UWG-2) = -5.04(XGrs+Uvar)
2
 + 8.96(XGrs+Uvar) - 1.09                 (5.2) 391 

 For the 8 garnet standards (excluding MexGrs) that contain less than 10% almandine + 392 

pyrope + grossular, bias can be related to andradite (+ minor CaTi garnet) as  393 

 Bias (‰ relative to UWG-2) = -1.92(XAnd+CaTi)
2
 + 6.18(XAnd+CaTi) - 2.87               (5.3) 394 

 These two calibrations reproduce the actual compositions of the 26 garnet standards used to 395 

± 0.40‰ (2 S.E. of the estimate), a substantial improvement to the molar volume correction 396 

that makes accuracy comparable to the reproducibility of most garnet standards. 397 

 It is important to stress that the calibrations above are presented to demonstrate  and 398 

compare between methods of correction. The values of instrumental bias measured relative to 399 

UWG-2 for each standard remain remarkably consistent between analysis sessions, but 400 

should in no way be the basis for correction of data collected on different instruments under 401 

different operating conditions. New calibration curves should be generated by users on their 402 

own instruments, ideally during the same analysis session as the samples to be corrected. The 403 

use of a calibration based on 26 garnet standards (or even a substantial subset thereof) that 404 

need to be analyzed during each analysis session is impractical for routine correction of 405 

garnet data. A more practical approach to a correction scheme correction is to use a subset of 406 

standards that compositionally bracket the unknown and then estimate bias based on the 407 

grossular or andradite composition as appropriate. Our preferred correction procedure is a 408 

calibration curve based on grossular or andradite composition. At least 3-4 standards are 409 

analyzed that bracket the chemical composition of the unknown sample and delineate the 410 

overall shape of the curve (e.g., both low and high grossular/andradite standards are included 411 

in each calibration to avoid artifacts that might arise from a quadratic equation fit to only 412 

three points over a narrow compositional range). Compositional standards should be 413 
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analyzed during the same analysis session as samples to be corrected. A number of 414 

calibration curves were generated based on 3-4 standards using this approach. As long as the 415 

standards were chosen to cover a broad range of grossular or andradite compositions, the 416 

calibrations reproduced the full 26 garnet standard set to within ± 0.3-0.5‰ (2 S.E. of the 417 

estimate). This approach yields similar accuracy to that achieved with use of all standards. 418 

 The use of a correction procedure in which all samples are first normalized to UWG-2 419 

to correct for any instrumental instability and then corrected for matrix effect bias using the 420 

grossular or andradite of at least 3 secondary standards that compositionally bracket the 421 

unknown offers significant advantages in precision, accuracy, and convenience. Correction to 422 

a master standard allows for a single consistent method of determining the precision 423 

(reproducibility) of analyses as well as the practical advantage of allowing compositional 424 

standards to be stored in standard mounts and not embedded with samples. This allows use of 425 

the best and most plentiful standard for all sample mounts, and conserves more precious 426 

materials.  427 

Errors in ion microprobe analyses arise from a myriad of sources ranging from 428 

counting statistics to sample topography (e.g., Kita et al., 2009). Propagation of all these 429 

sources of error would be an extremely arduous undertaking, and for this reason the external 430 

reproducibility of a standard is the best (and most workable) metric for error estimation 431 

(Valley and Kita, 2009). An instrumental bias calibration that is dependant on compositional 432 

variables introduces a new source of error independent of that measured by standard 433 

reproducibility. Errors resulting from the calibration scheme must therefore be added in 434 

quadrature to those arising from analytical uncertainty. However, it should be noted that the 435 

proposed calibration does not fully explain all sources of instrumental bias just as counting 436 
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statistics do not encompass all other sources of error in an analysis. True statistical rigor in 437 

the treatment of these uncertainties is, as yet, impossible. 438 

 439 

6. Application to growth zoning and diffusion 440 

6.1 Adirondack skarn garnet  441 

The Adirondack Mountains of New York, USA are a Mid-Proterozoic, 442 

polymetamorphic, granulite-facies orogenic terrane. Intrusion of anorthosite and related 443 

magmas (1155±5 Ma, McLelland et al., 2004) formed a contact metamorphic aureole 444 

including skarn rocks that predate the peak of regional metamorphism (Valley and O'Neil, 445 

1982; Valley, 1985; Valley et al., 1990). The Adirondack skarns were buried and largely 446 

recrystallized during the Ottawan (ca. 1050 Ma) regional granulite-facies metamorphism, but 447 

small domains of unrecrystallized, oscillatory-zoned skarn garnets were locally preserved at 448 

the Willsboro Mine. Clechenko and Valley (2003) analyzed the oxygen isotopic composition 449 

of one to two centimeter diameter zoned garnets from Willsboro by laser fluorination of mm-450 

scale chips taken from a core to rim transect of the garnets removed with a thin diamond saw. 451 

The oxygen isotopic composition of this transect in combination with major and trace 452 

element data were used to infer variable mixing of metamorphic fluids from meteoric (low 453 

δ
18

O, Ca-rich) and magmatic (high δ
18

O, Fe-rich) sources. The garnet zoning was preserved 454 

through subsequent granulite-faces metamorphism.  455 

In this study we analyze oxygen isotope ratios along a traverse in one of the garnets 456 

(garnet 1a) previously analyzed by Clechenko and Valley (2003) collected from the 457 

Willsboro Mine, NY, USA (approx. 44˚18’52”N, 73˚52’54”W) in order to assess the 458 

accuracy of our correction technique, as well as to search for finer-scale isotopic zoning and 459 
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possibly larger variation than could be resolved by the existing analyses. The previous laser 460 

fluorination data document gradients in δ
18

O of ~ 3‰ over 1 mm, but larger and sharper 461 

gradients are predicted for contact metamorphism. The new ion microprobe data interrogate 462 

these gradients at a scale that is up to 100 times finer in linear resolution and one million 463 

times smaller in volume. 464 

6.2 Analysis and correction 465 

The remainder of the polished section of garnet 1a of Clechenko and Valley (2003) 466 

was mounted in epoxy with standard UWG-2 and repolished. The original Fe-Kα X-ray map 467 

of the composition of this garnet is reproduced in Figure 5a with the location of the laser-468 

fluorination traverse and the new ion microprobe traverse. The traverse in this study was 469 

located adjacent to and parallel with the previous traverse.  Seventy ion microprobe analyses 470 

were performed along the 7.3 mm transect and corrected to the UWG-2 standard. The cation 471 

composition of the garnet was determined adjacent to each ion microprobe pit by electron 472 

microprobe, and used to correct the raw data for bias. The data were corrected using four 473 

grossular standards (GrsSE, 92W-1, 10691, AF749A) and two intermediate grossular-474 

andradite standards (92LEW10, 92LEW7). The intermediate grossular-andradite standards 475 

were analyzed in the same analysis session as the zoned garnet (June 2007) and the four 476 

grossular standards were analyzed in a separate session (August 2008). Instrumental biases 477 

for both these sessions are reported in Table 2. 92LEW7 was analyzed during both analytical 478 

sessions, and its bias relative to UWG-2 differed by 0.03‰. Although analysis of secondary 479 

garnet standards during the same analysis session is desirable, normalization to UWG-2 480 

allows this correction to be made with a negligible change in estimated precision and 481 

accuracy. Ion microprobe analyses of standards, cation compositions for each analysis point, 482 
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and the correction scheme used are presented in Table D and Figure B, electronic 483 

supplementary materials. 484 

6.3 Results and Discussion 485 

The andradite composition of garnet 1a is plotted versus distance from the garnet rim 486 

in Figure 5b. The overall pattern of chemical composition is almost identical to the traverse 487 

made by Clechenko and Valley (2003, see their Fig. 5a), but was offset ca. 300 µm along 488 

strike of the banding. The oxygen isotopic traverse from this study is plotted in Figure 5c, 489 

superimposed on the laser fluorination data of Clechenko and Valley (2003). 490 

The oxygen isotope zoning in garnet 1a measured by ion microprobe is quite well 491 

correlated with that measured by laser fluorination. Two relatively andradite-rich, high-δ
18

O 492 

zones are interspersed with andradite-poor, low-δ
18

O zones within 7300 µm of the rim (Fig. 493 

5b). The ion microprobe analyses reproduce most of the laser fluorination traverse within the 494 

stated uncertainty of the technique. However, ion microprobe analyses of the outermost low-495 

δ
18

O zone yield isotope ratios up to 1‰ lower than that determined by the one laser 496 

fluorination analysis at 0-1000 m. Although it is possible that this discrepancy is due to a 497 

source of bias that is unaccounted for in the correction scheme, this seems unlikely, 498 

especially sine there is no indication of a hydrogrossular component in this sample Other 499 

intermediate grossular composition zones in this garnet show close agreement between laser 500 

and ion microprobe analyses (e.g., 4500µm from the rim), suggesting that no systematic 501 

relationship between grossular and analysis misfit exists. Mixed-composition laser analyses 502 

are the most likely explanation for this discrepancy.  503 

Examination of this and similar garnets from Willsboro and related nearby 504 

wollastonite skarns shows that the andradite bands parallel euhedral crystal faces of garnet 505 
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(Clechenko and Valley, 2003). In many cases, zoning is preserved in only parts of the garnet. 506 

In Fig. 5a, these bands can be seen to become diffuse 3-5 mm to the left of the analysis 507 

traverses because the garnet was sheared and recrystallized during granulite facies 508 

metamorphism. Similar recrystallization has affected most of the garnets at Willsboro with 509 

the result that their cation compositions are homogenized and that they record Sm-Nd ages 510 

reset during regional metamorphism at ca. 1035 Ma (Basu et al. 1988). Taken together, all 511 

data support the interpretation that zoned garnets formed at the time of contact 512 

metamorphism and were locally preserved in low strain zones during recrystallization ca. 100 513 

myr later. The sharp chemical zonation that parallels garnet crystal faces (Fig.5a) resulted 514 

from growth zoning at 1155 Ma and is texturally and chemically distinct from the more 515 

diffuse effects of granulite facies recrystallization . 516 

In the unrecrystallized domains of garnet 1a, BSE imaging and electron microprobe 517 

analyses reveal oscillatory zonation in Al and Fe
3+

 but not the multiple µm-scale oscillations 518 

characteristic of many skarn garnets. Ion microprobe analysis of oxygen isotope ratios in this 519 

garnet reveals a generally smooth profile with only two sharp changes in isotopic 520 

composition (~1400 and ~5500 µm from the garnet edge). One possible reason for the 521 

absence of µm-scale features is diffusional relaxation of chemical and isotopic gradients 522 

during the granulite-facies regional metamorphic overprint. Clechenko and Valley (2003) 523 

calculated a characteristic length scale of diffusion (distance over which 50% exchange is 524 

predicted to have taken place) of 60 µm for oxygen in the Willsboro garnets based on the 525 

experiments of Coghlan (1990) and a thermal event of 750˚C for 50 My, based on regional 526 

thermobarometry and geochronology (Bohlen et al., 1985; McLelland et al., 2001). This 527 

length-scale of homogenization is consistent with the data-set of Clechenko and Valley 528 
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(2003) and suggests that fine-scale chemical features were homogenized in the Willsboro 529 

garnets, and only mm-scale zonation was preserved through granulite-facies metamorphism.  530 

The most important feature of the new ion microprobe data for δ
18

O is the sharp 531 

gradient between the outermost low-δ
18

O rim and high-δ
18

O zone between 1377 to 1393 µm 532 

from the edge of the garnet (Fig. 5c). This transition represents a jump of 2.1‰ in 16 µm 533 

(measured from the center of the analysis pits) coincident with an equally sharp change in the 534 

andradite content of garnet visible in the back-scattered electron image in Figure 6a. 535 

Although δ
18

O decreases gradually across the Fe-rich band from a maximum of 6.3‰ at 536 

2400µm to 4.2 ‰ at 1400µm, the oxygen isotope ratios measured in the outermost grossular-537 

rich zone are constant at 1.8‰ (Fig. 5c).  If the gradual decrease in δ
18

O within the more 538 

andradite-rich band were the result of diffusional relaxation after garnet growth across an 539 

original step-change in 
18

O at 1380 m, a symmetrical increase in δ
18

O would occur in the 540 

adjacent grossular-rich zone approaching 1380 µm. No gradual change is seen from 500 to 541 

1380 m and thus the smooth changes in δ
18

O within the andradite-rich band are interpreted 542 

as growth-zoning, as is the sharp 2.1‰ gradient at 1380µm between these two zones.  543 

The preservation of a sharp gradient in 
18

O at 1380 m provides a very tight constraint on 544 

the maximum amount of oxygen diffusion in this garnet throughout its entire history. There 545 

is no diffusional process that would sharpen a δ
18

O gradient, once formed. Thus, the 546 

maximum amount of oxygen exchange can be estimated if the gradient is assumed to have 547 

formed as a step of 2.1‰ over 0µm.  This is a boundary condition, and it is possible that 548 

garnet growth produced a more gradual profile, closer to that observed in this garnet. If this 549 

were the case, models based on an initial step condition will over-estimate the duration of the 550 

metamorphic event or rate of exchange. 551 
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Diffusion of oxygen across this boundary was modeled as a simple, 1-dimensional 552 

system using equation 3.45 of Crank (1975). Because of the small scale of diffusion (< 553 

16µm) compared to the size of the garnet (> 1 cm), the 1-D model is a conservative 554 

approximation. Initial values for core and rim δ
18

O were taken as the average of ion 555 

microprobe data within 100 µm of the transition (4.3±0.4‰ and 1.8±0.5‰, respectively). 556 

The sharp Fe
3+

/Al and δ
18

O transition boundary at 1380 m is shown in back-scattered 557 

electron imaging in Figure 6a and analysis pits are labeled in δ
18

O VSMOW. A detail of the 558 

ion-microprobe traverse in this region is shown in Figure 6b with modeled diffusion curves 559 

superimposed on the data. At 750˚C, the diffusion rate (D) of oxygen in garnet based the 560 

experiments of Coghlan (1990, PH2O = l kbar) is estimated at 4.2x10
-25

m
2
s

-1
. At this rate, the 561 

observed step could only have survived a thermal event of less than 1 My. Furthermore, this 562 

calculation does not include the effects of diffusion that would have also occurred during the 563 

heating and cooling of regional metamorphism. The extremely rapid heating and cooling 564 

required by the sharp gradient in this garnet interpreted in the context of the experiments of 565 

Coghlan (1990) are in striking contrast to the slow cooling rates of ~ 1.5˚C/My reported by 566 

Mezger et al. (1991) for this region. Although fleeting thermal events have recently been 567 

proposed for regional metamorphism (e.g., Ague and Baxter, 2007), it seems unlikely that the 568 

mid-crustal, 7-8 Kb granulite-facies regional metamorphism of the Adirondack Highlands 569 

could have taken place over so short a time span. Coghlan (1990) reports a conservative error 570 

envelope for the diffusion coefficient used in this calculation and even at the extreme, the 571 

slowest value of D within this range (i.e., the lowest value of Do and the highest value of EA) 572 

is not consistent with a peak of metamorphism lasting as long as 50 Myr. Taken together, the 573 

experimental data and the measured gradient for 
18

O (Fig. 6b) are most consistent with a 574 
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thermal peak lasting less than 5 My. If these estimates of the diffusion rate of oxygen in 575 

garnet at 750
o
C are correct, then the peak of regional metamorphism in the NE Adirondack 576 

Highlands was significantly faster than has previously been assumed. With increased 577 

understanding of the diffusion rate of oxygen in garnet and with further ion microprobe 578 

studies of single crystals, time and rate estimates based on oxygen diffusion profiles in garnet 579 

(and other minerals) will become more accurate than presently possible. 580 

New technology and techniques used in the analysis of oxygen isotopes by ion 581 

microprobe have greatly improved the precision of the technique in the analysis of phases 582 

with limited solid solution. The use of a single garnet standard mounted in samples, regularly 583 

analyzed as a monitor for changes in instrumental conditions, provides similar precision in 584 

the analysis of garnets. The correction of instrumental bias due to cation composition in 585 

garnets can be done readily using 3 or more compositional standards in a separate standard 586 

mount. A correction scheme based on the grossular content of pyralspite garnets and the 587 

andradite content of ugrandite garnets brings the accuracy of analyses to the same order as 588 

analytical precision with a combined uncertainty of  ± 0.5 to 0.6‰, 2 S.D. Application of this 589 

approach to garnets will have widespread utility for estimation of thermal and fluid history 590 

during metamorphism. 591 
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 747 

Figure Captions 748 
 749 

Figure 1. Cation compositions of garnet standards used in this study. Standards used in 750 

previous studies are keyed to the study of their first use. 751 

 752 

Figure 2. Instrument bias for oxygen isotope analysis at WiscSIMS (‰ relative to UWG-2) 753 

as a function of cation composition of garnet standards expressed in terms of mol % 754 

garnet end-members. (a) Bias in Al-rich Mg-Fe
2+

-Ca-Mn garnets is correlated with 755 

grossular content (CaAl). (b) Bias in Ca- rich Al-Fe
3+

 garnets is inversely correlated 756 

with grossular. MexGrs is poorly calibrated, see text. 757 

 758 

Figure 3. Instrument bias for oxygen isotope analysis at WiscSIMS (
18

O, ‰ relative to 759 

UWG-2) as a function of calculated molar volume of the garnet standards. Errors are 760 

plotted as 2 S.E. The line is a least-squares linear regression (equation 5.1) and yields 761 

an R
2
 value of 0.95. Two garnets (MexGrs and SpsSE) fall outside of 2 S.E. of the 762 

estimate. 763 

 764 

Figure 4. Instrument bias for oxygen isotope analysis at WiscSIMS (
18

O, ‰ relative to 765 

UWG-2) as a function of Ca-rich garnet end-members. Instrumental bias in Al-rich 766 

pyralspite garnets (plotted as open circles) increases with grossular + uvarovite 767 

content. Instrumental bias in Ca-rich ugrandite garnets (plotted as filled circles) is 768 

greater than that in pyralspite garnets and increases with andradite + CaTi garnet 769 

content. Sample MexGrs is poorly calibrated, see text. Error bars are 2 S.E. of 770 

multiple analyses and are smaller than the sample points in most cases. The low-771 

andradite grossular sample GrsSE  appears in both plots. The polynomial best fit 772 

curves (equations 5.2 and 5.3) are also shown. 773 

 774 

Figure 5. Oscillatory-zoned skarn garnet from the granulite-facies Willsboro wollastonite 775 

skarn, Adirondack Mountains, New York, USA. (a) Fe-Kα X-ray image of the garnet 776 

showing andradite-rich zones (purple) and grossular-rich zones (blue). Yellow and 777 

orange minerals are sphene and feldspar. The location of the 
18

O analyses by laser 778 

fluorination (Clechenko and Valley, 2003) are shown as a thick black line, the 779 

location of the ion microprobe traverse in this study is shown as a thick white line. (b) 780 

mol % andradite determined by electron microprobe vs. distance from garnet edge 781 

(top of figure). (c) traverses of δ
18

O, open symbols represent ion microprobe analyses 782 

with  ± 0.6‰ error bars that represent both the precision and accuracy of the 783 
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technique, black bars are the laser fluorination data of mg-size samples by Clechenko 784 

and Valley (2003). 785 

 786 

Figure 6. Sharp δ
18

O and cation discontinuity 1377 µm from the garnet edge (a) High-787 

contrast back-scattered electron image of the sharp andradite-grossular transition 788 

within the garnet. Ion microprobe pits (10 m dia.) are labeled with δ
18

O ‰ 789 

VSMOW. (b) detail of δ
18

O traverse over the same field of view with simulated 790 

diffusion profiles (see text). 791 

 792 
 793 
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Table 1. Garnet standards analyzed for δ18O at WiscSIMS
Calculated δ18O2 Average3 Average bias

Standard Average composition Molar V1 2 S.D.1 (‰ VSMOW) δ18O* ‰ rel. UWG-2 2 S.D.4 n4 2 S.E.4 Ref.5

Pyrope
PypDM Pyp97Alm3 113.2 0.07 5.60 4.42 -1.18 0.73 23 0.15 (6)
13-63-19 Pyp71Alm18Grs9Sps2 114.8 0.05 5.92 5.71 -0.21 0.29 10 0.09 (5)
PypAA Pyp69Alm18Grs11Sps1Uv1 115.1 0.10 5.50 5.20 -0.30 0.25 10 0.08 (6)
PypAK Pyp64Alm24Grs11Sps1 115.1 0.05 5.50 5.17 -0.33 0.42 10 0.13 (6)
PypMM Pyp63Alm25Grs11Sps1 115.1 0.05 5.30 5.59 0.29 0.60 10 0.19 (6)
13-62-29 Pyp59Alm32Grs8Sps1 114.9 0.03 7.39 6.93 -0.46 0.56 10 0.18 (5)
13-62-27 Pyp49Alm35Grs15Sps1 115.9 0.06 6.49 6.66 0.17 0.36 10 0.11 (5)
13-63-20 Pyp48Alm31Grs20Sps1 116.5 0.12 6.14 6.85 0.71 0.34 10 0.11 (5)
13-63-44 Pyp45Alm29Grs25Sps1 117.0 0.12 6.37 7.06 0.69 0.53 10 0.17 (5)

Almandine
AlmSE Alm74Pyp25Grs1 114.9 0.03 8.30 7.13 -1.17 0.31 38 0.05 (2), (6)
AlmCMG Alm70Pyp25Grs3Sps2 115.1 0.03 7.50 6.87 -0.63 0.65 14 0.17 (2), (6)
2B3 Alm67Grs24Sps4 Pyp3And2 118.1 0.26 6.90 7.97 1.07 0.35 30 0.06 (6)
Beta114 Alm61Pyp31Grs6Sps2 115.3 0.09 9.30 8.55 -0.75 0.45 30 0.08 (6)
Bal509 Alm52Pyp44Grs3Sps1 114.7 0.04 12.30 11.31 -0.99 0.30 10 0.09 (6)
UWG-2 Alm45Pyp40Grs14Sps1 115.8 0.08 5.80 5.80 0.00 0.35 357 0.02 (1), (2), (6)
13-63-21 Alm41Grs31Pyp27Sps1 118.1 0.12 4.55 5.87 1.32 0.30 14 0.08 (5)

Spessartine
SpsSE Sps94Alm6 117.9 0.02 5.40 4.74 -0.66 0.36 19 0.08 (2), (6)

Grossular
GrsSE Grs94Alm4Sps1CaTi1 125.1 0.24 3.80 6.66 2.86 0.48 37 0.08 (2), (6)
92W-1 Grs87And5Alm5Pyp2CaTi1 125.2 0.42 -0.34 2.77 3.11 0.63 20 0.14 (4)
10691 Grs86And5Alm5Pyp2CaTi2 125.2 0.40 0.18 3.49 3.31 0.28 10 0.09 (4)
MexGrs Grs86And8Pyp3Alm1Sps1CaTi1 125.5 0.47 10.60 16.05 5.45 0.67 22 0.14 (3)
AF749A Grs81And10Alm5Pyp1Sps1CaTi2 125.5 0.26 -1.24 2.63 3.87 0.32 10 0.10 (4)
R-53 Grs61Alm19Pyp19CaTi1 121.2 0.14 5.33 7.85 2.52 0.15 5 0.07 (5)

Andradite
92LEW2 And91Grs6Alm3 131.1 0.37 -1.47 5.63 7.10 0.78 10 0.25 (4)
92LEW7 And89Grs6Alm4Pyp1 131.0 0.33 -1.60 5.09 6.69 0.25 18 0.06 (4)
92LEW10 And50Grs42Alm4CaTi2Pyp2 128.4 0.28 -1.20 4.44 5.64 0.38 14 0.10 (4)
92LEW8 And49Grs43Alm4CaTi3Pyp1 128.4 0.34 -0.93 4.46 5.39 0.64 10 0.20 (4)
1 (cm3/mol) calculated from compositional data, see text, 2Values of δ18O were calibrated against the VSMOW scale using  UWG-2 by laser fluorination and
gas-source mass spectrometry, see text. 3Average raw value measured by ion microprobe, corrected to UWG-2, 4Variability measured by ion probe.
5 (1) Valley et al. (1995), (2) Eiler et al. (1997), (3) Riciputi et al. (1998), (4) Kohn & Valley (1998), (5) Schulze et al. (2003), (6) Vielzeuf et al. (2005)
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Table 2. Instrument bias of each garnet standard relative to UWG-2 over a 28 month period
Bias relative to UWG-2 (‰)

Standard Apr-06 Aug-06 Sep-06 Nov-06 Jan-07 Apr-07 Jun-07 Aug-08 Avg. Range
Pyrope
PypDM -1.5 -1.1 -0.9 -0.8 -1.1 0.7
13-63-19 -0.2 -0.2
PypAA -0.3 -0.3
PypAK -0.3 -0.3
PypMM 0.3 0.3
13-62-29 -0.5 -0.5
13-62-27 0.2 0.2
13-63-20 0.7 0.7
13-63-44 0.7 0.7
Almandine
AlmSE -1.2 -1.1 -1.2 -1.0 -1.2 -1.2 -1.1 0.2
AlmCMG -0.5 -0.9 -0.7 0.4
2B3 1.1 1.1 1.0 1.0 1.1 0.2
Beta114 -0.9 -0.7 -0.7 -0.5 -0.7 0.4
Bal509 -1.0 -1.0
UWG-2 0.0 0.0
13-63-21 1.3 1.3 1.3 0.0
Spessartine
SpsSE -0.7 -0.6 -0.6 -0.6 0.1
Grossular
GrsSE 2.7 2.8 2.9 2.8 3.2 3.2 2.9 0.5
92W-1 3.1 3.1
10691 3.3 3.3
MexGrs 5.6 5.5 5.0 5.4 0.6
AF749A 3.9 3.9
R-53 2.4 2.5 2.4 0.2
Andradite
92LEW2 7.1 7.1
92LEW7 6.7 6.6 6.6 6.7 0.1
92LEW10 5.6 5.7 5.7 0.1
92LEW8 5.4 5.4
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