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Abstract:  

 

A highly conserved region of 21 amino acids flanked by cysteine residues, contained within a 

larger repeated domain, has been proposed to be the antibody-binding site in the ovarian cancer 

biomarker CA125 (MUC16). In this study solid-phase peptide synthesis with Fmoc protection 

chemistry was used to assemble a 21-mer peptide corresponding to the most frequently occurring 

antibody binding sequence in CA125. Potentially significant sequence variants were also 

synthesized. Peptide secondary structure was investigated using Fourier transform infrared 

spectroscopy, revealing the consensus sequence peptide to be largely unstructured at 

physiological pH whether the cysteine residues were reduced or were oxidized to form an 

intramolecular disulfide bond. Substitution of serine for proline at position 8 (P8S) results in -

sheet formation in peptides involved in intramolecular disulfide bonds. This -sheet structure 

does not persist in peptides incapable of intramolecular disulfide bonding because of sequence, 

nor in peptides treated with the reducing agent dithiothreitol. In CA125 P8S is predicted to occur 

in ~25% of repeat domains, suggesting that this structural motif is a non-negligible contributor to 

overall structure and function. These findings suggest that future structural characterization 

efforts of CA125 should be especially mindful of the amino acid sequence and oxidation state of 

the protein.  

 

 

Introduction 

 

 Ovarian cancer antigen CA125 (MUC16) is the best-validated and most widely assayed 

biomarker of the disease, which is responsible for approximately 14,600 deaths in the United 

States annually [1]. Originally identified by Bast et al. as the antigenic determinant of the OC125 

antibody [2], CA125 was shown in 1983 to be elevated in a substantial percentage of patients 

with surgically demonstrated ovarian carcinoma and to correlate well with progression or 

regression during treatment [3]. Although isolated measurements of serum CA125 are 

insufficiently sensitive and specific to be used for early screening, serial measurements over time 

may be highly specific [4]. Extensive epidemiological studies have investigated the power of 

CA125 assays to predict ovarian cancer survival; this literature was recently reviewed [5]. It is 

expected that as new ovarian cancer biomarkers continue to be discovered and validated, 

simultaneous assays for CA125 in combination with other biomarkers will emerge that are more 

informative than assays of CA125 alone [6, 7]. However, CA125 remains the ―gold standard‖ 

against which other ovarian cancer biomarkers are compared.  

 Relatively little is known about the structure of CA125, although meaningful progress 

has been made in the last decade, most significantly with the cloning of the CA125 gene, 

reported independently by two groups in 2001 [8, 9], with follow-up reports in 2002 expanding 

and refining the original description [10, 11]. Insights on the CA125 gene enabled the description 

of the CA125 protein as containing the following structural elements: (1) a massive N-terminal 

domain rich in serine and threonine residues that serve as sites of O-linked glycosylation, (2) 60+ 

tandem repeats that contain the antibody binding sites, probably within a highly conserved 

cysteine-bound region 21 amino acids long, (3) a transmembrane domain, and (4) a cytoplasmic 
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C-terminus containing sites for phosphorylation. Of particular interest to investigators wishing to 

understand the CA125/antibody interaction is the site (or sites) at which antibody binding occurs. 

In their study, O’Brien and co-workers determined the extracellular repeat domain as comprising 

156 amino acid segments, each containing a loop formed by intramolecular disulfide bonding of 

two conserved cysteine residues. This ―C-loop‖ is believed to contain the binding site for OC125 

and M11-type antibodies [8]. A significant, possibly immunological, role for the amino acids 

flanked by these two cysteines is suggested on the basis of the cysteines’ total conservation, the 

role of the C-loop in pushing the amino acids it contains away from the protein core, the 

hydrophilicity of the amino acids at the center of the loop, and the relative absence of nearby 

glycosylation. These observations are consistent with greater availability of the amino acids in 

the C-loop for interaction with antibodies or other binding partners. The independent work of 

Yin and Lloyd identified an incomplete set of partially conserved tandem repeats (156 amino 

acids each) each containing two conserved cysteine residues [9], consistent with the observations 

of O’Brien and co-workers. Despite the valuable insights afforded by gene cloning efforts, work 

remains to be done: there is currently no solid- or solution-phase structural model of human 

CA125. Detailed knowledge of the structure of CA125 will undoubtedly aid the development of 

novel detection and therapy schemes.  

One potentially valuable approach to the study of CA125’s structure is the 

characterization of individual repeat domains, or of peptides comprising sub-sections of those 

domains. This approach is particularly suitable to the study of mucins, in which repeat domain 

structure is ubiquitous [12, 13]. The investigation of a single repeat domain can provide insights 

on the structure and function of physiologically and clinically important mucins in a smaller, 

more tractable form. For example, synthetic peptides representing the epitope region of the 

breast cancer-associated mucin MUC1 have been particularly fruitful objects of study. Peptides 

ranging from 5 to 120 amino acids in length have been tested for their interaction with 

International Society of Oncology and BioMarkers (ISOBM) antibodies [14], and overlapping 

20-mers have been used to map the amino acid sequence of the antibody-binding site [15]. The 

structure of MUC1 peptides and their interactions with known antibodies have been studied via 

2D NMR [16]. Multiple repeats of MUC1 synthetic peptides have been shown to achieve native 

conformation [17], giving credibility to their use in characterizing the structure and function of 

native MUC1. DNA aptamers (high affinity nucleic acid ligands) have been selected against 

MUC1 synthetic peptides of differing lengths; these aptamer molecules exhibit affinity for native 

MUC1 and for MUC1-expressing breast cancer cells and may be useful in the development of 

novel diagnostic assays [18].  

In contrast with the well-established use of small peptides in the investigation of MUC1, 

this strategy has not yet been widely applied in studies of CA125/MUC16. Recently reported 

work represents a significant step in this direction: in an extension of earlier efforts towards the 

structural characterization of CA125, Warren et al. reported the expression and epitope 

characterization of the 156-amino acid repeat domain of CA125 [19]. They found that although a 

number of antibodies were observed to interact with single 156-amino acid repeats, the 

prototypical CA125-specific antibody (OC125) showed low binding activity. Binding of OC125 

was enhanced by prior incubation with antibodies of group B (M11-like), suggesting an 

―activation‖ of epitopes within the expressed 156-amino acid peptide. The authors predicted that 

the availability of a recombinant CA125 would be of great use in clarifying the biological 

functions of intact CA125.  
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In this report, we describe a complementary strategy for obtaining structure/function 

information about CA125. Rather than expression of a protein or peptide, we used chemical 

synthesis to produce the putative functional region of CA125: the 21-amino acid domain to 

which antibody binding is proposed to occur. Solid-phase synthesis enables precise control over 

the primary sequence of the peptide and gives a product that is easily subjected to structural 

characterization [20]. With it, we have made the predominant sequence and several important 

variants. We then used Fourier transform infrared spectroscopy (FTIR) to study the peptides’ 

secondary structure. The infrared (IR) spectra of proteins and peptides contain structural 

information largely as a result of the sensitivity of the amide I band (1600 to 1700 cm
-1

), which 

arises primarily from carbonyl stretching in the peptide backbone, to its local environment. The 

frequency of the amide I band may vary by more than 50 cm
-1

 in different secondary structures 

[21] and the spectra associated with structural features such as -helices and -sheets have been 

rationalized by quantum mechanical calculations and characterized experimentally in a variety of 

proteins. In addition, the amino-acid side-chain IR bands have been well characterized [22]. In 

this study, the IR spectra of a series of model peptides were measured and the position of the 

amide I bands were interpreted to gain insight on the structure of a small, but likely important, 

section of the CA125 repeat domain.  

 

Materials and Methods  

 

Peptide Synthesis 

 Peptides were synthesized using a PS3 automated peptide synthesizer from Protein 

Technologies (Tucson, AZ) and 9-fluorenylmethoxycarbonyl (Fmoc)-protected amino acids 

from Novabiochem/EMD Chemicals (Gibbstown, NJ). Insoluble resin beads functionalized with 

the Fmoc-protected C-terminal amino acid were placed in a reaction flask; protected amino acids 

and activator (HBTU) were loaded together into individual vials. The resin was swelled with 

N,N-dimethylformamide (DMF) followed by deprotection of the N-terminus with 20% 

piperidine in DMF. Amino acid coupling proceeded in the presence of 0.4 M N-

methylmorpholine in DMF.  The time allotted for coupling can be changed depending on the 

reaction efficiency but was typically 20 min. Inclusion of two pseudoproline dipeptides—Fmoc-

Leu-Thr(
Me,Me

pro) in positions 3,4 and Fmoc-Ala-Thr(
Me,Me

pro) in positions 14,15—was 

found to be essential for obtaining high yields.  

 Completed peptide on-resin was washed twice with dichloromethane:methanol (3:2) and 

once with neat dichloromethane before being dried in a vacuum desiccator. A cleavage mixture 

containing 92.5% trifluoroacetic acid (TFA), 2.5% ethanedithiol (EDT), 2.5% water, and 2.5% 

triisopropyl silane was mixed with the resin and stirred for 3.5 hr to cleave the peptide from the 

resin and remove side-chain protecting groups. The mixture was filtered through glass wool to 

remove the resin, and the volume of the peptide-containing solution was reduced to one-quarter 

under a stream of nitrogen. Addition of excess ice-cold diethyl ether precipitated the peptide, 

which was then pelleted by centrifugation at 10,000 rpm for 10 min, followed by two washings 

with ice-cold ether. The peptide pellet was dissolved in 10% aqueous acetic acid, frozen in liquid 

nitrogen, and lyophilized. Product identity and purity were confirmed by electrospray ionization 

mass spectrometry (MS) (in-house) and amino acid analysis (Commonwealth Biotechnologies, 

Richmond, VA and Biosynthesis, Lewisville, TX).  

 Most peptides were prepared as peptide acids with the C- and N-termini uncapped. To 

prepare capped peptides, synthesis was performed using Rink amide resin. Prior to cleavage the 
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peptide was treated with acetic anhydride to acetylate the N-terminus, and cleavage using TFA 

produced the C-terminal amide. 

 

Peptide Purification 

 Crude peptide was purified by semi-preparative high performance liquid chromatography 

using a Varian Microsorb column (5 µm particle packing, C18 stationary phase, 21.4 mm 

diameter, 25 cm length). Chromatography used gradient elution with 0.1% (v/v) TFA in water as 

the aqueous phase and 0.1% (v/v) TFA in acetonitrile as the organic phase. The separation was 

followed by monitoring peptide backbone absorbance at 214 nm. Fractions containing the 

desired peptide product, as confirmed by MS analysis, were collected and lyophilized. Purified 

lyophilized peptide was dissolved in 50 mM HCl and lyophilized again to remove residual TFA. 

Acid-treated peptide was then oxidized to form the intramolecular disulfide bond by preparing a 

< 1 mg/mL aqueous solution at pH 7 or pH 11. Peptide oxidation was followed by colorimetric 

assay using Ellman’s reagent or by monitoring the m/z values of both the oxidized and reduced 

forms of the peptide by MS (described below.) All peptides were subjected to the same oxidation 

treatment whether or not they were capable of intramolecular disulfide bonding. Peptide was 

frozen and lyophilized again, then stored in a desiccator at 4˚C until needed.  

 

Determination of Oxidation State 

 Peptide oxidation state was determined either by colorimetric assay using Ellman’s 

reagent or by MS. Ellman’s reagent (5,5'-dithio-bis-(2-nitrobenzoic acid); Pierce, Rockford, IL) 

reacts quantitatively with free thiols under neutral and alkaline conditions to give the yellow 2-

nitro-5-thiobenzoate dianion (max = 412 nm;  = 14,150 M
-1

cm
-1

). Absorbance at 412 nm was 

monitored by spectrophotometry, and plots of A412 versus time were fit with single exponentials 

to determine oxidation half-life (t1/2). Selected ion monitoring (SIM) mode of the mass 

spectrometer was used to find abundances of the reduced and oxidized forms of the peptide. 

Plots of the m/z values corresponding to oxidized peptide were plotted versus time and fit with 

single exponentials to find t1/2. Fits to the reduced peptide signal (m/z) versus time gave the same 

t1/2 values, but fits to the oxidation data were found to be more robust, consistent with the fact 

that reduced peptide is consumed completely in the oxidation reaction.  

 

FTIR Spectroscopy 

 Purified peptide was dissolved in 100 mM phosphate buffer (PB) in D2O at pH 7.4 to a 

final concentration of ~20 mg/mL. Samples were placed between CaF2 plates separated by a 

100-µm PTFE spacer. The temperature of the sample holder was varied between 5˚C and 75˚C 

by means of a circulating thermostatted water bath. FTIR spectra were collected in a dry nitrogen 

atmosphere using a Bruker Vector 22 spectrometer (Bruker Optics, Billerica, MA). For each 

spectrum, 512 scans were collected over a range of 4000 to 400 cm
-1

 with 4 cm
-1

 resolution. The 

spectrum of the blank buffer (recorded at the same temperature) and of water vapor (collected 

each day) were digitally subtracted from each peptide spectrum using Grams spectroscopy 

software (Thermo Scientific, Waltham, MA).  

  

 

Results 

  

Identification of the Target Sequence 
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 Using the CA125 sequence data reported by O’Brien et al., we examined the 63 unique 

instances of the antigenic repeat domain [8]. Table 1 shows the relative abundances of amino 

acids at each position in the putative peptide epitope. Using this information, we identified the 

peptide sequence comprised of the most commonly occurring residues (position 1 to 21, reading 

from amino to carboxyl): CRLTLLRPEKDGAATGVDAIC. This peptide corresponds to 

positions 59 to 79 in the larger 156-amino acid repeat domain. Although this particular sequence 

only occurs 8 times out of the 63 repeats, it is the most common sequence, and we hypothesized 

that it is the peptide most likely to be recognized by CA125 antibodies. The same target peptide 

is selected using the shorter deduced amino acid sequence reported by Yin and Lloyd [9]. We 

also identified variants that we expected to possess significant structural features, such as the 

substitution of Ala for Cys at either terminus (which represents a peptide unable to form an 

intramolecular disulfide bond or C-loop) and the substitution of Ser for Pro at position 8 (proline 

is often important in determining structure but is only present in 60% of repeat domains). Table 2 

lists the peptides synthesized and characterized in this study.  

 

Oxidation studies 

 Peptide 1 was found to oxidize spontaneously in air under mild conditions (10 mM 

phosphate buffered saline, PBS, pH 7.4) with t1/2 = 38.5  5.5 min. Raising the pH to 11 by drop-

wise addition of aqueous sodium hydroxide increased the rate of air oxidation, with t1/2 = 5.5  

0.2 min. Peptide 4, in which proline at position 8 is replaced with serine, exhibited identical 

oxidation kinetics to peptide 1, with t1/2 = 5.7  0.3 min at pH 11. Peptides with uncharged, 

capped ends exhibited slow air oxidation kinetics (t1/2  > 10 hr) in PBS at physiological pH, but 

oxidized readily at pH 11 (t1/2 = 30  1 min). 

 

FTIR spectroscopy 

 IR spectra were acquired for peptides dissolved in PB/D2O, which provides a neutral 

solution of physiological ionic strength while avoiding spectroscopic interferences from H2O. To 

avoid interference from the absorbance of water, FTIR spectra of peptides are typically collected 

in D2O solution, in which case the relevant band is referred to as amide I'. The primary feature in 

the amide I' region for peptide 1 was a broad band centered around 1645 cm
-1

, characteristic of 

random coil configuration. Figure 1 shows a representative spectrum of peptide 1 at 25˚C. In 

addition to the dominant 1645 cm
-1

 band, spectra of peptide 1 contained an unidentified shoulder 

at 1606 cm
-1

 and a minor feature at 1585 cm
-1

, which we assign to a superposition of protonated 

Arg (literature value: 1581 to 1586 cm
-1

) and deprotonated Asp (literature value: 1584 cm
-1

) 

[22]. Between 5˚C and 75˚C, slight shifting of the 1645 cm
-1

 band to higher frequencies was 

observed, but no new features emerged, and no hysteresis was observed during thermal cycling. 

Peptides 2 and 3 differ from peptide 1 in the substitution of a terminal Cys with Ala (C1A in 

peptide 2 and C21A in peptide 3) and are therefore unable to form intramolecular disulfide 

bonds. Their IR spectra are essentially identical to that of peptide 1, as shown in figure 1. Peptide 

4 differs from peptide 1 in the substitution of Pro at position 8 with Ser (P8S). Spectra of peptide 

4 show a smaller 1645 cm
-1 

feature relative to peptide 1, along with two new features consistent 

with -sheet structure: a dominant narrow band at 1620 cm
-1

 and a minor feature at 1684 cm
-1

. 

Samples of peptide 4 were opaque and viscous, consistent with aggregation of -sheets. Between 

5˚C and 75˚C, the 1620 cm
-1

 and 1684 cm
-1

 bands increase at the expense of the 1645 cm
-1 

feature as shown in figure 2a. Figure 2b shows that this increase in -sheet character persists 

upon returning to 25˚C. Addition of reducing agent dithiothreitol at basic pH clears the solution; 
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spectra of peptide 4 collected under these reducing conditions show that -sheet character is 

eliminated (Figure 3). Peptide 5 is also P8S, but is unable to form intramolecular disulfide bonds 

because of a Cys substitution with Ala (C21A). As shown in figure 1, this peptide exhibits only 

random coil secondary structure. Peptide 6 is identical to peptide 1 except that its ends have been 

capped to eliminate free charges. This peptide was examined after intramolecular disulfide bond 

formation and found to be identical to peptide 1 (figure 1). Finally, peptide 7 is C21A with 

capped ends. Its FTIR spectrum is also dominated by the 1645 cm
-1 

feature associated with 

random coil, as seen in figure 1.   

 

 

Discussion 

 

 To identify our synthetic targets we examined the 63 instances of the highly conserved 

cysteine-flanked peptide epitope reported by O’Brien et al. [8]. Table 1 shows the percent 

occurrence of amino acids at each position. Except for a single instance where serine appears at 

position 1, the cysteines at positions 1 and 21 are completely conserved, suggesting that under 

the oxidizing conditions of serum, the 21-mer will form a closed loop, as the thiol groups of the 

cysteine side chains undergo disulfide bonding. This C-loop structure may push the amino acids 

comprising the loop away from the protein core, making them more accessible to interaction 

with antibodies or other binding partners. Among the 63 repeats, some residues are completely or 

very highly conserved (>96%) including arginine at positions 2 and 7; leucine at positions 3 and 

6; lysine at position 10; alanine at position 14; and aspartic acid at position 18. Others are more 

variable, such as position 8, where proline occurs in 60% of the repeats, and position 11, where 

aspartic acid occurs in 54%. Our primary synthetic target was the consensus sequence (peptide 1) 

comprised of the most frequently occurring amino acids. We also synthesized several sequence 

variants that we predicted might have differing structure (peptides 2 through 7). We were 

particularly interested in characterizing the effects of disulfide bonding, on the assumption that 

the C-loop was significant to secondary structure. We were also interested in the incomplete 

conservation of proline, given the potential significance of that amino acid to secondary 

structure. Proline is unique in having its side chain bonded to the backbone nitrogen, and the 

resulting lack of amide hydrogen impairs hydrogen bonding at that site. In addition, the 5-

membered ring significantly constrains rotation around the peptide backbone, which limits the 

range of secondary structures that may be achieved by proline-containing peptides.  

 FTIR spectroscopy, which is sensitive to protein and peptide secondary structure, reveals 

that 6 of the 7 peptides we synthesized are largely unstructured, as indicated by the broad 1645 

cm
-1

 band characteristic of random coil configuration. It is not surprising that a 21-mer peptide is 

unable to achieve a well-defined secondary structure. Upon substitution of serine for proline at 

position 8 (peptide 4), however, the random coil signature is replaced during thermal cycling by 

two narrow peaks (at 1620 cm
-1

 and 1684 cm
-1

) associated with -sheet structure. Concomitant 

with this alteration in the secondary structure, we also observed increased viscosity in solutions 

of peptide 4, consistent with aggregation. The -sheet structure increases upon heating and 

exhibits persistence after thermal cycling. This observation suggests that peptide 4 as synthesized 

initially exists in a variety of conformations, some of which occupy local energetic minima and 

are kinetically (though not thermodynamically) stable. Heating enables the semi-stable 

conformations to overcome the energetic barrier to attain the global energetic minimum of the 

thermodynamically stable state. We therefore conclude that for oxidized peptide 4, -sheet 
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structure is thermodynamically favored. Addition of a reducing agent to solutions of peptide 4 

caused them to clarify, and a return to random coil configuration is indicated by the FTIR 

spectra. Peptide 5, which is also P8S but unable to form intramolecular disulfide bonds, showed 

no evidence of -sheet formation. Thus two conditions that favor -sheet formation and 

aggregation are the presence of a disulfide bond (in our case an intramolecular bond) and the P8S 

sequence substitution.  

 Aggregation of mucins is vital to their role in forming a hydrated, gel-like protective 

coating on the epithelial cells that secrete them. For CA125/MUC16, our observation of 

sequence- and oxidation-state dependent aggregation suggests the intriguing possibility of a role 

for some, but not all, repeated peptide epitopes in intermolecular aggregation. Differences in 

structure may also result in differing affinities for CA125 antibodies; assays to investigate this 

question are ongoing. 

 A structural model has been proposed for an SEA (sea urchin sperm protein, 

enterokinase, and agrin) domain from a murine homogue of CA125 [23]. In their NMR solution 

structure, Maeda et al. located two cysteine residues (Cys-57 and Cys-78 in their numbering 

scheme) near each other on two  strands with an intervening unstructured loop. They found no 

evidence for disulfide bonding between Cys-57 and Cys-78 although those amino acids are seen 

in the NMR structure to be close enough for such bonding to occur. For several reasons, we 

suggest that this structural model is of limited utility as a model for human CA125. Importantly, 

the primary sequence between Cys-57 and Cys-78 for the murine protein they characterized 

differs significantly from the human consensus sequence that we identify from the sequence 

information reported by O’Brien et al. [8]. The 22-amino acid sequence 

CQVLAFRSVSNNNNHTGVDSLC found in the mouse protein characterized by Maeda differs 

significantly from our 21-amino acid-long consensus sequence: 

CRLTLLRPEKDGAATGVDAIC. At position 8 in our numbering scheme (64 in Maeda’s 

notation), the murine protein contains a Ser, which is found in approximately 25% of repeated 

sequences in human CA125 and, most significantly, was uniquely responsible for the alteration 

of secondary structure from largely random coil to aggregated -sheet structure in disulfide-

bonded peptides. In addition, NMR spectroscopy was performed on peptides in a solution 

containing DTT, a reducing agent that we show alters the structure of our model peptides, 

destroying -sheet structure. The oxidizing environment of serum is not well modeled by a DTT-

rich solution. Further structural characterization of true human CA125 and its repeat domains is 

needed, and these efforts must pay particular attention to the identity of the residue at position 8 

and to the peptide oxidation state. 

Gubbels and co-workers demonstrated N-glycan dependent, high-affinity binding 

between mesothelin (a cell-surface protein normally present in the peritoneal cavity) and CA125 

expressed on the ovarian tumor cell line OVCAR-3 [24]. Such interactions likely serve as a 

mechanism for peritoneal metastasis of ovarian tumors. The binding site on mesothelin for 

CA125 has been identified, and incubation with a single-chain monoclonal antibody has been 

found to block the mesothelin-CA125 interaction [25]. The synthetic, glycan-free peptide 

epitopes that we report here may find use in the continuing characterization of metastasis by 

decoupling the role of peptide primary and secondary sequence from the role of glycans present 

on cell-expressed or ascites-derived CA125. These peptides may also serve as therapeutic agents 

by interfering with cell-cell adhesion or be used in the development of a targeted drug-delivery 

strategy. Targeting antibodies armed with cytotoxic drugs to repeat domains of CA125 has been 
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demonstrated to be effective in an animal model [26] and may represent a useful mode of therapy 

in humans. The investigation of such applications is a focus of our current work.  
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Figure 1. FTIR spectra of 21-residue peptides (labeled according to Table 2) measured at 25˚C. 

The 1645 cm
-1

 band characteristic of random coil configuration is clearly pronounced. 
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Figure 2. (a) FTIR spectra of peptide 4 recorded at temperatures ranging from 5˚C (red) to 75˚C 

(violet). The features associated with -sheet structure increase with temperature at the expense 

of the random coil peak. (b) FTIR spectra for peptide 4 recorded at 25˚C before (dashed line) and 

after (solid line) heating of the peptide to 75˚C, showing the persistence of the -sheet structure. 
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Figure 3. FTIR spectra of peptide 4 recorded at 25˚C in the absence (dashed line) and presence 

(solid line) of reducing agent DTT, showing the sensitivity of -sheet structure to oxidation state. 
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position amino acid % occ. position amino acid % occ. position amino acid % occ. 

1 C 98.4 11 D 54.0 16 A 4.8 

 S 1.6  N 9.5  K 4.8 

2 R 98.4  H 9.5  X 15.9 

 Q 1.6  Q 6.3 17 V 87.3 

3 L 98.4  R 4.78  M 12.7 

 V 1.6  X 15.9 18 D 96.8 

4 T 88.9 12 G 68.2  A 1.6 

 A 4.8  E 9.5  T 1.6 

 I 6.3  S 4.8 19 A 63.5 

5 L 76.2  K 1.6  T 15.9 

 S 22.2  X 15.9  I 1.6 

 A 1.6 13 A 90.5  L 1.59 

6 L 100  S 4.7  V 1.6 

7 R 100  V 1.6  X 15.9 

8 P 60.3  T 1.6 20 I 63.5 

 S 23.8  E 1.6  V 11.1 

 X 15.9 14 A 98.4  T 1.6 

9 E 92.0  E 1.6  A 3.8 

 K 6.4 15 T 95.2  C 3.8 

 V 1.6  M 4.8  L 1.6 

10 K 98.4 16 G 61.9  X 15.9 

 D 1.6  R 12.7 21 C 100 

 

Table 1. Occurrence frequencies of amino acids at each position in the CA125 antigenic 

determinant, based on reported data (O’Brien et al., 2001). ―X‖ refers to an unspecified amino 

acid. 
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name sequence 

peptide 1 CRLTLLRPEKDGAATGVDAIC 

peptide 2 ARLTLLRPEKDGAATGVDAIC 

peptide 3 CRLTLLRPEKDGAATGVDAIA 

peptide 4 CRLTLLRSEKDGAATGVDAIC  

peptide 5 

peptide 6 

peptide 7 

CRLTLLRSEKDGAATGVDAIA 

Ac-CRLTLLRPEKDGAATGVDAIC-NH2 

Ac-CRLTLLRPEKDGAATGVDAIA-NH2 

 

Table 2. One-letter abbreviations of the peptide sequences synthesized in this study. Sequence 

variants are designated by a bold letter showing the amino acid at which the peptide differs from 

peptide 1, the consensus sequence. Peptides 1-5 have charged free ends. Peptides 6 and 7 were 

capped to remove end charges; the C-terminus was amidated and the N-terminus was acetylated.  
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