Oberlin
Digital Commons at Oberlin

Faculty & Staft Scholarship

7-1-2013

Inverted Linear Halbach Array for Separation of
Magnetic Nanopartides

Yumi [jiri
Oberlin College, Yumi Ijiri@oberlin.edu

Chetan Poudel
P. Stephen Williams
Lee R. Moore

Toru Orita

See next page for additional authors

Follow this and additional works at: https://digitalcommons.oberlin.edu/faculty schol

Repository Citation

Yumi Jjiri, Chetan Poudel, P. Stephen Williams, Lee R. Moore, Toru Orita, and Maciej Zborowski. 2013. "Inverted Linear Halbach
Array for Separation of Magnetic Nanoparticles." IEEE Transactions on Magnetics 49(7): 3449-3452.

This Article is brought to you for free and open access by Digital Commons at Oberlin. It has been accepted for inclusion in Faculty & Staff Scholarship

by an authorized administrator of Digital Commons at Oberlin. For more information, please contact megan.mitchell@oberlin.edu.


https://digitalcommons.oberlin.edu?utm_source=digitalcommons.oberlin.edu%2Ffaculty_schol%2F2612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/faculty_schol?utm_source=digitalcommons.oberlin.edu%2Ffaculty_schol%2F2612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/faculty_schol?utm_source=digitalcommons.oberlin.edu%2Ffaculty_schol%2F2612&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu

Authors
Yumi Jjiri, Chetan Poudel, P. Stephen Williams, Lee R. Moore, Toru Orita, and Maciej Zborowski

This article is available at Digital Commons at Oberlin: https://digitalcommons.oberlin.edu/faculty schol/2612


https://digitalcommons.oberlin.edu/faculty_schol/2612?utm_source=digitalcommons.oberlin.edu%2Ffaculty_schol%2F2612&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 7, JULY 2013 3449

Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles
Yumi Jjiri', Chetan Poudel!, P. Stephen Williams®3, Lee R. Moore?, Toru Orita?, and Maciej Zborowski?

! Department of Physics and Astronomy, Oberlin College, Oberlin, OH 44074 USA
2Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
3Cambrian Technologies, Inc., Cleveland, OH 44109 USA

A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating
magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agree-
ment with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle
suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment aggregate and accumulate
against the channel wall, with lower moment nanoparticles flowing unaffected. The device is demonstrated for iron oxide nanoparticles
with diameters of ~5 and 20 nm. In comparison to other approaches, the inverted Halbach array is more amenable to modeling and to

scaling up to preparative quantities of particles.

Index Terms—Magnetic liquids, magnetic separation, nanoparticles, permanent magnets.

I. INTRODUCTION

AGNETIC nanoparticles are of much interest for a

wide range of biomedical applications including hyper-
thermia, magnetic resonance imaging (MRI) contrast agents,
magnetic particle imaging (MPI), and magnetic tagging and cell
separation [1], [2]. In these applications, features such as device
efficiency and resolution depend critically on uniformity, in not
only the nanoparticle size, but also the nanoparticle magnetic
properties such as magnetization and coercivity. Unfortunately,
comparatively few purification methods have been developed
to sort nanoscale materials on the basis of such features [3].

Many of the recent efforts to achieve magnetic nanoparticle
separation stem from existing approaches for larger particles
such as magnetic field-flow fractionation (MgFFF) [3], [4]
and high gradient magnetic separation (HGMS) [5], [6]. In the
modified methods, a variable field electromagnet preferentially
retains larger, more magnetic nanoparticles, while smaller,
less magnetic ones flow unimpeded. While these and other ap-
proaches [3] have yielded promising results, challenges remain
in terms of getting higher throughput and characterizing better
the separation process, given the particle interaction issues.

In this work, we describe a different method, in which a per-
manent magnet arrangement known as a Halbach array is used
to provide the magnetic force necessary to separate magnetic
nanoparticles. First proposed by Mallinson [7] and developed by
Halbach to focus high energy particle accelerator beams [8], the
arrangement involves modulating the magnetization vector of a
series of magnets to create a high flux and low flux side. As de-
scribed below, in contrast to most uses of this arrangement, we
have designed and constructed a Halbach array in which the low
flux side is used. The combination of a low field, yet high field
gradient allows for separating disparate iron oxide nanoparticle
suspensions.

Manuscript received October 28, 2012; accepted January 25, 2013. Date of
current version July 15, 2013. Corresponding author: Y. Ljiri (e-mail: yumi.
jiri@oberlin.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2013.2244577

II. MAGNETIC ARRAY DESIGN CONSIDERATIONS

A single domain, isolated magnetic nanoparticle of total mag-
netic moment m in an inhomogeneous B field experiences a
magnetic force

F.. =V(meB). @)

For a nanoparticle in solution of viscosity 7, this force may be
opposed by a resulting Stokes’ drag force of

F; = —3mnd,v, 2)

where d,, is the (hydrodynamic) diameter of the nanoparticle,
and vy, is its velocity. For

Fy+F,, =0 3)

the particle achieves a steady state v, which, for sufficiently
large m and large gradient in field, may be sizeable enough to
allow for separation of the particle in a MgFFF process.

As described previously [7], [8] and illustrated in Fig. 1, a
linear (Halbach) arrangement of permanent magnets in which
the magnetization vector rotates (typically by 90 degrees) from
magnet to magnet creates a condition in which magnetic flux is
concentrated on one side of the array over the other. This nec-
essarily results in large gradients in field over single magnet ar-
rangements [9] and in addition, creates fields and gradients that
are substantially uniform on planes parallel to the array. Halbach
arrays have recently been used to continuously sort microm-
eter-sized magnetic particles with a fluid channel placed over
the high flux side of the array [10]. On the high flux side, the
magnetic force in (1) is maximal, due to saturated large values
of m on the particles and the large field gradient.

However, for nanometer-sized magnetic particles, the mo-
ment per particle is significantly smaller, resulting in weaker
separation forces. In addition, in moderate to high magnetic
fields, the nanoparticles may chain or aggregate due to dipole-
dipole interactions which can be characterized by an energy
term
T peM?2d8

1 (4)

Uig= =775
T2 (dyy + 26)3

0018-9464/$31.00 © 2013 IEEE



3450

Fig. 1. (a) Simulated B field lines for a 47-magnet linear Halbach array of per-
manent magnets; neighboring magnets add to the flux on the bottom high flux
side, but subtract on the top, low flux side. (b) Expanded view, showing the
magnetization orientation for a section of nine complete magnets in the array.
Field lines are ~0.02 T apart.

where the particles have magnetization values of M, magnetic
diameter d,, and nonmagnetic coating thickness 6 [11]. Note
that the magnetic diameter d,,, may be significantly different
from the hydrodynamic diameter d,,, as the particles may have
a sizeable portion that is not magnetic as a result of surface
effects or more simply due to a surfactant coating. When Uy
becomes much greater than thermal fluctuations of order kg7’
(where kg is Boltzmann’s constant and 7' is temperature), a
large distribution of clustered and chained nanoparticles may
result, with other different-sized nanoparticles entangled inside,
such that separation becomes even more challenging.

To address these issues, we have designed a linear Halbach
array with a fluid channel across the low flux side of the as-
sembly. The gradient of the magnetic field is still sizeable, but
the magnetic field is modest to promote aggregation of only the
most magnetic nanoparticles in a suspension, leading to more
controllable separation of a mixture of nanoparticles.

III. DEVICE CONSTRUCTION AND PERFORMANCE

As shown in Fig. 2(a), an inverted Halbach array has been
constructed with 47 nickel-plated Nd-Fe-B magnets (42 MGOe
energy product, K&J Magnetics, Inc), each with dimensions of
0.64 cm (width) x 0.64 cm (height) x 5.08 cm (length) and
magnetized through a 0.64 cm dimension. Across the array, the
magnetization direction of each magnet is rotated by 90 degrees.
The magnets are held in place with set screws and an aluminum
frame, resulting in height variation from magnet to magnet of
less than 5%. The array dimensions have been chosen to make
use of readily obtainable magnets and other materials.

Fig. 2(b) depicts the flow channel for magnetic suspensions,
constructed with a stainless steel base, a Viton rubber gasket, a
borosilicate glass top plate, and a Plexiglas cover to allow for
viewing of the fluid. The channel has dimensions of 23.3 cm
(length) x 1.27 cm (width) x 0.025 cm (thickness), with an
inlet to outlet distance of 22.9 cm. Materials have been chosen
to allow for use with both aqueous and organic solutions. FEP
Teflon tubing (0.08 cm inner diameter) has been used for the
inlet and outlet, with magnetic suspensions injected or with-
drawn using a syringe pump (Harvard Apparatus Syringe Pump
11 Elite). Additional stainless steel spacer plates are used to ad-
just the distance of the channel from the array.
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(b)

Fig. 2. (a) Photograph of the constructed Halbach array with low flux side on
top. (b) Photograph with the flow channel placed on top of the array. Arrows
indicate the tubing for inlet and outlet of magnetic fluid suspensions.
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Fig. 3. (a) Plot of the normal component of the B field along the length of the
magnet array at a distance 0.3 cm above the array (each block is 0.64 cm), as
calculated from FEMM View (solid red) or measured with a gaussmeter probe
(dashed blue). (b) Plot of the corresponding gradient of the field from FEM-
MView calculations.

The magnetic field of the assembly by itself has been deter-
mined with a Hall effect gaussmeter (Lakeshore) for several dis-
tances above the array. Fig. 3(a) shows the data for the normal
component of the field measured at a distance of 0.3 cm from the
magnet array, where the average |B| field value is approximately
0.05 T. Also shown in the figure are the results of finite ele-
ment method calculations performed with FEMM software, in-
dicating the predicted field value in Fig. 3(a) and the gradient in
Fig. 3(b), which has an average value of ~32 T/m [12]. There is
good agreement between the measured and calculated values of
the component of B, with the overall array uniformity high ex-
cept near the ends where fringe effects occur. The flow channel
location, width and length have been chosen to avoid these end
effects.

As shown in Fig. 4, the average field and the field gradient
depend on the distance from the array. Hence, the force on a
suspension of nanoparticles as indicated in (1) can be adjusted
by varying the distance of the channel from the magnet array,
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Fig. 4. Plot of the (a) averaged |B| field and (b) gradient of B in the direction
perpendicular to the surface of the magnet array as a function of distance above
the array.

affecting both the gradient and the magnetization value for the
particles.

The array has been tested with commercial iron oxide
nanoparticles (Aldrich) of nominal sizes of 5 (+1) and 20
(£2) nm diameters with surfactant coatings of 1.5 nm, as
determined from transmission electron microscopy (TEM).
The particles are coated with oleic acid as surfactant and
suspended in toluene with initial concentrations of 5 mg/mL.
The particles’ net moment as a function of applied magnetic
field has been measured using a Lakeshore 7307 vibrating
sample magnetometer (VSM), with the suspensions showing
superparamagnetic-like behavior, with saturation values of
~80% and 90% of bulk magnetite for the 5 and 20 nm particles
respectively.

From the size and moment information, we can then estimate
the dipole-dipole energy from (4) for a specific value of applied
magnetic field. For instance, in a B field of 0.05 T, we find the 5
nm diameter particles have U;, of only 0.003 times that of room
temperature thermal energy (kg7 ~ 4.11 x 10721 J), whereas
for the 20 nm diameter particles, U4 is over 5 times greater
than that associated with thermal motion. For one 5 nm and one
20 nm particle, the Uy, is still a small 0.08 times that of kgT'.
Thus, it is reasonable to anticipate significant clustering of only
the 20 nm diameter particles under this condition in contrast to
the 5 nm ones.

Note that the steady-state velocity v, of nanoparticles or clus-
ters of nanoparticles can be projected from (3), given informa-
tion on the effective particle diameter d,,, the fluid viscosity, the
moment, and field gradient. Assuming for a cluster of 20 nm
particles, a d,, of ~3 times the single particle diameter, a vis-
cosity of toluene of 0.590 cP, and the moment and field values
for the particles 0.3 cm from the magnet array, we estimate a
vp of ~ 1 — 2 pm/s. Since the flow channel thickness is 250
pm, the time for the clusters of 20 nm particles to traverse the
channel width is ~2—4 minutes, which would suggest flow rates
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Fig. 5. Photograph of the device after a 50:50 by volume mixture of 5 and 20
nm particles has been passed through the flow channel. Prominent residue bands
remain.

of under 0.2—0.4 mL/min to allow such clusters to deposit on the
accumulation wall of the channel. Note that while the channel
is oriented horizontally, settling of the clusters due to gravity
is negligible, since the magnetic force Fy, is several orders of
magnitude greater than that due to gravity.

To explicitly test the performance of the constructed device,
we have investigated its use with three separate suspensions
containing 5 nm particles, 20 nm particles, and a 50:50 by
volume ratio of 5 and 20 nm particles. The base of the channel
has been set at a distance of 0.3 cm from the magnet array
surface, with a 0.1 mL/min flow rate. While the 5 nm particle
suspension passes through the channel leaving little visible
sign of particles against the accumulation wall, the 20 nm
particle suspension leads to a darkened residue. Similarly,
as depicted in Fig. 5, upon sending the mixture through the
channel, we observe significant banding, indicating depositing
of nanoparticles, particularly the larger ones.

To quantify the degree of separation, small angle x-ray
scattering (SAXS) measurements have been performed on
the nanoparticle suspensions in transmission geometry using
a Rigaku Ultima IV x-ray diffractometer (with a sealed tube
copper Ka source) with a liquid stainless steel sample holder of
Kapton windows. The SAXS measurements were taken from
0.1 to 3.6 degrees 26 with a step size of 0.02 degrees and a
count rate of 1 minute per point.

As shown in Fig. 6, SAXS measurements of the unmixed so-
lutions clearly indicate differences in the form factor beating as
expected for nanoparticles of different diameters (patterns a and
d). The mixture of the two (pattern c) displays an intermediate
pattern. Passing this mixture over the array leads to a significant
change in small angle scattering of the analyte (pattern b), re-
sulting in a suspension more similar to that of the 5 nm particles
(pattern a). The solid lines in Fig. 6 indicate fits to the SAXS
data using the Rigaku NANO-Solver program [13]. From the fit
data, it is found that the volume fraction ratio for the sorted sus-
pension is now at 80%/20% for the small to larger particles vs.
the initial mixture. Further work is necessary to determine what
controls the sort ratio.

IV. CONCLUSION

We have demonstrated a novel method for separating sus-
pensions of magnetic nanoparticles, based on their size and
magnetic moments. As illustrated in Fig. 3, the magnetic
characteristics of the magnet assembly agree well with finite
element methods and thus allow for accurate modeling of mag-
netic forces. The device can separate suspensions of magnetic
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Fig. 6. SAXS measurements of intensity vs. 26 angle for the a) 5 nm sus-
pension, b) 5 and 20 nm mixture after sorting through the array c) 5 and 20
nm mixture before sorting through the array, and d) 20 nm suspension. Inset
shows color of four fluids. Solid lines are fits to the SAXS data using the Rigaku
NANO-Solver program.

nanoparticles in the 5 to 20 nm size regime. In addition, the
planar geometry of the array is potentially scalable to much
larger sizes, easily increasing throughput—an important con-
cern in nanoparticle separation devices. It could also be made
in a scaled-down microfluidics version.

Work is ongoing in order to optimize efficiency and speed of
the sorting process based on considerations of the array profile
and the expected degree of agglomeration for particles of dif-
ferent sizes and moment values.
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