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Concept Inventories (CIs) are assessments designed to measure student
learning of core concepts. CIs have become well known for their major
impact on pedagogical techniques in other sciences, especially physics.
Presently, there are no widely used, validated CIs for computer science.
However, considerable groundwork has been performed in the form
of identifying core concepts, analyzing student misconceptions, and
developing CI assessment questions. Although much of the work has
been focused on CS1 and a CI has been developed for digital logic,
some preliminary work on CIs is underway for other courses. This
literature review examines CI work in other STEM disciplines, discusses
the preliminary development of CIs in computer science, and outlines
related research in computer science education that contributes to CI
development.

Keywords: concept inventory; assessment; misconceptions

1. Introduction
A concept inventory (CI) is a standardized assessment tool designed to
measure student understanding of the core concepts of a topic (Goldman
et al., 2010), or the extent to which instruction has helped students achieve
expert-level thinking in a domain (Adams & Wieman, 2011; Herman, Loui,
& Zilles, 2010a; Hestenes, Wells, & Swackhamer, 1992). Critically, CIs
provide a mechanism for educators to compare student learning outcomes
across instructors, institutions, curricula, and pedagogical practices.

The exclusive focus of CIs on core concepts differentiates them from
other metrics of student learning such as final exams, which frequently ask
students to perform detailed calculations or to regurgitate memorized de-
tails. By focusing on a topic’s central concepts, CIs achieve broad
applicability as standards for pedagogical comparison. Their purpose is

∗Corresponding author. Email: ctaylor@oberlin.edu

© 2014 Taylor & Francis
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2 C. Taylor et al.

to improve pedagogy rather than summatively assess students (Adams &
Wieman, 2011). CIs are sometimes administered as both pre- and post-
course assessments, so as to control for initial knowledge and provide a
clear before-and-after view of student learning.

A broadly applicable CI can catalyze innovation and improvement in
teaching and learning by providing meaningful feedback to instructors
and researchers on the effectiveness of their interventions, course design,
pedagogy, and other teaching-related factors. Improvements brought by
CIs typically benefit all students, sometimes with a further beneficial boost
to subgroups such as women and minorities (Reay, Li, & Bao, 2008). CIs
also encourage the raising of standards across campuses, as more direct
comparisons between institutions are made possible and programs with
lower performance can be identified.

Toward these objectives, CIs have been successfully developed and used
in other STEM disciplines, such as physics, chemistry, and biology, to
drive discipline-specific education research and pedagogical reformation.
The ultimate result of the pedagogical changes, enabled by research made
possible by CIs, has been lauded for improving student outcomes (Crouch
& Mazur, 2001).

In computer science, CI development remains in its infancy. CIs have
been developed for digital logic (Herman, Loui, & Zilles, 2011) and CS1
(Tew & Guzdial, 2011). Other course assessments for discrete mathematics,
computer architecture, and operating systems have had preliminary work
performed (Almstrum et al., 2006; Porter, Garcia, Tseng, & Zingaro, 2013;
Webb & Taylor, 2014) but are either incomplete, unvalidated, or not publicly
available.

Although computer science appears to be distinctly behind other STEM
disciplines in the development, deployment, and widespread use of CIs, a
great deal of complementary work has been accomplished in a number of
areas, including the development of AP CS examinations, the identification
of core course concepts and common misconceptions, and potential ques-
tions on topics that could be part of a larger full CI (Clancy, 2004; Goldman
et al., 2010; Karpierz & Wolfman, 2014; Lister et al., 2004; McCracken et al.,
2001; Paul & Vahrenhold, 2013; Soloway, Ehrlich, Bonar, & Greenspan,
1982). Given the groundwork already accomplished by the computer sci-
ence education research community, our discipline is now poised for more
widespread CI development and use.

In this work, we provide a literature review of the following topics:
• An overview of the work that has been done to construct CIs

in other STEM disciplines, including a discussion of standard CI
development best practices.

• A characterization of the challenges for CI development in com-
puter science, along with a discussion of commonly used assess-
ments and preliminary work toward building CIs for CS topics.
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Computer Science Education 3

• A review of work in computer science education that contributes to
CI development, including the development of standardized
assessments (AP CS) and research that identifies core concepts and
common student misconceptions.

2. Concept inventories in engineering and other sciences
This section primes the discussion for concept inventories in computer
science by reporting the successes of CIs in other disciplines and describing
their development best practices. Concept inventories have had a large
impact on pedagogy in a variety of scientific fields. In physics, the Force
Concept Inventory (Hestenes et al., 1992) tests students on their conceptions
of force and motion as covered in the first post-secondary physics course.
Deploying the FCI revealed a vast difference between student and expert
understanding of core physics concepts (Adams & Wieman, 2011). Perhaps,
more significantly, it exposed a vast difference between what instructors
thought their students understood, based on conventional final exam per-
formance, and the misconceptions that their students actually held (Mazur,
2009).

It is difficult to overstate the effect of the FCI on the physics education
community. Repeated use of the FCI showed instructors that students were
not obtaining expert-like conceptions of force, even after significant physics
instruction (Crouch & Mazur, 2001). Learning outcomes were lackluster,
regardless of instructor or institution, leading physics instructors to rethink
their teaching practices.

FCI performance catalyzed the development of new teaching methods,
such as peer instruction (PI) and other active-learning pedagogies, which
have drastically improved student learning (Crouch & Mazur, 2001). A
common metric to measure quantity of learning is normalized gain (NG),
which is the ratio of amount of learning to maximum available learning. For
example, if students score 40% on a pre-test and 80% on a post-test, then they
have learned 40% out of a maximum 60%, so the NG is 0.67. In one study
including some 6542 students in 62 different courses, it was found that all
traditional courses had low learning gains (defined as NG ≤ 0.3), compared
to 85% of interactive-engagement courses that demonstrated medium gains
(0.3 < NG ≤ 0.7) (Hake, 1998).

The strength of the Hake study – including its influence on faculty
and institutional change – is that it amassed a large sample of students
from a broad range of institutions and instructors. Without the FCI to
provide a common measure, a study of this magnitude would have been
impossible. The FCI is a critical piece of infrastructure on which pedagogical
experimentation, innovation, and reform have been built.

Today, the FCI is something of a gold standard to which other CIs are
compared (Herman, 2011). While the FCI is the most striking example
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4 C. Taylor et al.

Table 1. Validated concept inventories in other STEM fields; FC indicates members of the
NSF-funded foundation coalition.

Subject area Developers

Astronomy Zeilik (2002)
Natural selection Anderson, Fisher, and Norman (2002)
Dynamics Gray et al. (2005) (FC)
Signals and systems Wage, Buck, Wright, and Welch (2005) (FC)
Statics Steif & Dantzler (2005)
Light and spectroscopy Bardar, Prather, Brecher, and Slater (2006)
Calculus Epstein (2007)
Genetics Smith, Wood, and Knight (2008)
Properties of stars Bailey (2008)
Astronomy and space science Sadler et al. (2009)
Geoscience Libarkin, Ward, Andersln, Kortemeyer, and Raeburn (2011)

of the benefits of CIs on learning, other disciplines have followed suit and
have begun to similarly benefit from CI availability. For example, the Signals
and Systems Concept Inventory (SSCI) has demonstrated that interactive
engagement in signal-processing courses is beneficial over traditional teach-
ing methods, as was similarly found by physics educators (Buck, Wage,
Hjalmarson, & Nelson, 2007).

2.1. Concept inventory topics

A vast number of CIs have been developed for a variety of sciences. Table 1
lists several validated CIs that are widely used in their fields. There are
many more CIs that are in the process of being developed and validated, or
currently available but in less widespread use.

The National Science Foundation has supported the Foundation Coali-
tion (www.foundationcoalition.org), which, among other activities, has
pursued the development of numerous concept inventories in a variety of
engineering fields. The fields include circuits, computer engineering,
electromagnetics, electronics, signals and systems, waves, dynamics, fluid
mechanics, heat transfer, strength of materials, thermodynamics, chemistry,
and materials. The projects are in various states of completion.

Especially, relevant are existing CIs on topics related to computer science
such as calculus (Epstein, 2007), statistics (Allen, 2006), signals and systems
(Wage et al., 2005), and circuits (Helgeland & Rancour, 2003; Ogunfunmi
& Rahman, 2010). These CIs could potentially be used as starting points
for CIs on similar CS topics. In Section 3, we discuss some challenges
that are inherent in developing CIs in CS; investigating the ways in which
researchers from other disciplines have addressed related challenges may
yield important insights.
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Computer Science Education 5

2.2. Concept inventory development process

Creating and validating a concept inventory can be an arduous task. Adams
and Wieman (2011) outline an established procedure to develop and val-
idate a CI. This protocol has been used in the creation of at least nine
different CIs in the sciences (Adams & Wieman, 2011). Their protocol is as
follows:

(1) Establish topics. Determine the topics that are important to fac-
ulty members. Techniques include self-reflection and discussion with
experienced faculty members or subject experts.

(2) Identify student thinking. Observe (e.g. in course help sessions) and
interview students to understand how their thinking deviates from
expert thinking. Consult experienced teachers and domain miscon-
ception literature.

(3) Create open-ended survey questions. Administer these questions to
entire classes of students in order to further examine issues raised in
the interviews.

(4) Create forced-answer test. Establish distractors based on actual stu-
dent responses obtained in the above steps. The test should contain
no more than 30 questions.

(5) Validate test questions through interviews. Reach consensus among
experts that all responses are correct. Ensure that students interpret
the questions consistently and that maladaptive student thinking
results in incorrect responses.

(6) Administer and statistically analyze. Administer the inventory to
several large classes, applying statistics to account for reliability (e.g.
consistency when administering the test to two equivalent popula-
tions) and validity (e.g. correlating with course assessments).

The final three steps are iterative: when validity or reliability concerns
are discovered, questions should be adjusted and students/experts again
interviewed.

A core aspect of the development process is the generation of distrac-
tors. For each multiple-choice question, one response is correct (the key)
and the remainder are incorrect (the distractors). Each distractor must be
rooted in student misconceptions, so that when a distractor is chosen it
says something about the particular misconception leading to that choice.
In addition, distractors should have “drawing power”: if students hold
a particular misconception, they should be drawn toward the associated
distractor (Almstrum et al., 2006). In this way, distractors are data to the
research team: when a student chooses a distractor, that choice provides
useful observational data related to student misconceptions. Distractors can
stem from student interviews, responses to open-ended questions, domain
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6 C. Taylor et al.

experts, textbook materials, and other sources, but must ultimately be pilot-
tested with students (Almstrum et al., 2006).

There are other approaches for overall CI development (Almstrum
et al., 2006) and for individual steps of the above process. For example,
Goldman et al. (2008) proposed using a Delphi Process to facilitate reaching
a consensus among CI developers for key concepts. To begin this process,
10 to 30 subject area experts each list 10 to 15 key concepts. These con-
cepts are then reconciled into a single master list. Second, the experts rate
each concept on three axes: importance, difficulty, and the extent to which
students are expected to master the concept. Third, the experts are given
the average and interquartile range (IQR) for each concept and each axis
from the previous step and perform the rating again. Experts are required
to anonymously justify any ratings that fall outside of the IQR. Finally,
experts vote one last time in light of the justifications given in the previous
step.

While the development and validation of many CIs follow steps sim-
ilar to these protocols, there is no clear consensus on the precise order
or necessity of the steps. Lindell, Peak, and Foster (2007) assessed the
methodology used to create 12 different physics and astronomy CIs and
discovered vast differences in the protocols followed. These differences in-
cluded the ways that topics were established, the process for developing
distractor answers for questions, the number of students on which the
CI was tested, and the statistical measures (if any) used to validate the
test.

Details of CI development aside, the process is time-consuming and
lengthy, requiring a committed research team and input from many types
of stakeholders. For example, soliciting expert opinion (whether informally
or through a Delphi process) requires the research team to assemble a
suitable panel of researchers and teachers, after which these experts must
delineate the broad conceptual focus of the CI and then reach consensus
on the particular concepts to test. To incentivize participation, panelists
are often compensated for their time. Similarly, interviewing students re-
quires suitable interviewer training and is complicated by the availability
and willing participation of students (Adams & Wieman, 2011). The ex-
pense of the CI development process, both in terms of time and funding,
may contribute to the lack of available CIs for computer science. Recent
work suggests that CI development and maintenance could be made more
lightweight by following open-source principles (Porter, Taylor, & Webb,
2014).

3. Challenges for computer science
As a young field, computer science faces many challenges with respect to
concept inventory development. Almstrum et al. (2006) discuss many of the
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Computer Science Education 7

difficulties of creating a computer science concept inventory in the context
of their proposal for a discrete math CI. Some of the difficulties are shared
with other disciplines: determining the breadth of the CI, isolating concepts
from related concepts, keeping to a small number of questions, generating
useful distractors, etc. Other challenges are more unique to CS, and we
discuss such challenges in this section.

3.1. Pre-test limitations

Almstrum et al. (2006) cite issues of notation and vocabulary as especially
difficult in computer science, because, as they state, “the computing field is
notorious for its dependence on notations and conventions” and “using a
specialized vocabulary or notation in writing CI items may mask miscon-
ceptions of a more fundamental nature, particularly if the CI is used as a
pretest.” Authors of two recent preliminary CIs, one for computer archi-
tecture (Porter et al., 2013) and one for operating systems (Webb & Taylor,
2014), have echoed these difficulties in offering CIs as pre-tests. Additionally,
Tew (2010) states “it is likely that a majority of student misconceptions are
a result of instruction in CS rather than based upon a set of common, naive
understandings [that students] bring to the topic from their experience in
the world,” suggesting that pre-tests may not be as useful in CS as they are
in other sciences where students arrive with existing conceptions of how the
natural world works. In Statics, another field where students tend not to
enter courses with preconceptions about how things work, pre-test scores
have been close to random, and the pre-test has only been found useful for
comparison in courses where the students possess initial conceptions (Steif
& Hansen, 2007). See the article by Herman, Zilles, and Loui in this special
issue for another example of pre-test difficulties in CS assessments.

3.2. Programming language dependence, technology change, and other
threats to immortality

In many fields (e.g. Newtonian mechanics), the covered content rarely, if
ever, changes. For these fields, CI validation would mark the end of the
development process. In a young field like CS, curricular change is common
due to changes in the underlying technology we use. For example, many CS
instructors are re-evaluating their course content to include topics related
to parallel processing given the recent availability of multiple CPU cores.
Another example would be the rise of power concerns in hardware design.
Just a few decades ago, performance was the only important metric when
designing hardware. Today, power has become a principal interest and
concepts related to power conservation now appear in hardware courses.

Programming languages present a special case of our core technologies
changing. The main programming languages used to teach CS courses
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8 C. Taylor et al.

change every so often in response to pedagogical innovation, new program-
ming paradigms, or industry concerns. For example, Pascal’s popularity in
CS1 in the 1980s and 1990s has given way to Java and Python today, and
those languages will certainly give way to others in the future. To deal with
these changes, there are two broad choices: create and validate language-
independent CIs, or adapt CIs appropriately when languages change.

Validating a language-independent CI involves considerable additional
effort, including verifying that students can learn and understand a chosen
pseudocode to an extent commensurate with their understanding of a true
programming language. This has been done in one assessment of CS1
conceptual understanding (Tew, 2010). Besides shielding the CI from some
language changes, such language independence also necessarily focuses on
language semantics rather than syntax. Since a CI by nature focuses on only
the core concepts of a course, it should not be affected by mere syntactical
concerns. However, a closer look suggests that language independence may
not in itself be sufficient for long-lasting CIs. CS1 courses, for example,
vary widely not only in programming language, but also in contextual
approach and programming paradigm. Courses may use an object-oriented
or functional approach, or use languages with vastly different models of
memory management. It is difficult to imagine one pseudocode that could
capture this variety.

Although many core concepts are likely to persist over time, our field is
one that changes and, as such, the basic tenets of what we do and how we
do it are still in flux. It is hard to imagine a CI not requiring adaptation over
time. An important open question to our community is to decide how best
to create CIs that can withstand present and future variety.

3.3. Difficulty assessing skills

CIs for many computer science topics should perhaps include questions
that evaluate students’ ability to engage in processes such as code analy-
sis, program design, program modification, and testing. These aspects of
learning are difficult to assess among students with varying institutional
and curricular backgrounds, often necessitating additional context. (For
example, the AP CS exam described in Section 5.2 has incorporated a case
study to adequately assess these processes.)

Evidence suggests that some aspects of understanding are hard to eval-
uate. For example, Zingaro, Petersen, and Craig (2012) commented on the
difficulty of designing and grading traditional code-writing exercises. Simon
et al. (2010) examined a collection of 76 data structures exams from 14
institutions, given between 1973 and 2009. These authors noted the shift in
many CS2 courses from implementation of data structure internals to appli-
cation and use of abstract data types. However, in the 35 years covered by the
exams in this research, there was no noticeable shift to application questions.
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Computer Science Education 9

This may mean that assessing students’ ability to apply data structures to
solve problems is not straightforward. A unique challenge for developers
of CIs in CS is to navigate the interplay between conceptual understanding
and applying that understanding to problem-solving situations.

Of relevance here are three related questions:

(1) Are processes in fact concepts? For example, is debugging strictly
process, or is debugging in fact conceptual?

(2) Do processes contain a conceptual component? For example, is
debugging a process within which exist related concepts such as data
flow and control flow?

(3) Are processes strictly separate from concepts? For example, is there
clean separation between a process such as debugging and a concept
such as a loop?

The answers to these questions directly impact whether process should be
tested on a conceptual CI. We suggest that it may be fruitful to search
for concepts that underlie processes, evaluate whether these concepts are
core concepts, and then include any core concepts on a CI. Future work is
certainly warranted in this area.

3.4. Use of concept inventories vs. comprehensive assessments

As a relatively short assessment that is designed to measure student under-
standing of the most crucial concepts in a course, a CI is quite different
from a comprehensive assessment of everything that is covered in a course.
This naturally leads to questions of the suitability of a CI when used to
assess student learning in order to compare across teachers, departments,
institutions and pedagogical techniques. However, a CI’s focus on these
fundamental concepts makes it relatively easy to administer, and means
that all students should be capable of performing well on it.

Hake used the FCI and its precursor, the Mechanics Diagnostic Test
(MD), in a 6000 student study across 62 courses (Hake, 1998). He discusses
using concept inventories rather than a comprehensive assessment, and ar-
gues that the FCI and MD have two main advantages: “the multiple-choice
format facilitates relatively easy administration of the tests to thousands of
students [. . . and] the questions probe for a conceptual understanding of
the basic concepts of Newtonian mechanics in a way that is understandable
to the novice who has never taken a physics course, yet at the same time
are rigorous enough for the initiate” (Hake, 2007). It is this combination
of ease of administration and universality of concepts that allow a CI to be
used to compare across widely different contexts (e.g. different instructors,
institutions, etc.) in a meaningful way.

Given the success of using CIs to assess the effectiveness of new ped-
agogical techniques within the physics community, calls to use them in a
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10 C. Taylor et al.

similar way have sprung up within the computer science education literature
(Almstrum et al., 2006; Clement, 2004; Goldman et al., 2010). However,
some may feel that a comprehensive assessment is more suitably used for
this purpose. Almstrum et al. (2006) address this, saying: “The underlying
philosophy is that using a limited instrument that has been validated is
better than using none. A CI should be concise, yet accurate, and should
probe into potential student mismodelings of fundamental concepts.”

Almstrum et al. (2006) point out that performance on a CI should be
correlated with performance on more comprehensive instruments. Similarly,
Steif and Hansen (2007) suggest comparing CI results with performance on
other measures such as course examinations to ensure the generality of the
CI results. Almstrum et al. (2006) suggest that multiple CIs, each focusing
on some subset of course topics, may be a solution for a course that covers
a large number of fundamental concepts. A similar idea, that of modular
CIs, has been proposed by Porter, Taylor, and Webb (2014).

It is worth noting that now, eight years after the review of the state of
concept inventories in computer science by Almstrum et al. (2006), there
are very few CIs available for CS subjects. The challenges presented in this
section have likely played a role in hindering progress.

4. Concept inventories in computer science
Given these challenges, the development and adoption of concept inven-
tories within computer science remains slow. While CIs for digital logic
(Herman et al., 2010a) and CS1 (Tew & Guzdial, 2010) have been developed,
neither is presently in widespread use.

This leaves instructors who wish to measure student learning gains with-
out a standardized assessment tool. Due to the absence of such common
evaluative referents in CS, we have no anchor with which to validate the
effectiveness of new pedagogical innovations. That is, while new pedagogies
are being rapidly proposed and deployed in CS contexts, we lack a critical
tool for understanding their impact on student learning. This disconnect
between learning goals and evaluation slows the pace of curricular reform
as researchers grapple with contradictory results caused, in part, by locally
produced assessment mechanisms (Tew, 2010).

Thus far, student misunderstandings have been identified by both
formal CIs and, more commonly, other assessment mechanisms. As in other
fields, these assessments often demonstrate that students understand far less
than instructors expect (Lister et al., 2004; McCracken et al., 2001; Tew &
Guzdial, 2011; Tew, McCracken, & Guzdial, 2005). Tables 2 and 3 provide
results from concept inventories and informal assessments. The majority of
the informal assessments address introductory programming course (CS1)
topics, and demonstrate the wide variance in student performance depend-
ing on the assessment used. As such, these results serve to underscore the
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Computer Science Education 11

Table 2. Post-test results from various concept inventories in computer science.

Exam content Correct (avg.)

Unvalidated or incomplete CIs
Algs. and Data structures (Paul & Vahrenhold, 2013) n/a
BSTs and Hash tables (Karpierz & Wolfman, 2014) 42–63%
Computer architecture (Porter et al., 2013) 56%
Operating systems (Webb & Taylor, 2014) 55%

Validated CIs
Digital logic CI (Herman et al., 2010a) 55%
CS1 language independent CA (Tew & Guzdial, 2011) 34%

Table 3. Informal CS1 assessments.

Exam content Correct (avg.) (%)

Looping (Rainfall) (Soloway, Bonar, & Ehrlich, 1983) 33
BASIC programming (Bayman & Mayer, 1983) 31
Write calculator program (McCracken et al., 2001) 21
Comprehension/tracing (Lister et al., 2004) 60
Fundamental intro. concepts (Tew et al., 2005) 42
Number and date sorting (Chen, Lewandowski, McCartney,
Sanders, & Simon, 2007)

59

Code value/reference assignment (Ma, Ferguson, Roper, &
Wood, 2007)

63/17

importance of having established assessment mechanisms, which facilitate
consistent and meaningful comparisons between curricular and pedagogical
computer science practices.

4.1. Digital logic

Authors of the Digital Logic Concept Inventory (DLCI) (Herman, 2011;
Herman, Loui, Kaczmarczyk, & Zilles, 2012; Herman, Loui, & Zilles,
2010b, 2011; Herman, Zilles, & Loui, 2009; Longino, 2006; Zilles, Longino,
& Loui, 2006) established topics through a Delphi process (Goldman et al.,
2008) that ascertained important concepts through a panel of instructors.
The authors examined student misconceptions through interviews, the re-
sults of which informed the number of items per concept and the distractors
for each question. In an alpha version of the DLCI, the authors collected
additional misconception data by allowing students to supply answers for
questions whose choices were not represented by the provided options. The
validation evidence included useful distractors, item response curves, expert
feedback, and observation of students solving the problems (Herman, Loui
et al., 2011). Further validation evidence for the DLCI using classical test

D
ow

nl
oa

de
d 

by
 [

C
yn

th
ia

 T
ay

lo
r]

 a
t 1

0:
23

 2
2 

O
ct

ob
er

 2
01

4 



12 C. Taylor et al.

theory and item-response theory can be found in the article by Herman,
Zilles, and Loui in this special issue.

By enabling performance comparisons across courses, the DLCI has
allowed instructors to speculate on pedagogical improvements for digital
logic courses (Herman & Handzik, 2010). In a preliminary study using the
DLCI, it was found that students had considerable difficulty with bitwise
manipulation of binary numbers. Looking specifically at Boolean logic, the
authors noted that students tend to use faulty logic to reduce hard concepts
to easier concepts, did not understand implication, and had difficulty when
dealing with complemented variables (Herman, Kaczmarczyk, Loui, &
Zilles, 2008). These results showed that students had difficulty even with
topics instructors might consider to be relatively easy.

4.2. CS1: introduction to computer science

Tew and Guzdial developed an inventory of Foundational CS1 (FCS1)
knowledge (Tew, 2010; Tew & Guzdial, 2010; Tew & Guzdial, 2011).
Beginning with the tables of contents from the most popular CS1 textbooks,
Tew pruned topics based on the CC2001 curriculum (ACM/IEEE-CS Joint
Task Force on Computing Curricula, 2001), the agreement of three of the
most popular of those textbooks, and a thematic analysis of concepts. This
process yielded a set of 10 core CS1 topics and served as the content goal
of the FCS1. Tew notes that typical test validation procedures may not be
helpful when designing the first test of its kind in a new domain. For example,
typical validation arguments include correlating scores on a new test to those
of an existing test that targets a similar domain of knowledge. In the case of
the FCS1, however, there was no such existing test. Note that Tew refers to
the FCS1 as a Concept Assessment, rather than a Concept Inventory. We
consider it a CI for the purposes of this work, but it is worth noting that there
are some differences between the FCS1 development process and classic CI
development; for example, the FCS1 distractors do not come from student
interviews or misconceptions.

To account for shifts in programming language popularity over time,
Tew developed a language-independent conceptual test in which students
first learn to reason with pseudocode and then respond to questions written
in that pseudocode. Tew first verified that students’ conceptual understand-
ings and misunderstandings are not localized to syntactic peculiarities of
individual programming languages. She found that students exhibit the
same difficulties across programming languages, independent of whether
questions are closed form or open form. Using a think-aloud study, stu-
dents demonstrated that they could understand and reason with the pseu-
docode; only rarely did the pseudocode directly contribute to students’
misunderstandings. Finally, students took both the pseudocode version
of the test and a version in the programming language used in their CS1
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Computer Science Education 13

(e.g. Python, Java). Students’ scores were significantly correlated, such that
students who did well when working with the pseudocode also did well when
working in a programming language. This suggests that knowledge from the
programming language of instruction was transferred to the pseudocode
test. Students scored an average of 34% on the pseudocode version and
49% on the language version of the FCS1 which both indicate difficulty
with core CS1 concepts after a CS1 course.

There have been other steps toward a CS1 concept inventory as well.
Kaczmarczyk, Petrick, East, and Herman (2010) report preliminary work
on a CS1 concept inventory, identifying core concepts (Goldman et al.,
2010) and student misconceptions (Kaczmarczyk et al., 2010). They iden-
tified four main themes in student misconceptions: students fail to under-
stand the relationship between language concepts and underlying memory,
students misunderstand how while loops work, students lack a basic under-
standing of objects, and students cannot trace code linearly.

4.3. Informal CS1 assessments

A number of assessments have been developed for CS1, summarized in
Table 3. Poor results across the board demonstrate the widespread nature
of misconceptions in CS and their consequent impact on students’ ability
to trace, read, and write code. In many of these assessments, researchers
sought to ask students questions that many educators expect to be readily
answerable by the end of a first CS course. For example, Lister et al. (2004)
focused on students’ ability to trace and understand code, arguing that
students who cannot perform these rudimentary tasks cannot be expected
to successfully write code. The focus of the questions was on variables,
loops, and iteration and, even on these core CS1 concepts, student perfor-
mance was poor (60%). These informal assessments have demonstrated that
students lack the basic skills that we expect, yet these assessments are not
themselves validated. Valid assessment measures would increase trust in our
measures and facilitate comparable comparisons of data across institutions
and pedagogical approaches.

Other research teams have developed assessment questions for CS1 and
CS2. Sanders et al. (2013) created a repository of 654 multiple-choice
questions covering CS1 and CS2 topics, tagged with metadata including
difficulty, language, and topic. These tagged questions may be of use to
researchers starting development of a CI for either course. Additionally,
they report on development issues similar to those of a CI: making questions
available, licensing, and using online infrastructure to develop questions
and save metadata. Finally, the authors discuss multiple-choice “patterns”:
abstract categorizations of the skills required to answer a particular
question. For example, compare-and-contrast questions ask the student to
compare two pieces of code in terms of a relevant factor (runtime, memory,
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14 C. Taylor et al.

style, and so on). Debugging questions present code with a syntactic or
semantic bug and ask students to identify the problematic line or select why
the code is buggy. In all, 12 patterns are explored, and we suggest that this
variety may serve as inspiration when drafting CI questions.

4.4. CS2: algorithms and data structures

Researchers have begun preliminary work on developing a validated CI for
algorithms and data structures. Danielsiek, Paul, and Vahrenhold (2012)
developed lists of important topics for a first-year algorithms course in Ger-
many, roughly representing the algorithms component of a North American
CS2 course. The authors analyzed 400 student exams to identify common
errors and difficult topics, and consulted local faculty to verify the topics
of central importance. To develop pilot multiple-choice items, the authors
began with “flash test items” based on misconceptions from the literature
or their exam analysis. Think-alouds with students were then used to obtain
further student misconceptions. Newly discovered misconceptions include:
students conflate heaps and binary search trees, lack procedural and con-
ceptual knowledge related to invariants, and confuse dynamic programming
with recursive divide-and-conquer formulations.

In follow-up work, Paul and Vahrenhold (2013) sought to investigate the
utility of easy-to-evaluate instruments as compared to other instruments
such as interviews and concept maps. They developed multiple-choice, fill-
in-the-blank, and free-form questions and administered them to an aver-
age of 80 students. The authors note that for some topics these low-cost
instruments can be used to detect student misconceptions, but for other
topics the more demanding instruments such as interviews appear to be
necessary. For example, a free-form question asking for definitions of class
and object failed to uncover misconceptions, as students simply regurgitated
textbook definitions. New misconceptions discovered in this work include
students believing that each object must be referenced by at most one
variable and that Java uses call by reference for variable passing. The authors
also confirmed the earlier findings that students struggle with invariants and
conflate heaps and binary search trees (Danielsiek et al., 2012). Of note is
that student misconceptions are context-dependent: they may appear in
some situations but not other closely related situations, depending on cues
in particular problems. See Herman, Zilles, and Loui in this special issue
for more discussion on this point.

A comprehensive summary and extension of the work of Danielsiek
et al. (2012) and Paul and Vahrenhold (2013) appears in the article by
Vahrenhold and Paul in this special issue. There, the authors offer four case
studies of developing, evaluating, and validating potential CI questions.
Contributions include in-depth discussion of the development of CI ques-
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Computer Science Education 15

tions – from identifying concepts to validating the results – and a discussion
of the ways that CI questions can be used as part of classroom instruction.

Recently, Karpierz and Wolfman (2014) interviewed nine instructors to
identify misconceptions, analyzed 126 exams, and conducted 25 student in-
terviews, resulting in the creation and validation of two CI questions. Using
a student population distinct from both Danielsiek et al. (2012) and Paul and
Vahrenhold (2013), they attempted but could not replicate the Danielsiek
et al. (2012) finding of students confusing heaps and binary search trees.
However, Karpierz and Wolfman (2014) did identify a different student
misconception about binary trees, namely that binary trees are balanced by
default. They also questioned students about hash table resizing, and found
two common misconceptions: students often believe that the hash table is
extended in-place when resized and that the keys do not need to be rehashed
when the hash table is resized.

4.5. Computer architecture

A preliminary test of conceptual understanding was created for computer
architecture by Porter et al. (2013). The examination was created by two
computer architects with a background in pedagogy research. They brought
together the final exams of multiple faculty at a large research institution,
identified common exam questions, and identified the key, fundamental
concepts associated with these common exam questions. The concepts iden-
tified were basic concepts critical to the course. The authors then designed
questions, aiming for them to be correctly answered by any student passing
the class. This resulted in nine questions on topics including the performance
implications of deeper pipelines, the roles of various cache components, and
performance analysis of single-cycle, multi-cycle, and pipelined processors.

The exam was run in four classes, taught by four different instructors at
four different institutions. Pre-tests were found to be difficult for students
due to a lack of understanding of basic terms and concepts. Somewhat
discouragingly, on almost half the questions, there was no statistically sig-
nificant improvement between the pre-test and the post-test. Overall, for
all four classes, the per-question average on the post-test was only 56%
correct. Although this was preliminary work, the results suggest a discon-
nect between what instructors thought students were learning and what was
actually being learned.

4.6. Operating systems

A preliminary concept inventory for operating systems is currently under
development (Webb & Taylor, 2014). The authors created the test based on
their experiences teaching OS courses. Their work is part of an effort to
democratize CI development in a manner akin to the open-source software
movement (Porter, Taylor, & Webb, 2014).
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16 C. Taylor et al.

Deploying their exam in four courses at three institutions, the authors
identified a large variation in overall correctness rates by question. They
conclude that certain concepts (e.g. indirection in file systems and thread
synchronization) are more challenging than others (e.g. LRU page replace-
ment). While the fact that there is variation between concepts is not sur-
prising, they note that the availability of CI questions allows us to quantify
that disparity.

For every question, they allowed students to respond with an option that
stated “I am not familiar with this terminology / I don’t know.” The results
show that, for the pre-test, students chose this option regularly, whereas
it was selected relatively rarely on the post-test. The authors conclude that
student confidence increased, even when they were not responding correctly.

5. Groundwork for future CI development
Future CI developers, maintainers, and adopters can leverage the significant
body of work performed by the CS education research community and those
tasked with developing standardized student assessments. Core concepts
and misconceptions in CS, particularly in introductory CS, have been well
studied by the community and CI developers can utilize those efforts as a
potential head start in CI development. Lessons related to assessment main-
tenance, primarily from the standardized assessment community, inform CI
developers of the need to plan for our assessments to change as our field
changes. We explore these efforts and their relevance for CI development
below.

5.1. Concepts and misconceptions

Significant progress has been made especially in the first two steps of CI
development: establishing important topics and identifying student think-
ing. This section characterizes the types of research into identifying student
misconceptions and important topics, insofar as such prior research can
assist those interested in developing a CI. Such work should not be “re-
done,” but should instead be repurposed for use in the first few steps of
CI development. For further classification of student misconceptions and
barriers to programming, see Clancy (2004).

Most research into topic importance occurs in CS1 and CS2 courses,
typically by surveying or interviewing instructors. Instructors are quite use-
ful for determining the important topics, but interviewing students directly
is preferable for determining difficulty and misconceptions related to these
topics (Goldman et al., 2010).

For example, Schulte and Bennedsen (2006) administered a web survey
to university, college, and high school CS teachers. Among other research
questions, these authors were interested in the topics that the teachers
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Computer Science Education 17

thought were most important to teach in CS1. The most relevant topics were
selection and iteration, simple data structures, and parameters. Interestingly,
these teachers did not believe that these topics were among the most difficult
topics, instead citing recursion, algorithm efficiency, data structures, and
other design-based topics as most difficult.

From other research, it is clear that iteration, in particular, is extremely
difficult for students. For example, Soloway et al. (1982) tested students at
the end of a first programming course on three looping questions. Novices
scored only 39–44% on these questions. Perhaps, more concerning, inter-
mediate programmers’ performance on one of these three questions did
not improve at all over the novice scores. This question, referred to as
the “rainfall problem”, involves writing a program that repeatedly reads
integers until 99999 is entered, then outputs the average of the non-negative
integers (not including the 99999 terminator). Performance on this problem,
in all known studies, is poor (Guzdial, 2011): in one case, students at the
end of a CS1 scored 14% on the problem. One might hope that, in the
intervening 32 years since Soloway et al. (1982) published this study, things
would have changed and our students would perform better on the rainfall
problem. Unfortunately, this is not the case: students struggle with this
problem today as they did in 1982, even when adjusting the problem based
on today’s typical CS1 teaching contexts (Simon, 2013).

Some novice difficulties can be addressed by modifying aspects of pro-
gramming language syntax to match natural preferences of novice pro-
grammers. For example, novices do better on the rainfall problem when
permitted to exit a loop in the middle rather than being forced to use a
loop that terminates at the top or bottom (Soloway et al., 1983). Other
difficulties seem more resistant, in that they cannot be remedied through
syntax or presentational changes. Pea (1986) offers some examples of these
latter types of misconceptions. For example, students may believe that all
lines of a program are simultaneously active, so that as soon as the condition
of any if-statement becomes true, its associated code fires (even if that code
is much earlier in the control flow).

Data produced in the context of teaching has also been used as a source
of student difficulties and misconceptions. Though conveniently available,
this data does not suggest reasons for the difficulties, only that these dif-
ficulties exist. For example, Robins, Haden, and Garner (2006) tracked
the questions asked by students in laboratory sessions. The frequency of
some types of questions decreased throughout the semester; for example,
arrays proved quite problematic at the start, but such questions decreased
substantially in later weeks. In contrast, some topics seemed not to become
any easier, such as classes and instance variables. From this and other work
(Soloway et al., 1982), it seems that many students do not acquire core
conceptual knowledge of introductory topics such as assignment statements
and loops. Students may believe that variables can hold multiple values at
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18 C. Taylor et al.

the same time, or may not be able to appropriately choose among loop
constructs, or may struggle with simple variable updates (Soloway et al.,
1982).

Other work is more closely tied to CI development in that the authors
generated misconceptions for future use in a CI. For example, Kaczmarczyk
et al. (2010) interviewed students to study misconceptions on 10 CS1 topics
previously identified as important and difficult by experts (Goldman et al.,
2008). Many misconceptions emerged, including students ascribing undue
semantic meaning to variable declarations, believing that memory is allo-
cated for uninstantiated objects, and not realizing that instance variables of
primitive types have default values in Java. Similar work seeks to uncover
mental models of programming held by students through an investigation
of the types of errors that students make. Work shows, for example, that
students hold a wide range of non-viable models of value and reference
assignment (Ma et al., 2007). Some students assigned from left to right
instead of right to left, interpreted the assignment operator as an equality
comparison operator, or believed that reference assignment is only used to
name an object. Similarly, students can hold a variety of non-viable models
of recursion, including imagining a recursive procedure as a single entity
and failing to pass values back up the recursion stack (Götschi, Sanders, &
Galpin, 2003).

5.2. The Advanced Placement Computer Science examinations

The Advanced Placement Computer Science (AP CS) examinations have
been the most widespread assessment vehicles in the USA for CS1 (tested
by the AP CS A exam) and CS2 (tested by the AP CS AB exam).1 They are
significantly different from a CI in that they are comprehensive assessments,
and they aim to evaluate student understanding to certify a student as
proficient in the examination topic. A CI, on the other hand, focuses on
misconceptions students may encounter along the way to that proficiency.

Despite these differences in assessment intent, it is likely that CI design
in computer science can benefit from the extensive development efforts
for the AP CS exams. In both, there is the need to identify core learning
outcomes for students and to periodically verify that the assessment still
meets course and curricular standards. Moreover, AP CS questions may
suggest counterparts (in either content or format) among CI items, and AP
CS results may suggest misconceptions that a CI author should address.

The AP CS exams may also point the way toward more significant
evolution of a CI. For example, a 1989 survey of high school AP CS and
college CS instructors revealed a serious discrepancy between AP CS AB
and the collegiate CS2 courses, namely the length of programming projects.
In 1995, this disparity prompted the inclusion of a case study as the basis
for exam questions. A case study describes a programming problem, the
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Computer Science Education 19

narrative process used by an expert to solve the problem, and one or more
solutions to the problem. Case studies emphasize the decisions encountered
by the programmer during design and development and the criteria used to
choose among alternatives. Case studies have many benefits in programming
education; see Clancy and Linn (1992) and Linn and Clancy (1992) for
more details. For the purposes of assessment, engagement with a case study
approximates the writing of a long program and thus adds to the face validity
of the exam. It also allows the evaluation of a student’s ability to design,
analyze, modify, and debug code in a way that is both educational and
measurable.2

The language on which the AP CS exam is based has changed twice: from
Pascal to C++ in 1999 and from C++ to Java in 2004. Prior to the switch to
C++, an AP CS Test developer asserted that “the multiple-choice section
of one recent APCS examination was examined to determine what changes
would be necessary were the course to use C++ instead of Pascal. Over 30%
of the questions could appear on a C++ exam with no change whatsoever,
only one question would require more than trivial syntactic substitutions,
and no question’s underlying content would change” (Nevison et al., 1995).
Nevertheless, each switch required substantial effort, mainly in the form of
presentations and workshops. Also, the Pascal-based version of the case
study was translated to C++ for the 1999 switch, and a similar rewrite was
done to support the switch to Java.

Given the extensive history of development and revision of the AP CS
exam, there are clear lessons for those undertaking the development of
a CI. For example, CIs must be written to accommodate language and
curricular change, and we must discover and experiment with novel types
of assessments that may be unique to CS. Especially interesting is how
the AP CS exam addressed broader learning goals, such as understanding
the development process of relatively complex programs. The need for the
inclusion of a case study in the AP CS exam leads to questions of what
types of materials a CS concept inventory must include in order to test
conceptual knowledge related to topics such as designing and developing
programs, and what types of questions we can ask to test that knowledge.

6. Moving forward
In this literature review, we have described the impact of CIs in other
sciences, characterized the landscape of CIs in computer science, and dis-
cussed how existing research toward identifying core concepts and common
misconceptions can be leveraged to accelerate CS concept inventory devel-
opment. Despite the slow development of concept inventories in computer
science relative to other STEM disciplines, CIs have recently seen increased
interest from the CS community. We believe that this trend will continue
going forward, and we encourage broader participation in CI development.
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20 C. Taylor et al.

To date, much of the work in CS has invested effort to improve the quality
and coverage of CIs for introductory courses. Such courses are particularly
important for the retention and addition of potential CS majors, and in some
cases are the only CS courses that students might take. However, while an
introductory course serves an important role as the first formal computer
science experience for many students, it may be time to broaden the focus
toward the development of concept inventories to cover the core CS curricu-
lum. Leveraging an analogy from compiler principles, one might imagine
the curriculum as a control flow graph where each course has incoming
conceptual dependencies and each course produces understanding of core
concepts. Developing concept inventories throughout the curriculum would
enable us to measure and quantify this critical flow of knowledge, with the
potential for several improvements:

(1) Better understanding of the relationships between courses and,
hence, potential curricular improvements to ensure students are well-
prepared when courses begin.

(2) Identification of student misconceptions at the end of a course to
help instructors intervene before that student attempts courses with
that concept as a prerequisite.

(3) Improved instructor understanding of student abilities at the start
of a course, as instructors could obtain post-test results from prior
courses.

Of course, designing CIs to cover the CS curriculum is not without
challenges, including curricular variations, intuitive pre-test language, and
higher level skill assessment. However, in spite of the challenges, the CS
community has already laid a solid foundation for this type of work to
continue. We believe that solutions to these challenges are within the reach
of a coordinated effort from the CS community. Should the community
embrace this challenge and develop CIs for a range of computer science
courses, these CIs could usher in a new era of curricular and pedagogical
innovation and evaluation.
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Computer Science Education 21

Notes

1. Other standardized tests such as the CS International Baccalaureate and the CS
Major Field Examination share many features of the AP CS exam and are not treated
separately here.

2. Case studies will no longer be a part of the AP CS A exam starting in 2014, partly
because the elimination of the AP CS AB exam in 2009 decreased the emphasis on
working with relatively large programs.
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