

Mapana Journal of Sciences 2016, Vol. 15, No. 3, 55–64 ISSN 0975-3303 | https://doi.org/10.12723/mjs.38.6

Unique Metro Domination of a Ladder

John Sherra* and Badekara Sooryanarayana[†]

Abstract

A dominating set *D* of a graph *G* which is also a resolving set of *G* is called a metro dominating set. A metro dominating set *D* of a graph G(V, E) is a unique metro dominating set (in short an UMD-set) if $|N(v) \cap D| = 1$ for each vertex $v \in V - D$ and the minimum cardinality of an UMD-set of *G* is the unique metro domination number of *G*. In this paper, we determine unique metro domination number of $P_n \times P_2$.

Keywords: domination, metric dimension, metro domination, uni-metro domination

Mathematics Subject Classification (2010): 05C20, 05C26

1. Introduction

All the graphs considered in this paper are simple, connected and undirected. The length of a shortest path between two vertices u and v in a graph G is called the distance between u and v and is denoted by d(u, v). For a vertex $v \in V(G)$, the closed neighborhood of v is given by $N[v] = \{u \in V(G) : d(u, v) \le 1\}$.

Let G(V, E) be a graph. For each ordered subset $S = \{v_1, v_2, ..., v_k\}$ of V, each vertex $v \in V$ can be associated with a vector of distances denoted by $\Gamma(v/S) = (d(v_1, v), d(v_2, v), ..., d(v_k, v))$. The set S is said to be a *resolving set* of G, if $\Gamma(v/S) \neq \Gamma(u/S)$, for every $u, v \in V - S$. A resolving set of minimum cardinality is a *metric basis* and cardinality of a metric basis is the *metric dimension* of G. The *k*-tuple, $\Gamma(v/S)$ associated to the vertex $v \in V$ with respect to a Metric basis S, is referred as a *code generated by* S for that vertex v. If $\Gamma(v/S) = \{c_1, c_2, ..., c_k\}$, then $c_1, c_2, ..., c_k$ are called components of the code of v generated by

Received: May 2014. Reviewed: December 2015

^{*}Department of Mathematics, St. Aloysius College (Autonomous), Mangaluru; johnsherra@gmail.com

[†]Department of Mathematics, Dr. Ambedkar Institute of Technology (Autonomous), Bengaluru; dr_bsnrao@yahoo.co.in

S and in particular c_i , $1 \le i \le k$, is called *i*th-component of the code of *v* generated by *S*.

A dominating set D of a graph G(V, E) is the subset of V having the property that for each vertex $v \in V - D$ there exists a vertex u in D such that $uv \in E$. A dominating set D of G which is also a resolving set of G is called a *metro dominating set* or in short an MD - set. A metro dominating set D of a graph G(V, E) is a *unique metro dominating set* (in short an UMD-set) if $|N(v) \cap D| = 1$ for each vertex $v \in V - D$ and the minimum of cardinalities of UMD-sets of G is the *unique metro domination number* of G, denoted by $\gamma_{u\beta}(G)$.

The *Cartesian product* of the graphs G_1 and G_2 denoted by $G_1 \times G_2$, is the graph G such that $V(G) = V(G_1) \times V(G_2)$ and $E(G) = \{\{(u_1, v_1), (u_2, v_2)\} : \text{either } [u_1 = u_2 \text{ and } v_1v_2 \in E(G_2)] \text{ or } [v_1 = v_2 \text{ and } u_1u_2 \in E(G_1)] \}$

Metric dimensions and locating dominating sets of certain classes of graphs were studied in [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14]. In this paper we determine unique metro domination number of a ladder $P_n \times P_2$.

2. Dominance in Ladder

For convenience, we represent the vertex (g_i, h_k) of a Cartesian product $G \times H$ as $v_{i,k}$. The graph $P_n \times P_2$ is called a ladder. Let *D* be a minimal dominating set for $P_n \times P_2$.

Figure 1: $v_{1,j}$ dominates at most three other vertices

Let $v_{1,j} \in D$, $2 \le j < n$. Then $v_{1,j}$ can dominate $v_{1,j-1}, v_{1,j+1}$ and $v_{2,j}$. Further $P_n \times P_2$ contains 2n vertices. Hence $|D| + 3|D| \ge 2n \Rightarrow |D| \ge \frac{n}{2}$. Thus we have the following lemma:

Lemma 2.1. If *D* is a minimal dominating set for $P_n \times P_2$, then $|D| \ge \frac{n}{2}$.

Let *P* and *P'* be two distinct *uv*-paths between two vertices *u*, *v* in $P_n \times P_2$. The vertices *u* and *v* are said to be neighboring vertices if *u* and *v* are the only vertices of *D* contained in one of the paths *P*, *P'*. If *P* (or *P'*) is the path containing only *u*, *v* from *D*, then the set of all vertices of $P - \{u, v\}$ is called a gap of *D* determined by *u* and *v* and is denoted by γ . The number of vertices in the gap is called order of the gap and is denoted by $o(\gamma)$.

Sherra and Sooryanarayana Unique Metro Domination of a Ladder

In order to reduce |D|, we have to increase the order of the gaps of *D*. The most suitable gaps are of order 3. Consider $v_{j,1}$ and $v_{j+4,1}$, the neighboring vertices on first horizontal projection H_1 , then $v_{j+1,1}$ is dominated by $v_{j,1}$ and $v_{j+3,1}$ is dominated by $v_{j+4,1}$. The vertex $v_{j+2,1}$ in the first horizontal projection H_1 is dominated by $v_{j+2,2}$ in the second horizontal projection H_2 . Thus we have obtained a gap of order 3 on first horizontal projection H_1 .

Figure 2: Illustration of an UM-Dominating vertices.

Further, if $v_{j+2,2}$ and $v_{j+6,2}$ are neighboring vertices of a gap of order 3 on second horizontal projection H_2 , then $v_{j+4,1}$ will dominate $v_{j+4,2}, v_{j+3,2}$ is dominated by $v_{j+2,2}$ and $v_{j+5,2}$ is dominated by $v_{j+6,2}$. This gives a gap of order 3 on second horizontal projection H_2 .

Suppose $v_{j,1}$ and $v_{j+5,1}$ are neighboring vertices of a gap of order 4. Then $v_{j+1,1}$ and $v_{j+4,1}$ are dominated by $v_{j,1}$ and $v_{j+5,1}$ respectively.

Figure 3: A UMD-set of the graph $P_6 \times P_2$

As $v_{j+2,1}$ and $v_{j+3,1} \in V - D$, it is essential to include $v_{j+2,2}$ and $v_{j+3,2}$ in *D*. This creates a gap of order 0 on second horizontal projection H_2 ; which in turn increases |D|. Thus we have the following lemma;

Lemma 2.2. In order to minimize |D|, gaps in each of the Horizontal Projections of $P_n \times P_2$ of order 3 are suitable.

If $\{v_{1,1}, v_{2,1}, v_{1,2}, v_{2,2}\} \cap D = \emptyset$, then $v_{1,1}$ and $v_{1,2}$ are not dominated by any vertex of *D*, a contradiction that *D* is a minimal dominating set.

Hence we have;

Lemma 2.3. Let *D* be a minimal dominating set for $P_n \times P_2$. Then at least one of the vertices in $\{v_{1,1}, v_{1,2}, v_{2,1}, v_{2,2}\}$ must be in *D*.

Suppose that $v_{1,1} \in D_1$ for some minimal dominating set D_1 , then D_1 contains $v_{3,2}, v_{5,1}, v_{7,2}, \dots$

Similarly by symmetry, if $v_{1,2} \in D_2$ for some minimal dominating set, then D_2 contains $v_{3,1}, v_{5,2}, v_{7,1}, \ldots$ So, if $v_{1,1} \in D_1$ and $v_{1,2} \in D_2$, for some minimal dominating set D_1 and D_2 , then $|D_1| = |D_2|$. Hence with out loss of generality we assume $v_{1,2}$ will not lie in any minimal dominating set.

Suppose $v_{1,1}$ and $v_{1,2}$ both are not in *D*, then both $v_{2,1}$ and $v_{2,2}$ are in *D*; for if $v_{2,1} \in D$ and $v_{2,2} \notin D$, then $v_{1,2}$ is not dominated by any vertex in *D*. This leads to ;

Lemma 2.4. If *D* is any minimal dominating set of $P_n \times P_2$ such that $v_{1,1}, v_{1,2} \notin D$, then *D* contains both $v_{2,1}$ and $v_{2,2}$.

Now, if both $v_{2,1}$ and $v_{2,2}$ are in a minimal dominating set D of minimum cardinality, then $D = \{v_{2+3k,1}, v_{2+3k,2} | k = 0, 1, ..., \} \subseteq V(P_n \times P_2)$.

Lemma 2.5. If D_1 and D_2 are minimal dominating sets of $P_n \times P_2$ such $v_{1,1} \in D_1$ and $v_{2,1} \in D_2$, then $|D_1| \le |D_2|$.

Proof. Even though $v_{1,1} \in D_1$ dominates only two vertices $v_{1,2}$ and $v_{2,1}$ in *V* − *D*₁, other vertices $v_{2,3}, v_{1,5}, v_{2,7}, ...$ of *D*₁ dominates 3 distinct vertices of *V* − *D*₁. But each vertex of *D*₂ dominates two vertices of *V* − *D*₂. Hence, $|D_2| \ge |D_1|$.

In view of Lemma 2.4 and Lemma 2.5, here onwards we consider only such *D* of $P_n \times P_2$ with $v_{1,1} \in D$ and for such a set *D*, we get the following result;

Lemma 2.6. The set *D* is { $v_{1+4i,1}$, $v_{3+4j,2}$: $0 \le 1 + 4i \le n, 0 \le 3 + 4j \le n$ }. If n = 1 + 4k, then $|D| = \frac{n+1}{2}$.

Figure 4: When n = 4k + 1.

Proof. On the first horizontal projection H_1 , when $i = 0, 1, 2, ..., \frac{n-1}{4}$; k + 1 vertices $v_{1,1}, v_{5,1}, ..., v_{n,1}$ are in D. On the second horizontal projection H_2 when $j = 0, 1, ..., \frac{n-1}{4} - 1$; k vertices $v_{3,2}, v_{7,2}, ..., v_{n-2,2}$ are in D. Thus, D has k + 1 + k vertices. Therefore, $|D| = 2k + 1 = 2\left(\frac{n-1}{4}\right) + 1 = \frac{n+1}{2}$.

Lemma 2.7. In Lemma 2.6, if n = 4k + 3, then $|D| = \frac{n+1}{2}$.

Figure 5: When n = 4k + 3.

Proof. On the first horizontal projection H_1 , $v_{1,1}$, $v_{5,1}$, ..., $v_{4k+1,1}$ are in D and on the second horizontal projection H_2 , $v_{3,2}$, $v_{7,2}$, ..., $v_{4k+3,2}$ are in D. Thus, k + 1 vertices on the first horizontal projection H_1 and k + 1 vertices on the second horizontal projection H_2 are in D. Hence $|D| = 2k + 2 = \frac{n-3}{2} + 2 = \frac{n+1}{2}$.

Lemma 2.8. In Lemma 2.6, if n = 4k + 2, then $|D| = \frac{n}{2} + 1$.

Proof. By Lemma 2.6, *D* contains $v_{1+4i,1}$, $0 \le i \le \frac{n-2}{4}$ and $v_{3+4j,2}$, $0 \le j \le \frac{n-2}{4}$. The vertex $v_{n-1,1}$ on the first horizontal projection H_1 is in *D* as n-1 = 1+4k and the vertex $v_{n-3,2}$ on the second horizontal projection H_2 belongs to *D* as n-3 = 4j+3.

Observe that $v_{n,1}$, $v_{n-2,1}$ and $v_{n-1,2}$ are dominated by $v_{n-1,1}$. The vertex $v_{n-2,2}$ is dominated by $v_{n-3,2}$. But $v_{n,2}$ is not dominated by any vertex in *D*. Hence it is required to include one more vertex in *D*. We include $v_{1,n}$ in *D*. Thus *D* contains $k + 1 = \frac{n-2}{4} + 1$ vertices from first horizontal projection H_1 and k + 1 vertices from second horizontal projection H_2 . Thus, $|D| = 2k + 2 = 2\frac{n-2}{4} + 2 = \frac{n}{2} + 1$. Hence the lemma

Figure 6: When n = 4k + 2.

When n = 4k, D contains $v_{1+4i,1}$, $0 \le i \le \frac{n-4}{4}$ and $v_{3+4j,2}$, $0 \le j \le \frac{n-4}{4}$. Hence $v_{n-3,1}$ and $v_{n-1,2}$ are in D. But then $v_{n,1}$ is not dominated by any vertex in D. Hence we include $v_{n,2}$ in D. Therefore, the set D will have k vertices from first horizontal projection and k + 1 vertices from the second horizontal projection. Thus, $|D| = k + k + 1 = 2k + 1 = \frac{n}{2} + 1$. This leads to the lemma

Lemma 2.9. In Lemma 2.6, if n = 4k, then $|D| = \frac{n}{2} + 1$.

Figure 7: When *n* = 4*k*.

When n = 4k + 1, from Lemma 2.6, $|D| = \frac{n+1}{2} = \lfloor \frac{n+2}{2} \rfloor$. When n = 4k + 3, from Lemma 2.7, $|D| = \lfloor \frac{n+2}{2} \rfloor$. From lemma 2.8, when n = 4k + 2, $|D| = \frac{n}{2} + 1 = \lfloor \frac{n+2}{2} \rfloor$ and from Lemma 2.9 when n = 4k, $|D| = \frac{n}{2} + 1 = \lfloor \frac{n+2}{2} \rfloor$. Thus in all the cases we conclude

$$\gamma(P_n \times P_2) = \left\lfloor \frac{n+2}{2} \right\rfloor$$

Lemma 2.10. For an integer $n \ge 5$, the vertices $v_{1,1}, v_{3,2}$ and $v_{5,1}$ of $P_n \times P_2$ resolves all the vertices of V - D.

Proof. Observe that $d(v_{1,1}, v_{j,1}) = d(v_{1,1}, v_{j-1,2}) = j - 1$. If $j \ge 4$, then $d(v_{3,2}, v_{j,1}) = j - 2$ and $d(v_{3,2}, v_{j-1,2}) = j - 4$. Hence $d(v_{3,2}, v_{j,1}) \ne d(v_{3,2}, v_{j-1,2})$. Thus $v_{3,2}$ resolves all vertices with $j \ge 4$.

If $j \le 3$, then $v_{5,1}$ resolves these vertices, for; $d(v_{5,1}, v_{j,1}) = 5 - j$ and $d(v_{5,1}, v_{j-1,2}) = 6 - j$ and hence $d(v_{5,1}, v_{j,1}) \ne d(v_{5,1}, v_{j-1,2})$. Thus, $v_{5,1}$ resolves the vertices with $j \le 3$.

When n = 4, by Lemma 2.9, $D = \{v_{1,1}, v_{3,2}, v_{4,2}\}$. But then, D does not resolve V - D. Code of $v_{2,1}$ is (1, 2, 3) and code of $v_{1,2}$ is also (1, 2, 3). Further code of $v_{3,1}$ is (2, 1, 2) and code of $v_{2,2}$ is also (2, 1, 2). Therefore, we delete $v_{4,2}$ from D. Then $v_{4,1}$ is not dominated by D. If $v_{4,1}$ is included in D, then $v_{4,2}$ is not uniquely dominated by D. If we take $D = \{v_{1,1}, v_{3,2}, v_{3,1}\}$, then D is a dominating set. Codes of $v_{2,1}, v_{1,2}, v_{2,2}, v_{4,1}$ and $v_{4,2}$ are respectively (1, 2, 1), (1, 2, 3), (2, 1, 2), (3, 2, 1) and (4, 1, 2), which are all distinct.

Lemma 2.11. When n = 4, the vertices $v_{1,1}$ and $v_{4,1}$ resolves all vertices of V - D.

Remark 2.12. We note that when n = 4, $D = \{v_{1,1}, v_{3,2}, v_{3,1}\}$ is a UMD-set with |D| = 3 and $\left|\frac{n+2}{2}\right| = 3$.

Now, consider the minimal dominating sets used in Lemma 2.6 to Lemma 2.9. Take any gap of order 3, say, with neighboring vertices $v_{1,j}$ and $v_{1,j+4}$. Then $v_{1,j}$, $v_{1,j+4}$ and $v_{2,j+2}$ are in *D*.

The vertex in the gap $v_{j+1,1}$, $v_{j+2,1}$ and $v_{j+3,1}$ are uniquely dominated. Further $v_{1,2}$ and $v_{2,2}$ are not in any gap of order 3 (in all cases, lemma 2.6 to 2.9). However, $v_{1,2}$ is dominated uniquely by $v_{1,1}$ and $v_{2,2}$ is dominated uniquely by $v_{3,2}$.

When n = 4k + 1 (as in lemma 2.6), $v_{n-1,2}$ and $v_{n,2}$ are not in a gap of order 3. There are uniquely dominated by the vertices $v_{n-2,2}$ and $v_{n,1}$ respectively.

When n = 4k + 3 (as in lemma 2.7), $v_{n-1,1}$ and $v_{n,1}$ are the vertices which are not in a gap of order 3. The vertices $v_{n-2,1}$ and $v_{n,2}$ in *D* (respectively) uniquely dominate them.

When n = 4k + 2 (as in lemma 2.8), $v_{2,1}$ and $v_{2,2}$ are uniquely dominated.

Note that $v_{n-1,1}$, $v_{n,1}$ and $v_{n-3,2}$ are in *D*. The vertex $v_{n-2,2}$ is uniquely dominated by $v_{n-3,2}$, the vertex $v_{n-1,2}$ is uniquely dominated by $v_{n-1,1}$ and the vertex $v_{n,2}$ is uniquely dominated by $v_{n,1}$.

When n = 4k, the vertices $v_{n-3,1}$, $v_{n-1,2}$ and $v_{n,2}$ are in *D* and they uniquely dominate the vertices $v_{n-2,1}$, $v_{n-1,1}$ and $v_{n,1}$ respectively. Hence *D* is a UMD-set in all the four cases. Finally, when n = 3, the set $D = \{v_{1,1}, v_{3,2}\}$ is a unique dominating set but does not resolve V - D. Similarly, by Symmetry, $D = \{v_{1,2}, v_{3,1}\}$ is also not an UMD-set. The set $D = \{v_{2,1}, v_{2,2}\}$ is a unique dominating set (UD-set) but does not resolve V - D.

If *D* consists of any two adjacent vertices, then it is not a dominating set. As gaps of order 1 are not allowed, no set with 2 vertices can be a UMD-set. Therefore, |D| > 2 for a UMD-set. We now observe that $D = \{v_{1,1}, v_{2,1}, v_{3,1}\}$ is a UMD-set. Therefore, $\gamma_{\mu\beta}(P_3 \times P_2) = 3$. Lastly, when n = 2, the graph is isomorphic to the cycle C_4 , hence it follows that its Unique metro domination number is 2.

Figure 8: An UD-set but not a resolving set of the case n = 3.

Figure 9. An UD-set but not a resolving set Figure 10. An UD-set but not a resolving set of the case n = 3. of the case n = 3.

The fact that $\gamma_{\mu\beta}(P_m \times P_2) \ge \gamma(P_m \times P_2)$ and the discussions we had so far leads to the theorem,

Theorem 2.13. For any integer $n \ge 2$,

 $\gamma_{\mu\beta}(P_n \times P_2) = \begin{cases} 3, & \text{if } n = 3\\ \left|\frac{n+2}{2}\right|, & \text{otherwise} \end{cases}$

3. Conclusion

We intend to find unique metrodomination number of $C_n \times P_2$. Finding unique upper metrodomination number also is a big task.

Acknowledgments

We thank our institutions, St. Aloysius College and Dr. Ambedkar Institute of Technology for their constant support and encouragement during the preparation of this paper.

References

[1] José Cáceres, Marýa L. Puertas, Carmen Hernando, Mercè Mora, Ignacio M. Pelayo, Carlos Seara and David R. Wood, *On the metric dimension of cartesian product of graphs* http://www.arxiv.org/math/0507527, March 2005, 1-23.

- [2] Gary Chartrand, Linda Eroh, Mark A. Johnson and Ortrud R. Oellermann. *Resolvability in graphs and the metric dimension of a graph*. Discrete Appl. Math., 105(1-3)(2000) 99-113.
- [3] Harary F, Melter R.A., *On the Metric dimention of a graph*, Ars Combinatoria 2 (1976) 191-195.
- [4] S. Kuller, B. Raghavachari and A. Rosenfied, *Land marks in graphs*, Disc. Appl. Math.70 (1996) 217-229
- [5] C. Poisson and P. Zhang, *The metric dimension of unicyclic graphs*, J. Comb. Math Comb. Compu. 40 (2002) 17-32.
- [6] Muhammad Salman, Imran Javaid, Muhammad Anwar Chaudhry, *Resolvability in circulant graphs*, Acta Mathematica Sinica, English Series, Vol 28(9), (2012), 1851–1864
- [7] Peter J. Slater, *Leaves of trees*, In Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol. 14 (1975) 549-559.
- [8] P. J. Slater, *Domination and location in acyclic graphs*, Networks 17 (1987) 55-64.
- [9] P. J. Slater, *Locating dominating sets*, in Y. Alavi and A. Schwenk, editors, Graph Theory, Combinatorics, and Applications, Proc. Seventh Quad International Conference on the theory and applications of Graphs. John Wiley & Sons, Inc. (1995) 1073-1079.
- [10] A. Sebo and E. Tannier, *On Metric generators of graphs*, Math. Opr. Res.29 (2004), no.2, 383-393.
- [11] B. Shanmukha, B. Sooryanarayana and K.S. Harinath, Metric dimention of wheels, Far East J. Appl. Math. 8(3) (2202) 217-229.
- [12] B. Sooryanarayana, *On the metric dimension of graph*, Indian J. Pure and Appl. Math. 29(4)(1998) 413 415.
- B. Sooryanarayana and John Sherra, Unique Metro domonination in Graphs, Adv Appl Discrete Math, Vol 14(2), (2014), 125-149.
- [14] B. Sooryanarayana and Shanmukha B, A note on metric dimension, Far East J. Appl. Math., 5(3)(2001) 331-339.