Unique Metro Domination of a Ladder

John Sherra* and Badekara Sooryanarayana ${ }^{\dagger}$

Abstract

A dominating set D of a graph G which is also a resolving set of G is called a metro dominating set. A metro dominating set D of a graph $G(V, E)$ is a unique metro dominating set (in short an UMD-set) if $|N(v) \cap D|=1$ for each vertex $v \in V-D$ and the minimum cardinality of an UMD-set of G is the unique metro domination number of G. In this paper, we determine unique metro domination number of $P_{n} \times P_{2}$.

Keywords: domination, metric dimension, metro domination, uni-metro domination

Mathematics Subject Classification (2010): 05C20, 05C26

1. Introduction

All the graphs considered in this paper are simple, connected and undirected. The length of a shortest path between two vertices u and v in a graph G is called the distance between u and v and is denoted by $d(u, v)$. For a vertex $v \in V(G)$, the closed neighborhood of v is given by $N[v]=\{u \in V(G): d(u, v) \leq 1\}$.

Let $G(V, E)$ be a graph. For each ordered subset $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of V, each vertex $v \in V$ can be associated with a vector of distances denoted by $\Gamma(v / S)=\left(d\left(v_{1}, v\right), d\left(v_{2}, v\right), \ldots, d\left(v_{k}, v\right)\right)$. The set S is said to be a resolving set of G, if $\Gamma(v / S) \neq \Gamma(u / S)$, for every $u, v \in V-S$. A resolving set of minimum cardinality is a metric basis and cardinality of a metric basis is the metric dimension of G. The k-tuple, $\Gamma(v / S)$ associated to the vertex $v \in V$ with respect to a Metric basis S, is referred as a code generated by S for that vertex v. If $\Gamma(v / S)=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$, then $c_{1}, c_{2}, \ldots, c_{k}$ are called components of the code of v generated by

[^0]S and in particular $c_{i}, 1 \leq i \leq k$, is called $i^{\text {th }}$-component of the code of v generated by S.

A dominating set D of a graph $G(V, E)$ is the subset of V having the property that for each vertex $v \in V-D$ there exists a vertex u in D such that $u v \in E$. A dominating set D of G which is also a resolving set of G is called a metro dominating set or in short an $M D$ - set. A metro dominating set D of a graph $G(V, E)$ is a unique metro dominating set (in short an $U M D$-set) if $|N(v) \cap D|=1$ for each vertex $v \in V-D$ and the minimum of cardinalities of $U M D$-sets of G is the unique metro domination number of G, denoted by $\gamma_{u \beta}(G)$.

The Cartesian product of the graphs G_{1} and G_{2} denoted by $G_{1} \times$ G_{2}, is the graph G such that $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E(G)=$ $\left\{\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}\right.$: either $\left[u_{1}=u_{2}\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right]$ or $\left[v_{1}=v_{2}\right.$ and $\left.u_{1} u_{2} \in E\left(G_{1}\right)\right]$

Metric dimensions and locating dominating sets of certain classes of graphs were studied in $[1,2,3,4,5,7,8,9,10,11,12,13,14]$. In this paper we determine unique metro domination number of a ladder $P_{n} \times P_{2}$.

2. Dominance in Ladder

For convenience, we represent the vertex $\left(g_{i}, h_{k}\right)$ of a Cartesian product $G \times H$ as $v_{i, k}$. The graph $P_{n} \times P_{2}$ is called a ladder. Let D be a minimal dominating set for $P_{n} \times P_{2}$.

Figure 1: $v_{1, j}$ dominates at most three other vertices

Let $v_{1, j} \in D, 2 \leq j<n$. Then $v_{1, j}$ can dominate $v_{1, j-1}, v_{1, j+1}$ and $v_{2, j}$. Further $P_{n} \times P_{2}$ contains $2 n$ vertices. Hence $|D|+3|D| \geq 2 n \Rightarrow|D| \geq \frac{n}{2}$. Thus we have the following lemma:

Lemma 2.1. If D is a minimal dominating set for $P_{n} \times P_{2}$, then $|D| \geq \frac{n}{2}$.
Let P and P^{\prime} be two distinct $u v$-paths between two vertices u, v in $P_{n} \times P_{2}$. The vertices u and v are said to be neighboring vertices if u and v are the only vertices of D contained in one of the paths P, P^{\prime}. If P (or P^{\prime}) is the path containing only u, v from D, then the set of all vertices of $P-\{u, v\}$ is called a gap of D determined by u and v and is denoted by γ. The number of vertices in the gap is called order of the gap and is denoted by $o(\gamma)$.

In order to reduce $|D|$, we have to increase the order of the gaps of D. The most suitable gaps are of order 3. Consider $v_{j, 1}$ and $v_{j+4,1}$, the neighboring vertices on first horizontal projection H_{1}, then $v_{j+1,1}$ is dominated by $v_{j, 1}$ and $v_{j+3,1}$ is dominated by $v_{j+4,1}$. The vertex $v_{j+2,1}$ in the first horizontal projection H_{1} is dominated by $v_{j+2,2}$ in the second horizontal projection H_{2}. Thus we have obtained a gap of order 3 on first horizontal projection H_{1}.

Figure 2: Illustration of an UM-Dominating vertices.

Further, if $v_{j+2,2}$ and $v_{j+6,2}$ are neighboring vertices of a gap of order 3 on second horizontal projection H_{2}, then $v_{j+4,1}$ will dominate $v_{j+4,2}, v_{j+3,2}$ is dominated by $v_{j+2,2}$ and $v_{j+5,2}$ is dominated by $v_{j+6,2}$. This gives a gap of order 3 on second horizontal projection H_{2}.

Suppose $v_{j, 1}$ and $v_{j+5,1}$ are neighboring vertices of a gap of order 4. Then $v_{j+1,1}$ and $v_{j+4,1}$ are dominated by $v_{j, 1}$ and $v_{j+5,1}$ respectively.

Figure 3: A UMD-set of the graph $P_{6} \times P_{2}$
As $v_{j+2,1}$ and $v_{j+3,1} \in V-D$, it is essential to include $v_{j+2,2}$ and $v_{j+3,2}$ in D. This creates a gap of order 0 on second horizontal projection H_{2}; which in turn increases $|D|$. Thus we have the following lemma;

Lemma 2.2. In order to minimize $|D|$, gaps in each of the Horizontal Projections of $P_{n} \times P_{2}$ of order 3 are suitable.

If $\left\{v_{1,1}, v_{2,1}, v_{1,2}, v_{2,2}\right\} \cap D=\emptyset$, then $v_{1,1}$ and $v_{1,2}$ are not dominated by any vertex of D, a contradiction that D is a minimal dominating set.

Hence we have;
Lemma 2.3. Let D be a minimal dominating set for $P_{n} \times P_{2}$. Then at least one of the vertices in $\left\{v_{1,1}, v_{1,2}, v_{2,1}, v_{2,2}\right\}$ must be in D.

Suppose that $v_{1,1} \in D_{1}$ for some minimal dominating set D_{1}, then D_{1} contains $v_{3,2}, v_{5,1}, v_{7,2}, \ldots$.

Similarly by symmetry, if $v_{1,2} \in D_{2}$ for some minimal dominating set, then D_{2} contains $v_{3,1}, v_{5,2}, v_{7,1}, \ldots$. So, if $v_{1,1} \in D_{1}$ and $v_{1,2} \in D_{2}$, for some minimal dominating set D_{1} and D_{2}, then $\left|D_{1}\right|=\left|D_{2}\right|$. Hence with out loss of generality we assume $v_{1,2}$ will not lie in any minimal dominating set.

Suppose $v_{1,1}$ and $v_{1,2}$ both are not in D, then both $v_{2,1}$ and $v_{2,2}$ are in D; for if $v_{2,1} \in D$ and $v_{2,2} \notin D$, then $v_{1,2}$ is not dominated by any vertex in D.This leads to ;

Lemma 2.4. If D is any minimal dominating set of $P_{n} \times P_{2}$ such that $v_{1,1}, v_{1,2} \notin D$, then D contains both $v_{2,1}$ and $v_{2,2}$.

Now, if both $v_{2,1}$ and $v_{2,2}$ are in a minimal dominating set D of minimum cardinality, then $D=\left\{v_{2+3 k, 1}, v_{2+3 k, 2} \mid k=0,1, \ldots,\right\} \subseteq V\left(P_{n} \times\right.$ P_{2}).

Lemma 2.5. If D_{1} and D_{2} are minimal dominating sets of $P_{n} \times P_{2}$ such $v_{1,1} \in D_{1}$ and $v_{2,1} \in D_{2}$, then $\left|D_{1}\right| \leq\left|D_{2}\right|$.

Proof. Even though $v_{1,1} \in D_{1}$ dominates only two vertices $v_{1,2}$ and $v_{2,1}$ in $V-D_{1}$, other vertices $v_{2,3}, v_{1,5}, v_{2,7}, \ldots$ of D_{1} dominates 3 distinct vertices of $V-D_{1}$. But each vertex of D_{2} dominates two vertices of $V-D_{2}$. Hence, $\left|D_{2}\right| \geq\left|D_{1}\right|$.

In view of Lemma 2.4 and Lemma 2.5, here onwards we consider only such D of $P_{n} \times P_{2}$ with $v_{1,1} \in D$ and for such a set D, we get the following result;

Lemma 2.6. The set D is $\left\{v_{1+4 i, 1}, v_{3+4 j, 2}: 0 \leq 1+4 i \leq n, 0 \leq 3+4 j \leq n\right\}$. If $n=1+4 k$, then $|D|=\frac{n+1}{2}$.

Figure 4: When $n=4 k+1$.

Proof. On the first horizontal projection H_{1}, when $i=0,1,2, \ldots, \frac{n-1}{4}$; $k+1$ vertices $v_{1,1}, v_{5,1}, \ldots, v_{n, 1}$ are in D. On the second horizontal projection H_{2} when $j=0,1, \ldots, \frac{n-1}{4}-1 ; k$ vertices $v_{3,2}, v_{7,2}, \ldots, v_{n-2,2}$ are in D. Thus, D has $k+1+k$ vertices. Therefore, $|D|=2 k+1=2\left(\frac{n-1}{4}\right)+1=$ $\frac{n+1}{2}$.

Lemma 2.7. In Lemma 2.6, if $n=4 k+3$, then $|D|=\frac{n+1}{2}$.

Figure 5: When $n=4 k+3$.

Proof. On the first horizontal projection $H_{1}, v_{1,1}, v_{5,1}, \ldots, v_{4 k+1,1}$ are in D and on the second horizontal projection $H_{2}, v_{3,2}, v_{7,2}, \ldots, v_{4 k+3,2}$ are in D. Thus, $k+1$ vertices on the first horizontal projection H_{1} and $k+1$ vertices on the second horizontal projection H_{2} are in D. Hence $|D|=2 k+2=\frac{n-3}{2}+2=\frac{n+1}{2}$.

Lemma 2.8. In Lemma 2.6, if $n=4 k+2$, then $|D|=\frac{n}{2}+1$.
Proof. By Lemma 2.6, D contains $v_{1+4 i, 1}, 0 \leq i \leq \frac{n-2}{4}$ and $v_{3+4 j, 2}, 0 \leq j \leq$ $\frac{n-2}{4}$. The vertex $v_{n-1,1}$ on the first horizontal projection H_{1} is in D as $n-1=1+4 k$ and the vertex $v_{n-3,2}$ on the second horizontal projection H_{2} belongs to D as $n-3=4 j+3$.

Observe that $v_{n, 1}, v_{n-2,1}$ and $v_{n-1,2}$ are dominated by $v_{n-1,1}$. The vertex $v_{n-2,2}$ is dominated by $v_{n-3,2}$. But $v_{n, 2}$ is not dominated by any vertex in D. Hence it is required to include one more vertex in D. We include $v_{1, n}$ in D. Thus D contains $k+1=\frac{n-2}{4}+1$ vertices from first horizontal projection H_{1} and $k+1$ vertices from second horizontal projection H_{2}. Thus, $|D|=2 k+2=2 \frac{n-2}{4}+2=\frac{n}{2}+1$. Hence the lemma

Figure 6: When $n=4 k+2$.

When $n=4 k, D$ contains $v_{1+4 i, 1}, 0 \leq i \leq \frac{n-4}{4}$ and $v_{3+4 j, 2}, 0 \leq j \leq \frac{n-4}{4}$. Hence $v_{n-3,1}$ and $v_{n-1,2}$ are in D. But then $v_{n, 1}$ is not dominated by any vertex in D. Hence we include $v_{n, 2}$ in D. Therefore, the set D will have k vertices from first horizontal projection and $k+1$ vertices from the second horizontal projection. Thus, $|D|=k+k+1=2 k+1=\frac{n}{2}+1$. This leads to the lemma

Lemma 2.9. In Lemma 2.6, if $n=4 k$, then $|D|=\frac{n}{2}+1$.

Figure 7: When $n=4 k$.

When $n=4 k+1$, from Lemma 2.6, $|D|=\frac{n+1}{2}=\left\lfloor\frac{n+2}{2}\right\rfloor$. When $n=4 k+3$, from Lemma 2.7, $|D|=\left\lfloor\frac{n+2}{2}\right\rfloor$. From lemma 2.8, when $n=4 k+2,|D|=\frac{n}{2}+1=\left\lfloor\frac{n+2}{2}\right\rfloor$ and from Lemma 2.9 when $n=4 k$, $|D|=\frac{n}{2}+1=\left\lfloor\frac{n+2}{2}\right\rfloor$. Thus in all the cases we conclude
$\gamma\left(P_{n} \times P_{2}\right)=\left\lfloor\frac{n+2}{2}\right\rfloor$
Lemma 2.10. For an integer $n \geq 5$, the vertices $v_{1,1}, v_{3,2}$ and $v_{5,1}$ of $P_{n} \times P_{2}$ resolves all the vertices of $V-D$.

Proof. Observe that $d\left(v_{1,1}, v_{j, 1}\right)=d\left(v_{1,1}, v_{j-1,2}\right)=j-1$. If $j \geq 4$, then $d\left(v_{3,2}, v_{j, 1}\right)=j-2$ and $d\left(v_{3,2}, v_{j-1,2}\right)=j-4$. Hence $d\left(v_{3,2}, v_{j, 1}\right) \neq$ $d\left(v_{3,2}, v_{j-1,2}\right)$. Thus $v_{3,2}$ resolves all vertices with $j \geq 4$.

If $j \leq 3$, then $v_{5,1}$ resolves these vertices, for; $d\left(v_{5,1}, v_{j, 1}\right)=5-j$ and $d\left(v_{5,1}, v_{j-1,2}\right)=6-j$ and hence $d\left(v_{5,1}, v_{j, 1}\right) \neq d\left(v_{5,1}, v_{j-1,2}\right)$. Thus, $v_{5,1}$ resolves the vertices with $j \leq 3$.

When $n=4$, by Lemma 2.9, $D=\left\{v_{1,1}, v_{3,2}, v_{4,2}\right\}$. But then, D does not resolve $V-D$. Code of $v_{2,1}$ is $(1,2,3)$ and code of $v_{1,2}$ is also (1 , $2,3)$. Further code of $v_{3,1}$ is $(2,1,2)$ and code of $v_{2,2}$ is also (2,1 , 2). Therefore, we delete $v_{4,2}$ from D. Then $v_{4,1}$ is not dominated by D. If $v_{4,1}$ is included in D, then $v_{4,2}$ is not uniquely dominated by D. If we take $D=\left\{v_{1,1}, v_{3,2}, v_{3,1}\right\}$, then D is a dominating set. Codes of $v_{2,1}, v_{1,2}, v_{2,2}, v_{4,1}$ and $v_{4,2}$ are respectively $(1,2,1),(1,2,3),(2,1,2)$, $(3,2,1)$ and $(4,1,2)$, which are all distinct.

Lemma 2.11. When $n=4$, the vertices $v_{1,1}$ and $v_{4,1}$ resolves all vertices of $V-D$.

Remark 2.12. We note that when $n=4, D=\left\{v_{1,1}, v_{3,2}, v_{3,1}\right\}$ is a UMDset with $|D|=3$ and $\left\lfloor\frac{n+2}{2}\right\rfloor=3$.

Now, consider the minimal dominating sets used in Lemma 2.6 to Lemma 2.9. Take any gap of order 3, say, with neighboring vertices $v_{1, j}$ and $v_{1, j+4}$. Then $v_{1, j}, v_{1, j+4}$ and $v_{2, j+2}$ are in D.

The vertex in the gap $v_{j+1,1}, v_{j+2,1}$ and $v_{j+3,1}$ are uniquely dominated. Further $v_{1,2}$ and $v_{2,2}$ are not in any gap of order 3 (in all cases, lemma 2.6 to 2.9). However, $v_{1,2}$ is dominated uniquely by $v_{1,1}$ and $v_{2,2}$ is dominated uniquely by $v_{3,2}$.

When $n=4 k+1$ (as in lemma 2.6), $v_{n-1,2}$ and $v_{n, 2}$ are not in a gap of order 3 . There are uniquely dominated by the vertices $v_{n-2,2}$ and $v_{n, 1}$ respectively.

When $n=4 k+3$ (as in lemma 2.7), $v_{n-1,1}$ and $v_{n, 1}$ are the vertices which are not in a gap of order 3 . The vertices $v_{n-2,1}$ and $v_{n, 2}$ in D (respectively) uniquely dominate them.

When $n=4 k+2$ (as in lemma 2.8), $v_{2,1}$ and $v_{2,2}$ are uniquely dominated.

Note that $v_{n-1,1}, v_{n, 1}$ and $v_{n-3,2}$ are in D. The vertex $v_{n-2,2}$ is uniquely dominated by $v_{n-3,2}$, the vertex $v_{n-1,2}$ is uniquely dominated by $v_{n-1,1}$ and the vertex $v_{n, 2}$ is uniquely dominated by $v_{n, 1}$.

When $n=4 k$, the vertices $v_{n-3,1}, v_{n-1,2}$ and $v_{n, 2}$ are in D and they uniquely dominate the vertices $v_{n-2,1}, v_{n-1,1}$ and $v_{n, 1}$ respectively. Hence D is a UMD-set in all the four cases. Finally, when $n=3$, the set $D=\left\{v_{1,1}, v_{3,2}\right\}$ is a unique dominating set but does not resolve $V-D$. Similarly, by Symmetry, $D=\left\{v_{1,2}, v_{3,1}\right\}$ is also not an UMD-set. The set $D=\left\{v_{2,1}, v_{2,2}\right\}$ is a unique dominating set (UD-set) but does not resolve $V-D$.

If D consists of any two adjacent vertices, then it is not a dominating set. As gaps of order 1 are not allowed, no set with 2 vertices can be a UMD-set. Therefore, $|D|>2$ for a UMD-set. We now observe that $D=\left\{v_{1,1}, v_{2,1}, v_{3,1}\right\}$ is a UMD-set. Therefore, $\gamma_{\mu \beta}\left(P_{3} \times P_{2}\right)=3$. Lastly, when $n=2$, the graph is isomorphic to the cycle C_{4}, hence it follows that its Unique metro domination number is 2 .

Figure 8: An UD-set but not a resolving set of the case $n=3$.

Figure 9. An UD-set but not a resolving set Figure 10. An UD-set but not a resolving of the case $n=3$. set of the case $n=3$.

The fact that $\gamma_{\mu \beta}\left(P_{m} \times P_{2}\right) \geq \gamma\left(P_{m} \times P_{2}\right)$ and the discussions we had so far leads to the theorem,

Theorem 2.13. For any integer $n \geq 2$,
$\gamma_{\mu \beta}\left(P_{n} \times P_{2}\right)= \begin{cases}3, & \text { if } n=3 \\ \left\lfloor\frac{n+2}{2}\right\rfloor, & \text { otherwise }\end{cases}$

3. Conclusion

We intend to find unique metrodomination number of $C_{n} \times P_{2}$. Finding unique upper metrodomination number also is a big task.

Acknowledgments

We thank our institutions, St. Aloysius College and Dr. Ambedkar Institute of Technology for their constant support and encouragement during the preparation of this paper.

References

[1] José Cáceres, Marýa L. Puertas, Carmen Hernando, Mercè Mora, Ignacio M. Pelayo, Carlos Seara and David R. Wood,

On the metric dimension of cartesian product of graphs http://www.arxiv.org/math/0507527, March 2005, 1-23.
[2] Gary Chartrand, Linda Eroh, Mark A. Johnson and Ortrud R. Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105(1-3)(2000) 99-113.
[3] Harary F, Melter R.A., On the Metric dimention of a graph, Ars Combinatoria 2 (1976) 191-195.
[4] S. Kuller, B. Raghavachari and A. Rosenfied, Land marks in graphs, Disc. Appl. Math. 70 (1996) 217-229
[5] C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Comb. Math Comb. Compu. 40 (2002) 17-32.
[6] Muhammad Salman, Imran Javaid, Muhammad Anwar Chaudhry, Resolvability in circulant graphs, Acta Mathematica Sinica, English Series, Vol 28(9), (2012), 1851-1864
[7] Peter J. Slater, Leaves of trees, In Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol. 14 (1975) 549-559.
[8] P. J. Slater, Domination and location in acyclic graphs, Networks 17 (1987) 55-64.
[9] P. J. Slater, Locating dominating sets, in Y. Alavi and A. Schwenk, editors, Graph Theory, Combinatorics, and Applications, Proc. Seventh Quad International Conference on the theory and applications of Graphs. John Wiley \& Sons, Inc. (1995) 1073-1079.
[10] A. Sebo and E. Tannier, On Metric generators of graphs, Math. Opr. Res. 29 (2004), no.2, 383-393.
[11] B. Shanmukha, B. Sooryanarayana and K.S. Harinath, Metric dimention of wheels, Far East J. Appl. Math. 8(3) (2202) 217229.
[12] B. Sooryanarayana, On the metric dimension of graph, Indian J. Pure and Appl. Math. 29(4)(1998) 413-415.
[13] B. Sooryanarayana and John Sherra, Unique Metro domonination in Graphs, Adv Appl Discrete Math, Vol 14(2), (2014), 125149.
[14] B. Sooryanarayana and Shanmukha B, A note on metric dimension, Far East J. Appl. Math., 5(3)(2001) 331-339.

[^0]: *Department of Mathematics, St. Aloysius College (Autonomous), Mangaluru; johnsherra@gmail.com
 ${ }^{\dagger}$ Department of Mathematics, Dr. Ambedkar Institute of Technology (Autonomous), Bengaluru; dr_bsnrao@yahoo.co.in

