

On SD-Harmonious Labeling

A. Lourdusamy, S. Jenifer Wency[†] and F. Patrick[‡]

Abstract

A graph *G* is said to be SD-harmonious labeling if there exists an injection $f : V(G) \rightarrow \{0, 1, 2, \dots, q\}$ such that the induced function $f^* : E(G) \rightarrow \{0, 2, \dots, 2q - 2\}$ defined by $f^*(uv) = S + D \pmod{2q}$ is bijective, where S = f(u) + f(v) and D = |f(u) - f(v)|, for every edge uv in E(G). A graph which admits SD-harmonious labeling is called SD-harmonious graph. In this paper, we investigate SD-harmonious labeling of path related graphs, tree related graphs, star related graphs and disjoint union of graphs.

Keywords: Harmonious labeling, SD-harmonious labeling

Mathematics Subject Classification (2010): 05C78

1. Introduction

Let G = (V(G), E(G)) be a simple, finite and undirected graph of order |V(G)| = p and size |E(G)| = q. All notations not defined in this paper can be found in [1]. An injective function $f : V(G) \rightarrow \{1, 2, \dots, q\}$ is called a graceful labeling of *G* if all the edge labels of *G* given by f(uv) = |f(u) - f(v)| for every $uv \in E$ are distinct. This concept was first introduced by Rosa in 1967 [2]. For all detailed survey of graph labeling we refer to Gallian [3].

G.C. Lau *et al.* introduced the concept of SD-prime labeling in [5, 6]. Given a bijection $f : V(G) \rightarrow \{1, 2, \dots, |V(G)|\}$, we associate 2 integers S = f(u) + f(v) and D = |f(u) - f(v)| with every edge *uv* in *E*.

Received: May 2018. Reviewed: June 2018

^{*}Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Tamilnadu, India; lourdusamy15@gmail.com

[†]Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India; jeniferwency@gmail.com

[‡]Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Tamilnadu, India; patrick881990@gmail.com

Definition 1.1. [6] A bijection $f : V(G) \rightarrow \{1, 2, \dots, |V(G)|\}$ induces an edge labeling $f' : E(G) \rightarrow \{0, 1\}$ such that for any edge uv in G, f'(uv) = 1 if gcd(S, D) = 1, and f'(uv) = 0 otherwise. We say f is SDprime labeling if f'(uv) = 1 for all $uv \in E(G)$. Moreover, G is SD-prime if it admits SD-prime labeling.

In 1980, Graham and Sloane [4] introduced harmonious labeling in connection with error-correcting codes and channel assignment problems.

Definition 1.2. [4] A graph G with q edges is said to be harmonious if there exists an injection f from the vertices of G to the group of integers modulo q such that when each edge xy is assigned the label $f(x) + f(y) \pmod{q}$, the resulting edge labels are distinct.

Motivated by the concept of SD-prime labeling and harmonious labeling, we introduce the new concept SD-harmonious labeling.

Definition 1.3. A graph *G* is said to be SD-harmonious labeling if there exists an injection $f : V(G) \rightarrow \{0, 1, 2, \dots, q\}$ such that the induced function $f^* : E(G) \rightarrow \{0, 2, \dots, 2q-2\}$ defined by $f^*(uv) = S + D \pmod{2q}$ is bijective, where S = f(u) + f(v) and D = |f(u) - f(v)|, for every edge uv in E(G). A graph which admits SD-harmonious labeling is called SD-harmonious graph.

In this paper, we investigate SD-harmonious labeling for path related graphs, tree related graphs, star related graphs and disjoint union of graphs. We use the following definitions in the subsequent sections.

Definition 1.4. $P_m@P_n$ is a graph obtained by identifying the pendant vertex of a copy of the path P_n at each vertex of the path P_m .

Definition 1.5. The corona $G_1 \odot G_2$ of two graphs $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ is defined as the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and then joining the *i*th vertex of G_1 to all the vertices in the *i*th copy of G_2 .

Definition 1.6. [10] The tree obtained by joining a new vertex v to one pendant vertex of each of the k disjoint stars $K_{1,n_1}, K_{1,n_2}, K_{1,n_3}, \dots, K_{1,n_k}$ is called a banana tree. The class of all such trees is denoted by $BT(n_1, n_2, n_3, \dots, n_k)$.

Definition 1.7. [7] A caterpillar graph is a tree in which all the vertices are within distance 1 of a central path P_n for $n \ge 1$. A caterpillar graph of order greater than 1 is a star graph when n = 1, which is K(1, r) for some $r \ge 1$. When $n \ge 2$, a caterpillar graph is obtained from a path $P_n = u_1u_2 \cdots u_n$ by attaching $m_i \ge 0$ pendant vertices $v_{i,j}$ $(1 \le j \le m_i)$ to each u_i . We shall denote this caterpillar graph by $P_n(m_1, m_2, \cdots, m_n)$. Lourdusamy *et al*.

Definition 1.8. [9] A sparkler, denoted as P_m^{+n} , is a graph obtained from the path P_m and appending *n* edges to an endpoint. This is a special case of a caterpillar. We refer to the hub of P_m^{+n} , the sparkler, as the vertex of degree n + 1.

Definition 1.9. [7] Given $t \ge 3$ paths of length $n_j \ge 1$ with an end vertex $v_{j,1}(1 \le j \le t)$. A spider graph $SP(n_1, n_2, n_3, \dots, n_t)$ is the one-point union of the t paths at vertex $v_{j,1}$.

Definition 1.10. The subdivision graph S(G) is obtained from G by subdividing each edge of G with a vertex.

Definition 1.11. Consider t copies of stars namely $K_{1,n}^{(1)}, K_{1,n}^{(2)}, \dots, K_{1,n}^{(t)}$. Then $G = \langle K_{1,n}^{(1)}, K_{1,n}^{(2)}, \dots, K_{1,n}^{(t)} \rangle$ is the graph obtained by joining apex vertices of each $K_{1,n}^{(j-1)}$ and $K_{1,n}^{(j)}$ to a new vertex x_{j-1} where $2 \le j \le t$. Note that G has t(n + 2) - 1 vertices and t(n + 2) - 2 edges.

Definition 1.12. [8] The graph B(m, n, k) is a graph obtained from a path of length k by attaching the star $K_{1,m}$ and $K_{1,n}$ with its pendent vertices.

Definition 1.13. [9] Given two subgraphs G_1 and G_2 of G, the union $G_1 \cup G_2$ is the subgraph of G with vertex set consisting of all vertices which are in either G_1 or G_2 (or both) and with edge set consisting of all those edges which are in either G_1 or G_2 (or both).

2. Path and Tree Related Graphs

In this section, we prove that P_n , $P_m@P_n$, banana tree $BT(n, n, n, \dots, n)$, full binary tree, $P_n(m_1, m_2, \dots, m_n)$, star, bistar, $P_n \odot \bar{K_m}$, P_m^{+n} and $SP(n_1, n_2, \dots, n_t)$ admit SD-harmonious labeling. Also we prove that cycle C_n is not SD-harmonious graph.

Theorem 2.1. The path P_n admits SD-harmonious labeling.

Proof. Let v_1, v_2, \dots, v_n be the vertices of the path P_n . The labeling $f : V(P_n) \rightarrow \{0, 1, 2, \dots, n-1\}$ is defined as $f(v_i) = i - 1$ for $1 \le i \le n$. It is easy to verify that f admits SD-harmonious labeling of P_n .

Theorem 2.2. The graph $P_m@P_n$ admits SD-harmonious labeling.

Proof. Let *V*(*P_m*@*P_n*) = {*u_i*, *v_{i,j}* : 1 ≤ *i* ≤ *m*, 1 ≤ *j* ≤ *n* with *u_i* = *v_{i,1}*} and $E(P_m@P_n) = \{u_iu_{i+1} : 1 \le i \le m-1\} \cup \{v_{i,j}v_{i,j+1} : 1 \le i \le m, 1 \le j \le n-1\}.$ Therefore, $P_m@P_n$ is of order *mn* and size *mn* − 1. Define $f : V(P_m@P_n) \rightarrow \{0, 1, 2, \cdots, mn - 1\}$ as follows: $f(u_i) = n(i-1), 1 \le i \le m;$ $f(v_{i,j+1}) = n(i-1) + j, 1 \le i \le m, 1 \le j \le n-1.$

The induced edge labels are

$$f^*(u_i u_{i+1}) = 2ni, \ 1 \le i \le m-1;$$

 $f^*(v_{i,j}v_{i,j+1}) = 2n(i-1) + 2j, \ 1 \le i \le m, \ 1 \le j \le n-1.$
Hence *f* admits SD-harmonious labeling for $P_m@P_n$.

Corollary 2.3. The comb $P_m \odot K_1$ admits SD-harmonious labeling.

Theorem 2.4. The banana tree $BT(n, n, n, \dots, n)$ admits SD-harmonious labeling.

Proof. Let *V*(*BT*(*n*, *n*, *n*, ..., *n*)) = {*v*} ∪ {*v*_j, *v*_j, *r* : 1 ≤ *j* ≤ *k*, 1 ≤ *r* ≤ *n*} where *d*(*v*_j) = *n* and *E*(*BT*(*n*, *n*, *n*, ..., *n*)) = {*vv*_{jn} : 1 ≤ *j* ≤ *k*} ∪ {*v*_j*v*_{j,*r*} : 1 ≤ *j* ≤ *k*, 1 ≤ *r* ≤ *n*}. Therefore, *BT*(*n*, *n*, ..., *n*) is of order (*n* + 1)*k* + 1 and size (*n* + 1)*k*. Define *f* : *V*(*BT*(*n*, *n*, ..., *n*)) → {0, 1, 2, ..., (*n* + 1)*k*} as follows: *f*(*v*) = 0; *f*(*v*_j) = (*n* + 1)(*j* − 1) + 2, 1 ≤ *j* ≤ *k*; *f*(*v*_{j,*r*}) = (*n* + 1)(*j* − 1) + *r* + 2, 1 ≤ *j* ≤ *k*, 1 ≤ *r* ≤ *n* − 1; *f*(*v*_{j,*n*}) = (*n* + 1)(*j* − 1) + 1, 1 ≤ *j* ≤ *k*. The induced edge labels are *f*^{*}(*vv*_{j,*n*}) = 2(*n* + 1)(*j* − 1) + 2, 1 ≤ *j* ≤ *k*; *f*^{*}(*v*_j*v*_{j,*n*}) = 2(*n* + 1)(*j* − 1) + 2*r* + 4, 1 ≤ *j* ≤ *k*−1, 1 ≤ *r* ≤ *n*−1; *f*(*v*_{j,*r*}) = 2(*n* + 1)(*j* − 1) + 2*r* + 4, 1 ≤ *j* ≤ *k*−1; *f*^{*}(*v*_k*v*_{k,*r*}) = 2(*n* + 1)(*k* − 1) + 2*r* + 4, 1 ≤ *r* ≤ *n* − 2; *f*^{*}(*v*_k*v*_{k,*n*−1}) = 0.

Hence *f* admits SD-harmonious labeling for $BT(n, n, n, \dots, n)$.

Example 2.5. A SD-harmonious labeling of banana tree BT(6, 6, 6) is shown in Figure 1.

Figure 1: SD-harmonious labeling of banana tree BT(6, 6, 6)

Theorem 2.6. Every full binary tree admits SD-harmonious labeling.

The

Proof. We note that every full binary tree has odd number of vertices and hence has even number of edges. Let *T* be a full binary tree and let v_0 be a root of *T* which is called zero level vertex. Clearly, the *i*th level of *T* has 2^i vertices. If *T* has *m* levels, then the number of vertices of *T* is $2^{m+1} - 1$ and the number of edges is $2^{m+1} - 2$. Now, assign the label 0 to the root v_0 and assign the labels 1 and 2 to the first level vertices. Next, we assign the labels $2^i - 1, 2^i, \dots, 2^{i+1}$ to the *i*th level vertices for $2 \le i \le m$. It can be easily verified that *f* admits SD-harmonious labeling for full binary tree.

Theorem 2.7. The graph $P_n(m_1, m_2, \dots, m_n)$ admits SD-harmonious labeling.

Proof. Let $V(P_n(m_1, m_2, \dots, m_n)) = \{u_i : 1 \le i \le n\} \cup \{v_{i,j} : 1 \le i \le n, 1 \le j \le m_i\}$ and $E(P_n(m_1, m_2, \dots, m_n)) = \{u_i u_{i+1} : 1 \le i \le n - 1\} \cup \{u_i v_{i,j} : 1 \le i \le n, 1 \le j \le m_i\}$. Therefore, $P_n(m_1, m_2, \dots, m_n)$ is of order $n + m_1 + m_2 + \dots + m_n$ and size $n + m_1 + m_2 + \dots + m_n - 1$. Define $f : V(P_n(m_1, m_2, \dots, m_n)) \rightarrow \{0, 1, 2, \dots, n + m_1 + m_2 + \dots + m_n - 1\}$ as follows:

$$\begin{aligned} f(u_1) &= 0; \\ f(u_i) &= \sum_{l=1}^{i-1} m_l + i - 1, \ 2 \le i \le n; \\ f(v_{1,j}) &= j, \ 1 \le j \le m_1; \\ f(v_{i,j}) &= \sum_{l=1}^{i-1} m_l + i + j - 1, \ 2 \le i \le n, \ 1 \le j \le m_i. \end{aligned}$$

induced edge labels are
$$f^*(u_i u_{i+1}) &= 2\left(\sum_{l=1}^{i} m_l + i\right), \ 1 \le i \le n - 1; \\ f^*(u_1 v_{1,j}) &= 2j, \ 1 \le j \le m_1; \\ f^*(u_i v_{i,j}) &= 2\left(\sum_{l=1}^{i-1} m_l + i\right) + 2j - 2, \ 2 \le i \le n - 1, \ 1 \le j \le m_i; \\ f^*(u_n v_{n,j}) &= 2\left(\sum_{l=1}^{n-1} m_l + n\right) + 2j - 2, \ 1 \le j \le m_n - 1; \end{aligned}$$

$$f^*(u_n v_{n,m_n}) = 0.$$

Hence *f* admits SD-harmonious labeling for $P_n(m_1, m_2, \cdots, m_n)$.

Example 2.8. A SD-harmonious labeling of $P_5(2, 3, 4, 1, 3)$ is shown in Figure 2.

Figure 2: SD-harmonious labeling of $P_5(2, 3, 4, 1, 3)$

Remark 2.9. In the above Theorem 2.7, if n = 1 or 2, we see that both the star graph and bistar graph admit SD-harmonious labeling.

Corollary 2.10. The corona $P_n \odot mK_1$ admits SD-harmonious labeling.

Theorem 2.11. The graph P_m^{+n} admits SD-harmonious labeling.

Proof. Let u_1, u_2, \dots, u_m be the vertices of path P_m . Then $V(P_m^{+n}) = V(P_m) \cup \{v_j : 1 \le j \le n\}$ and $E(P_m^{+n}) = E(P_m) \cup \{u_m v_j : 1 \le j \le n\}$. Therefore, P_m^{+n} is of order m + n and size m + n - 1. Define $f : V(P_m^{+n}) \rightarrow \{0, 1, 2, \dots, m + n - 1\}$ as follows:

 $f(u_i) = i - 1, \ 1 \le i \le m;$ $f(v_j) = m + j - 1, \ 1 \le j \le n.$ The induced edge labels are $f^*(u_i u_{i+1}) = 2i, \ 1 \le i \le m - 1;$ $f^*(u_m v_j) = 2(m - 1) + 2j, \ 1 \le j \le n - 1;$ $f^*(u_m v_n) = 0.$

Hence f admits SD-harmonious labeling for P_m^{+n} .

Example 2.12. A SD-harmonious labeling of P_6^{+5} is shown in Figure 3.

Figure 3: SD-harmonious labeling of P_6^{+5}

Theorem 2.13. The graph $SP(n_1, n_2, \dots, n_t)$ admits SD-harmonious labeling.

Proof. Consider the graph $SP(n_1, n_2, \dots, n_t)$ which is the one-point union of the *t* paths. Let the vertices of $SP(n_1, n_2, \dots, n_t)$ be $v_{j,i}$ for $1 \le j \le t, 1 \le i \le n_j$. Therefore, $SP(n_1, n_2, \dots, n_t)$ is of order $n_1 + n_2 + \dots + n_t + 1$ and size $n_1 + n_2 + \dots + n_t$. Define $f : V(SP(n_1, n_2, \dots, n_t)) \rightarrow \{0, 1, 2, \dots, n_1 + n_2 + \dots + n_t\}$ as follows:

$$f(v) = 0;$$

$$f(v_{1,i}) = i - 1, \ 2 \le i \le n_1 + 1;$$

$$f(v_{j,i}) = \sum_{l=1}^{j-1} n_l + i - 1, \ 2 \le i \le n_j + 1, \ 2 \le j \le t.$$

The induced edge labels are

$$f^*(u_{1,i}) = 2;$$

$$f^{*}(vv_{j,2}) = 2;$$

$$f^{*}(vv_{j,2}) = 2\left(\sum_{l=1}^{j-1} n_{l} + 1\right), \ 2 \le j \le t;$$

$$f^{*}(v_{1,i}v_{1,i+1}) = 2i, \ 2 \le i \le n_{1} - 1;$$

$$f^{*}(v_{j,i}v_{j,i+1}) = 2\left(\sum_{l=1}^{j-1} n_{l} + i\right), \ 2 \le i \le n_{j} - 1, \ 2 \le j \le t;$$

$$f^{*}(v_{t,n_{l}}v_{t,n_{l}+1}) = 0.$$

Hence *f* admits SD-harmonious labeling for $SP(n_1, n_2, \dots, n_t)$.

Example 2.14. A SD-harmonious labeling of S P(4, 3, 3, 2, 5) is shown in Figure 4.

Figure 4: SD-harmonious labeling of *SP*(4, 3, 3, 2, 5)

Theorem 2.15. The cycle C_n is not SD-harmonious graph.

Proof. Let v_1, v_2, \dots, v_n be the vertices of the cycle C_n . Let q = n. Suppose f is SD-harmonious labeling of C_n . To get the edge label 2, there must be the two adjacent vertices v_1 and v_2 with labels 0 and 1 respectively. To get the edge label 0, we must have two adjacent vertices v_1 and v_n with labels 0 and n respectively. We observe that the edges v_1v_n and v_nv_{n-1} both receive the same label 0. This is a contradiction. Hence, the cycle C_n is not SD-harmonious graph. \Box

3. Star Related Graphs

In this section, we prove that $S(K_{1,n})$, $S(B_{m,n})$, $S(P_n \odot K_1)$, B(m, n, k) and $\langle K_{1,n}^{(1)}, K_{1,n}^{(2)}, \cdots, K_{1,n}^{(l)} \rangle$ admit SD-harmonious labeling.

Theorem 3.1. The graph $S(K_{1,n})$ admits SD-harmonious labeling.

Proof. Let *V*(*S*(*K*_{1,n})) = {*v*} ∪ {*v_i*, *v'_i* : 1 ≤ *i* ≤ *n*} and *E*(*S*(*K*_{1,n})) = {*vv'_i*, *v'_iv_i* : 1 ≤ *i* ≤ *n*}. Therefore, *S*(*K*_{1,n}) is of order 2*n* + 1 and size 2*n*. Define *f* : *V*(*S*(*K*_{1,n})) → {0, 1, 2, · · · , 2*n*} as follows: f(v) = 2; $f(v'_i) = 2i - 1, 1 \le i \le n;$ $f(v_i) = 2i - 2, 1 \le i \le n.$

The induced edge labels are

$$f^{*}(v_{1}^{'}v_{1}) = 2;$$

$$f^{*}(vv_{1}^{'}) = 4;$$

$$f^{*}(vv_{i}^{'}) = 4i - 2, \ 2 \le i \le n;$$

$$f^{*}(v_{i}^{'}v_{i}) = 4i, \ 2 \le i \le n - 1;$$

$$f^{*}(v_{n}^{'}v_{n}) = 0.$$

Hence f admits SD-harmonious labeling for $S(K_{1,n}).$

Theorem 3.2. The graph $S(B_{m,n})$ admits SD-harmonious labeling.

Proof. Let $V(S(B_{m,n})) = \{v, u, w\} \cup \{v_i, v'_i : 1 \le i \le m\} \cup \{u_j, u'_i : 1 \le j \le n\}$ and $E(S(B_{n,n})) = \{vw, wu\} \cup \{vv'_i, v'_iv_i : 1 \le i \le m\} \cup \{uu'_j, u'_ju_j : 1 \le j \le n\}.$ Therefore, $S(B_{mn})$ is of order 2m + 2n + 3 and size 2m + 2n + 2. Define $f : V(S(B_{m,n})) \to \{0, 1, 2, \dots, 2(m + n + 1)\}$ as follows: f(v) = 0;f(w) = 2m + 1;f(u) = 2m + 2; $f(v'_i) = i, \ 1 \le i \le m;$ $f(v_i) = 2m - i + 1, \ 1 \le i \le m;$ $f(u'_{i}) = 2m + j + 2, \ 1 \le j \le n;$ $f(u_i) = 2m + 2n - j + 3, \ 1 \le j \le n.$ The induced edge labels are $f^*(vw) = 4m + 2;$ $f^*(wu) = 4m + 4;$ $f^*(vv'_i) = 2i, \ 1 \le i \le m;$ $f^*(v'_i v_i) = 4m + 2 - 2i, \ 1 \le i \le m;$ $f^*(uu'_i) = 4m + 4 + 2j, \ 1 \le j \le n;$ $f^*(u'_j u_j) = 4m + 4n - 2j + 6, \ 2 \le j \le n;$ $f^*(u_1 u_1) = 0.$

Hence f admits SD-harmonious labeling for $S(B_{m,n})$.

Theorem 3.3. The graph $S(P_n \odot K_1)$ admits SD-harmonious labeling.

Proof. Let V(S(P_n ⊙ K₁)) = {u_i, v_i, v'_i : 1 ≤ i ≤ n} ∪ {u'_i : 1 ≤ i ≤ n − 1} and E(S(P_n ⊙ K₁)) = {u_iu'_i, u'_iu_{i+1} : 1 ≤ i ≤ n − 1} ∪ {u_iv'_i, v'_iv_i : 1 ≤ i ≤ n}. Therefore, S(P_n ⊙ K₁) is of order 4n − 1 and size 4n − 2. Define f : V(S(P_n ⊙ K₁)) → {0, 1, 2, · · · , 4n − 2} as follows: f(u_i) = 4(i − 1), 1 ≤ i ≤ n; f(u'_i) = 4i − 1, 1 ≤ i ≤ n − 1; f(v_i) = 4i − 2, 1 ≤ i ≤ n; f(v'_i) = 4i − 3, 1 ≤ i ≤ n. The induced edge labels are f^{*}(u_iu'_i) = 8i − 2, 1 ≤ i ≤ n − 1; f^{*}(u'_iu_{i+1}) = 8i, 1 ≤ i ≤ n − 1; f^{*}(u'_iu_{i+1}) = 8i, 1 ≤ i ≤ n − 1; f^{*}(u'_iu'_{i+1}) = 8i − 6, 1 ≤ i ≤ n; Lourdusamy et al.

$$f^*(v'_i v_i) = 8i - 4, \ 1 \le i \le n - 1;$$

$$f^*(v'_n v_n) = 0.$$

Hence f admits SD-harmonious labeling for $S(P_n \odot K_1)$.

Theorem 3.4. The graph $G = \langle K_{1,n}^{(1)}, K_{1,n}^{(2)}, \cdots, K_{1,n}^{(t)} \rangle$ admits SD-harmonious labeling.

Proof. Let $v_1^{(i)}, v_2^{(i)}, \dots, v_n^{(i)}$ be the pendant vertices of $K_{1,n}^{(i)}$ and let x_i be the apex vertex of $K_{1,n}^{(i)}$ for $i = 1, 2, \dots, t$. Now w_i is adjacent to x_i and x_i is adjacent to w_{i+1} for $1 \le i \le t-1$. Therefore, *G* is of order t(n+2)-1 and size t(n+2)-2.

Define $f: V(G) \to \{0, 1, 2, \dots, t(n+2) - 2\}$ as follows: $f(w_i) = (i-1)(n+2), \ 1 \le i \le t;$ $f(x_i) = i(n+2) - 1, \ 1 \le i \le t - 1;$ $f(v_j^{(i)}) = (i-1)(n+2) + j, \ 1 \le i \le t, \ 1 \le j \le n.$ The induced edge labels are

$$\begin{aligned} f^*(x_i w_i) &= 2i(n+2) - 2, \ 1 \le i \le t - 1; \\ f^*(x_i w_{i+1}) &= 2i(n+2), \ 1 \le i \le t - 1; \\ f^*(w_i v_j^{(i)}) &= 2(i-1)(n+2) + 2j, \ 1 \le i \le t, \ 1 \le j \le n - 1; \\ f^*(w_t v_n^{(t)}) &= 0. \end{aligned}$$

Hence f admits SD-harmonious labeling for G.

Example 3.5. A SD-harmonious labeling of $\langle K_{1,4}^{(1)}, K_{1,4}^{(2)}, K_{1,4}^{(3)} \rangle$ is shown in Figure 5.

Figure 5: SD-harmonious labeling of $\langle K_{1,4}^{(1)}, K_{1,4}^{(2)}, K_{1,4}^{(3)} \rangle$

Theorem 3.6. The graph B(m, n, k) admits SD-harmonious labeling.

Proof. Let u_1, u_2, \dots, u_m be the vertices adjacent to v_0 and w_1, w_2, \dots, w_n be another set of vertices adjacent to v_k . Let v_0 and v_k be the end vertices of a path P_k . Therefore, B(m, n, k) is of order m + n + k + 1 and size m + n + k.

Define $f : V(B(m, n, k)) \rightarrow \{0, 1, 2, \dots, m + n + k\}$ as follows:

 $f(u_i) = i, \ 1 \le i \le m;$ $f(v_0) = 0;$ $f(v_j) = m + j, \ 1 \le j \le k;$ $f(w_r) = m + k + r, \ 1 \le r \le n.$ The induced edge labels are $f^*(v_0u_i) = 2i, \ 1 \le i \le m;$ $f^*(v_{j-1}v_j) = 2m + 2j, \ 1 \le j \le k;$ $f^*(v_kw_r) = 2m + 2k + 2r, \ 1 \le r \le n - 1;$ $f^*(v_kw_n) = 0.$ Hence *f* admits SD-harmonious labeling for B(m, n, k).

Example 3.7. *A SD*-harmonious labeling of *B*(6, 5, 4) is shown in Figure 6.

Figure 6: SD-harmonious labeling of *B*(6, 5, 4)

4. Disjoint Union of Graphs

In this section, we prove that $K(1, n_1) \cup K(1, n_2) \cup \cdots \cup K(1, n_t)$, $P_{m_1} \cup P_{m_2} \cup \cdots \cup P_{m_t}$, $G \cup P_n$, $G \cup P_m^{+t}$ and $G \cup K_{1,n_1} \cup K_{1,n_2} \cup \cdots \cup K_{1,n_t}$ admit SD-harmonious labeling.

Theorem 4.1. The graph $K(1, n_1) \cup K(1, n_2) \cup \cdots \cup K(1, n_t)$ admits SD-harmonious labeling.

Proof. Let $G = K(1, n_1) \cup K(1, n_2) \cup \cdots \cup K(1, n_t)$ with $V(G) = \{u_i : 1 \le i \le t\} \cup \{v_{i,j} : 1 \le i \le t, 1 \le j \le n_i\}$ and $E(G) = \{u_i v_{i,j} : 1 \le i \le t, 1 \le j \le n_i\}$. Therefore, *G* is of order $t + n_1 + n_2 + \cdots + n_t$ and size $n_1 + n_2 + \cdots + n_t$. Define $f : V(G) \to \{0, 1, 2, \cdots, n_1 + n_2 + \cdots + n_t\}$ as follows:

$$f(u_i) = i - 1, \ 1 \le i \le t;$$

$$f(v_{1,j}) = j, \ 1 \le j \le n_1;$$

$$f(v_{i+1,j}) = \sum_{l=1}^{i} n_l + j, \ 1 \le i \le t - 1, \ 1 \le j \le n_{i+1}.$$

It can be verified that the induced edge labels of *G* are 0, 2, 4, \cdots , 2(n_1 + n_2 + \cdots + n_t) – 2. Hence *f* admits SD-harmonious labeling for $K(1, n_1) \cup K(1, n_2) \cup \cdots \cup K(1, n_t)$.

Theorem 4.2. The graph $P_{m_1} \cup P_{m_2} \cup \cdots \cup P_{m_t}$ admits SD-harmonious labeling.

Proof. Let $G = P_{m_1} \cup P_{m_2} \cup \dots \cup P_{m_t}$ with $V(G) = \{u_{i,j} : 1 \le i \le t, 1 \le j \le m_i\}$ and $E(G) = \{u_{i,j}u_{i,j+1} : 1 \le i \le t, 1 \le j \le m_i - 1\}$. Therefore, *G* is of order $m_1 + m_2 + \dots + m_t$ and size $m_1 + m_2 + \dots + m_t - t$. Define $f : V(G) \to \{0, 1, 2, \dots, m_1 + m_2 + \dots + m_t - t\}$ as follows: $f(u_{1,j}) = j - 1, 1 \le j \le m_1;$ $f(u_{i+1,j}) = \sum_{l=1}^i (m_l - l) + (j - 1), 1 \le i \le t - 1, 1 \le j \le m_{i+1}.$ It can be verified that the induced edge labels of *G* are $0, 2, 4, \dots, 2(m_1 + 1)$

 $m_2 + \cdots + m_t - t) - 2$. Hence f admits SD-harmonious labeling for $P_{m_1} \cup P_{m_2} \cup \cdots \cup P_{m_t}$.

Example 4.3. A SD-harmonious labeling of $P_5 \cup P_4 \cup P_6$ is shown in Figure 7.

Figure 7: SD-harmonious labeling of $P_5 \cup P_4 \cup P_6$

Theorem 4.4. Let f be SD-harmonious labeling of graph G of order p and size q. Then $G \cup P_n$ admits SD-harmonious labeling.

Proof. Let *f* be SD-harmonious labeling of graph *G* of order *p* and size *q*. Let the labeling of the vertices of *G* be $0, 1, 2, \dots, q$. Then the induced edge labels are $0, 2, 4, \dots, 2q - 2$. Let u_1, u_2, \dots, u_n be the vertices of path P_n . Let us denote by *H* the graph obtained by $G \cup P_n$. The labeling $g: V(H) \rightarrow \{0, 1, 2, \dots, q + n - 1\}$ is defined by $g(u_i) = q + i - 1$ for $1 \le i \le n$. It can be verified that the induced edge labels of *H* are $0, 2, 4, \dots, 2q + 2n - 4$. Hence *g* admits SD-harmonious labeling for $G \cup P_n$.

Theorem 4.5. Let f be SD-harmonious labeling of graph G of order p and size q. Then $G \cup P_m^{+t}$ admits SD-harmonious labeling.

 m} \cup { w_j : 1 \leq *j* \leq *t*} and $E(P_m^{+t}) =$ { v_iv_{i+1} : 1 \leq *i* \leq *m* - 1} \cup { v_mw_j : 1 \leq *j* \leq *t*}. Let us denote by *H* the graph obtained by $G \cup P_m^{+t}$. We define a labeling *g* : *V*(*H*) \rightarrow {0, 1, 2, \cdots , *q* + *m* + *t* - 1} as follows:

$$g(u) = f(u), \ u \in G;$$

$$g(v_i) = q + i - 1, \ 1 \le i \le m;$$

$$g(w_j) = q + m - 1 + j, \ 1 \le j \le t.$$

It can be verified that the induced edge labels of *H* are $0, 2, 4, \dots, 2q + 2m + 2t - 4$. Hence *g* admits SD-harmonious labeling for $G \cup P_m^{+t}$.

Theorem 4.6. Let f be SD-harmonious labeling of graph G of order p and size q. Then $G \cup K_{1,n_1} \cup K_{1,n_2} \cup \cdots \cup K_{1,n_t}$ admits SD-harmonious labeling.

Proof. Let *f* be SD-harmonious labeling of graph *G* of order *p* and size *q*. Let the labeling of the vertices of *G* be $0, 1, 2, \dots, q$. Then the induced edge labels are $0, 2, 4, \dots, 2q-2$. Let $V(K_{1,n_1} \cup K_{1,n_2} \cup \dots \cup K_{1,n_t}) = \{v_i, v_{i,j} : 1 \le i \le t, 1 \le j \le n_i\}$ and $E(K_{1,n_1} \cup K_{1,n_2} \cup \dots \cup K_{1,n_t}) = \{v_i v_{i,j} : 1 \le i \le t, 1 \le j \le n_i\}$. Let us denote by *H* the graph obtained by $G \cup K_{1,n_1} \cup K_{1,n_2} \cup \dots \cup K_{1,n_t}$. We define a labeling $g : V(H) \rightarrow \{0, 1, 2, \dots, q + n_1 + \dots + n_t\}$ as follows:

$$g(u) = f(u), \ u \in G;$$

$$g(v_1) = q;$$

$$g(v_{i+1}) = q + \sum_{l=1}^{i} n_l, \ 1 \le i \le t - 1;$$

$$g(v_{1,j}) = q + j, \ 1 \le j \le n_1;$$

$$g(v_{i+1,j}) = q + \sum_{l=1}^{i} n_l, \ 1 \le i \le t - 1, \ 1$$

 $g(v_{i+1,j}) = q + \sum_{l=1}^{t} n_l + j, \ 1 \le i \le t-1, \ 1 \le j \le n_{i+1}.$ It can be verified that the induced edge labels of *H* are 0, 2, 4, ..., 2(*q*+ $n_1 + \dots + n_t$) - 2. Hence *g* admits SD-harmonious labeling for $G \cup K_{1,n_1} \cup K_{1,n_2} \cup \dots \cup K_{1,n_t}.$

Corollary 4.7. Let f be SD-harmonious labeling of graph G_1 of order p_1 and size q_1 . Let g be SD-harmonious labeling of graph G_2 of order p_2 and size q_2 . Then $G_1 \cup G_2$ admits SD-harmonious labeling.

Proof. Let *f* be SD-harmonious labeling of graph G_1 of order p_1 and size q_1 . Let the labeling of the vertices of G_1 be $0, 1, 2, \dots, q_1$. Then the induced edge labels are $0, 2, 4, \dots, 2q_1 - 2$.

Let *g* be SD-harmonious labeling of graph G_2 of order p_2 and size q_2 . Let the labeling of the vertices of G_2 be $0, 1, 2, \dots, q_2$. Then the induced edge labels are $0, 2, 4, \dots, 2q_2 - 2$.

We define a labeling $h : V(G_1 \cup G_2) \rightarrow \{0, 1, 2, \dots, q_1 + q_2\}$ by h(u) = f(u), $u \in G_1$ and $h(v) = q_1 + g(v)$, $v \in G_2$. It can be verified that the induced edge labels of $G_1 \cup G_2$ are $0, 2, 4, \dots, 2q_1 - 2, 2q_1, 2q_1 + 2, \dots, 2q_1 + 2q_2 - 2$. Hence *h* admits SD-harmonious labeling for $G_1 \cup G_2$.

5. Identifying Vertex of Graphs

In this section, we prove that graphs obtained by identifying a vertex in G_1 and a vertex in G_2 admit SD-harmonious labeling.

Theorem 5.1. Let f be a SD-harmonious labeling of a graph G of order p and size q. Let $w \in V(G)$ be such that f(w) = 0. The graph obtained by identifying a vertex w in G and a vertex of degree n in $K_{1,n}$ admits a SD-harmonious labeling.

Proof. Let f be a SD-harmonious labeling of a graph G of order p and size q. That is the vertices of G are labeled with numbers $\{0, 1, 2, \dots, q\}$ and the induced edge labeling is bijective.

Let $w \in V(G)$ be such that f(w) = 0. Let us denote by H the graph obtained by identifying a vertex w in G and a vertex of degree n in $K_{1,n}$.

We define a vertex labeling g of H such that

 $g(v) = f(v), v \in V(\overline{G});$ $g(x_i) = q + i, i = 1, 2, \cdots, n.$ Thus for the induced edge labeling we get

 $g^{*}(uv) = f^{*}(vu), \quad v \in V(G); \\ g^{*}(wx_{i}) = 2q + 2i, \quad 1 \le i \le n - 1; \\ g^{*}(wx_{n}) = 0.$

Then the induced edge labels of $K_{1,n}$ are $2q + 2, 2q + 4, 2q + 6, \dots, 2q + 2i - 2, 0$. Since the graph *G* admits a SD-harmonious labeling, the corresponding induced edge labels of *G* are $2, 4, 6, \dots, 2q$. Therefore, *g* is bijective and the induced edge set of *H* is $\{0, 2, 4, \dots, 2q - 2i - 2\}$. Hence *H* admits a SD-harmonious labeling.

Theorem 5.2. Let f be a SD-harmonious labeling of a graph G of order p and size q. Let $w \in V(G)$ be such that f(w) = 0. The graph obtained by identifying a vertex w in G and a vertex of degree 1 in P_n admits a SD-harmonious labeling.

Proof. Let f be a SD-harmonious labeling of a graph G of order p and size q. That is the vertices of G are labeled with numbers $\{0, 1, 2, \dots, q\}$ and the induced edge labeling is bijective.

Let $w \in V(G)$ be such that f(w) = 0. Let us denote by H the graph obtained by identifying a vertex w in G and a vertex of degree 1 in P_n . We define a vertex labeling g of H such that

we define a vertex labeling g of *H* such that $g(v) = f(v), \quad v \in V(G);$ $g(x_{i+1}) = q + i, \quad i = 1, 2, \cdots, n-1.$ Thus for the induced edge labeling we get $g^*(uv) = f^*(vu), \quad v \in V(G);$ $g^*(wx_2) = 2q + 2;$ $g^*(x_{i+1}) = 2q + 2i, \quad 2 \le i \le n-2;$

$$g^*(x_{n-1}x_n)=0;$$

Then the induced edge labels of P_n are 2q + 2, 2q + 4, 2q + 6, \cdots , 2q + 2i - 2, 0. Since the graph *G* is a SD-harmonious labeling, the corresponding induced edge labels of *G* are 2, 4, 6, \cdots , 2*q*. Therefore, *g* is bijective and the induced edge set of *H* is $\{0, 2, 4, \cdots, 2q-2i-2\}$. Hence *H* admits a SD-harmonious labeling.

Theorem 5.3. Let f be a SD-harmonious labeling of a graph G_1 of order p_1 and size q_1 . Let g be a SD-harmonious labeling of a graph G_2 of order p_2 and size q_2 . Let $x \in V(G_1)$, $y \in V(G_2)$ be such that f(x) = 0 and f(y) = 0. The graph obtained by identifying a vertex x in G_1 and a vertex y in G_2 admits a SD-harmonious labeling.

Proof. Let f be a SD-harmonious labeling of a graph G_1 of order p_1 and size q_1 . That is the vertices of G_1 are labeled with numbers $\{0, 1, 2, \dots, q_1\}$ and the induced edge labeling is bijective.

Let g be a SD-harmonious labeling of a graph G_2 of order p_2 and size q_2 . That is the vertices of G_1 are labeled with numbers $\{0, 1, 2, \dots, q_2\}$ and the induced edge labeling is bijective.

Let $x \in V(G_1)$, $y \in V(G_2)$ be such that f(x) = 0 and f(y) = 0. Let us denote by *H* the graph obtained by identifying a vertex *x* in G_1 and a vertex *y* in G_2 .

We define a vertex labeling h of H such that

h(x) = 0; $h(u) = f(u), \ u \in V(G_1);$ $h(w) = g(w) + q_1, \ w \in V(G_2).$ Thus for the induced edge labeling we get $h^*(uv) = f^*(uv), \ uv \in V(G_1);$ $h^*(xw) = 2q_1 + 2;$ $h^*(wz) = g^*(wz) + 2q_1, \ wz \in V(G_2);$ $h^*(wz) = 0 \pmod{2q};$

Then the induced edge labels of G_1 are 2, 4, 6, \cdots , $2q_1$ and G_2 are $2q_1 + 2$, $2q_1 + 4$, $2q_1 + 6$, \cdots , $2q_1 + 2q_2 - 2$, 0. Therefore, *h* is bijective and the induced edge set of *H* is $\{0, 2, 4, \cdots, 2q_1 + 2q_2 - 2\}$. Hence *H* admits a SD-harmonious labeling.

6. Conclusion

We investigated SD-harmonious labeling of path related graphs, tree related graphs, star related graphs and disjoint union of graphs. We conclude this paper with the following conjecture.

Conjecture 6.1. All trees admit SD-harmonious labeling.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, MacMillan, New York, 1976.
- [2] A. Rosa, *On certain valuations of the vertices of a graph*, Theory of Graphs International Symposium, Rome, 1966.
- [3] J. A. Gallian, "A Dyamic Survey of Graph Labeling", *The Electronic J. Combin.*, vol. 20, # DS6, 2017.
- [4] R. L. Graham and N. J. A. Sloane, "On additive bases and harmonious graphs", *SIAM J. Algebr. Discrete Methods*, vol. 1, pp. 382-404, 1980.
- [5] G. C. Lau and W. C. Shiu, "On SD-prime labeling of graphs", Utilitas Math., (accepted).
- [6] G. C. Lau, W. C. Shiu, H. K. Ng, C. D. Ng and P. Jeyanthi, "Further results on SD-prime labeling", *JCMCC*, vol. 98, pp. 151-170, 2016.
- [7] G. C. Lau, W. C. Shiu and H. K. Ng, "Further results on super graceful labeling of graphs", AKCE International Journal of Graphs and Combinatorics, vol. 13, pp. 200-209, 2016.
- [8] M. A. Perumal, S. Navaneethakrishnan, S. Arockiaraj and A. Nagarajan, "Super graceful labeling for some special graphs", *Int. J. Res. Rev. Appl. Sci.*, vol. 9, no. 3, pp. 382-404, 2011.
- [9] D. Stewart, *Even harmonious labelings of disconnected graphs* (Master's thesis), University of Minnesota Duluth, 2015.
- [10] V. Swaminathan and P. Jeyanthi, "Super edge-magic strength of fire cracker, banana trees and unicycle graphs", *Discrete Mathematics*, vol. 306 pp. 1624-1636, 2006.