

Mapana J Sci, 16, 3 (2017), 41–46 ISSN 0975-3303 | https://doi.org/10.12723/mjs.42.4

Hexagonal Difference Prime Labeling of Some Path Graphs

Sunoj B S* and Mathew Varkey T K †

Abstract

Hexagonal difference prime labeling of vertices of a graph is the labeling of the vertices of the graph with hexagonal numbers and the edges with absolute value of the difference of the labels of the incident vertices. The greatest common incidence number (*gcin*) of a vertex of degree greater than one is defined as the greatest common divisor of the labels of the incident edges. If the *gcin* of each vertex of degree greater than one is 1, then the graph admits hexagonal difference prime labeling. Here we identify some path related graphs for hexagonal difference prime labeling.

Keywords: Graph labeling, hexagonal numbers, greatest common incidence number, path

Mathematics Subject Classification (2010): 05C10

1. Introduction

In this paper we deal with graphs that are connected, simple, finite and undirected. The symbol V(G) and E(G) denote the vertex set and edge set of a graph G, respectively. The graph whose cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called a (p,q)-graph.

A graph labeling is an assignment of integers to the vertices or edges or to both. Some basic notations and definitions are taken from [2], [3] and [4]. Some basic concepts are taken from [1] and [2]. In

Received: April 2017. Reviewed: June 2017

^{*}Department of Mathematics, Government Polytechnic College, Attingal, Kerala; spalazhi@yahoo.com

[†]Department of Mathematics, T K M College of Engineering, Kollam 691 005; mathewvarkeytk@gmail.com

Mapana J Sci, 16, 3 (2017)

this paper, we investigate the hexagonal difference prime labeling of some path graphs.

Definition 1.1. Let G be a graph with p vertices and q edges. The **greatest common incidence number**(gcin) of a vertex of degree greater than or equal to 2, is the greatest common divisor (gcd) of the labels of the incident edges.

Definition 1.2. The n^{th} hexagonal number is n(2n - 1), where *n* is a positive integer. The hexagonal numbers are 1, 6, 15, 28, 45, 66, ...

Definition 1.3. Let *G* be a graph with *p* vertices and *q* edges. Let *f*: *V*(*G*) \rightarrow {1, 6, 15, 28, ..., *p*(2*p* - 1)} be a bijection given by $f(v_i) = i(2i - 1)$, for every *i* from 1 to *p*. Let $f_{hdpl}^*:E(G) \rightarrow \mathbb{N}$ be a 1-1 mapping given by $f_{hdpl}^*(uv) = |f(u)-f(v)|$. The induced function f_{hdpl}^* is said to be **hexagonal difference prime labeling**, if the gcin of each vertex of degree at least 2, is one.

Definition 1.4. A graph which admits hexagonal difference prime labeling is called **hexagonal difference prime graph**.

We now see some graphs that admit the hexagonal prime labeling.

2. Paths

Theorem 2.1. The path P_n admits the hexagonal difference prime labeling.

Proof. Let G = P_n. Let v₁,v₂,...,v_n be the vertices of G. Here |V(G)| = n and |E(G)| = n - 1. Define a function $f: V \to \{1, 6, 15, 28, ..., n(2n - 1)\}$ by $f(v_i) = i(2i - 1), i = 1, 2, ..., n$.

For the vertex labeling *f*, the induced edge labeling f_{hdpl}^* is defined as follows:

 $f_{hdpl}^*(v_i v_{i+1}) = (4i+1), i = 1, 2, ..., n-1.$

Clearly, f_{hdpl}^* is an injection. The *gcin* of $(v_{i+1}) = gcd$ of $\{f_{hdpl}^*(v_i, v_{i+1}), f_{hdpl}^*(v_{i+1}, v_{(i+2)})\} = gcd$ of $\{(4i+1), (4i+5)\} = 1$, for i = 1, 2, ..., n-2. So, the *gcin* of each vertex of degree greater than one is 1. Hence P_n , admits the hexagonal difference prime labeling.

3. Ladder Graphs

Theorem 3.1. The Ladder graph $L_n = (P_n \Box P_2)$ admits the hexagonal difference prime labeling, when $n \equiv 0 \pmod{5}$.

Proof. Let G = L_n. Let v₁, v₂,..., v_{2n} be the vertices of G. Here |V(G)|= 2n and |E(G)| = 3n - 2. Define a function $f: V \rightarrow \{1, 6, 15, 28, ..., 2n(4n - 1)\}$ by $f(v_i) = i(2i - 1), i = 1, 2, ..., 2n$. For the vertex labeling f, the induced edge labeling f_{hdpl}^* is defined as follows: $f_{hdpl}^*(v_iv_{i+1}) = 4i+1, i = 1, 2, ..., 2n-1$. $f_{hdpl}^*(v_iv_{(2n-i+1)}) = (2n - i + 1)(4n - 2i + 1) - i(2i - 1), i = 1, 2, ..., n-1$. Clearly, f_{hdpl}^* is an injection. The gcin of $(v_{i+1}) = 1$, i = 1, 2, ..., 2n-2. The gcin of $(v_1) =$ gcd of $\{f_{hdpl}^*(v_1v_2), f_{hdpl}^*(v_1v_{2n})\} =$ gcd of $\{5, 8n^2-2n-1\} = 1$. The gcin of $(v_{2n}) =$ gcd of $\{f_{hdpl}^*(v_1v_2n), f_{hdpl}^*(v_{2n-1}v_{2n})\} =$ gcd of $\{8n-3, 8n^2-2n-1\} =$ gcd of $\{8n-3, n-1\} =$ gcd of $\{5, n-1\} = 1$. So, the gcin of each vertex of degree greater than one is 1. Hence L_n admits the hexagonal difference prime labeling. □

Example 3.2. *labeling of the ladder graph* L_5

4. Middle Graphs

Theorem 4.1. The middle graph of path P_n , admits the hexagonal difference prime labeling.

Proof. Let $G = M(P_n)$. Let $v_1, v_2, \ldots, v_{2n-1}$ be the vertices of G. Here |V(G)| = 2n - 1 and |E(G)| = 3n - 4. Define $f: V \rightarrow \{1, 6, 15, 28, \ldots, (2n-1)(4n-3)\}$ by $f(v_i) = i(2i - 1), i = 1, 2, \ldots, 2n-1$. For the vertex labeling f, the induced edge labeling f_{hdpl}^* is defined as follows: $f_{hdpl}^*(v_i, v_{i+1}) = (4i+1), i = 1, 2, \ldots, 2n-2$. $f_{hdpl}^*(v_{2i}, v_{2i+2}) = 16i+6, i = 1, 2, \ldots, n-2$. Clearly, f_{hdpl}^* is an injection.

The gcin of $(v_{i+1}) = 1$, i = 1, 2, ..., 2n-3.

So, the *gcin* of each vertex of degree greater than one is 1. Hence $M(P_n)$ admits the hexagonal difference prime labeling.

Example 4.2. Labeling of the middle graph of P_5

5. Path Graphs

Theorem 5.1. The total graph of path P_n admits the hexagonal difference prime labeling.

Proof. Let G = T(P_n). Let v₁, v₂,..., v_{2n-1} be the vertices of G. Here |V(G)|= 2n - 1 and |E(G)| = 4n - 5. Define a function $f: V \rightarrow \{1, 6, 15, 28, ..., (2n-1)(4n-3)\}$ by $f(v_i) = i(2i-1), i = 1, 2, ..., 2n-1$. For the vertex labeling f, the induced edge labeling f_{hdpl}^* is defined as follows: $f_{hdpl}^*(v_iv_{i+1}) = (4i+1), i = 1, 2, ..., 2n-2$. $f_{hdpl}^*(v_{2i}v_{2i+2}) = 16i+6, i = 1, 2, ..., n-2$. $f_{hdpl}^*(v_{2i-1}v_{2i+1}) = 16i-2, i = 1, 2, ..., n-1$. Clearly, f_{hdpl}^* is an injection. The gcin of $(v_{i+1}) = 1$, i = 1, 2, ..., 2n-3. The gcin of $(v_{1-1}) = gcd$ of $\{f_{hdpl}^*(v_1v_2), f_{hdpl}^*(v_1v_3)\} = gcd$ of $\{5, 14\} = 1$. The gcin of $(v_{2n-1}) = gcd$ of $\{f_{hdpl}^*(v_{2n-3}v_{2n-1}), f_{hdpl}^*(v_{2n-1}v_{2n-2})\} = gcd$ of $\{8n-7, 16n-18\} = gcd$ of $\{8n-7, 8n-11\} = 1$. So, the gcin of each vertex of degree greater than one is 1. Hence T(P_n) admits the hexagonal difference prime labeling. □

Example 5.2. *labeling of the total graph of* P₅

Theorem 5.3. The graph P_n^2 admits the hexagonal difference prime labeling.

Proof. Let $G = P_n^2$. Let $v_1, v_2, ..., v_n$ be the vertices of G. Here |V(G)| = n and |E(G)| = 2n - 3. Define a function $f : V \rightarrow \{1, 6, 15, 28, ..., n(2n - 1)\}$ by $f(v_i) = i(2i - 1), i = 1, 2, ..., n$. For the vertex labeling f, the induced edge labeling f_{hdpl}^* is defined as

follows:

The gcin of $(v_{i+1}) = (4i+1)$, i = 1, 2, ..., n-1. $f_{hdpl}^*(v_i v_{i+2}) = 8i+6$, i = 1, 2, ..., n-2. Clearly, f_{hdpl}^* is an injection. The gcin of $(v_{i+1}) = 1$, i = 1, 2, ..., n-2The gcin of $(v_1) = gcd$ of $\{f_{hdpl}^*(v_1 v_2), f_{hdpl}^*(v_1 v_3)\} = gcd$ of $\{5, 14\} = 1$. The gcin of $(v_n) = gcd$ of $\{f_{hdpl}^*(v_{(n-1)}v_n), f_{hdpl}^*(v_{(n-2)}v_n)\} = gcd$ of $\{4n-3, 8n-10\} = gcd$ of $\{4n-3, 4n-7\} = 1$. So, the gcin of each vertex of degree greater than one is 1. Hence, P_n^2 admits the hexagonal difference prime labeling. □

Theorem 5.4. The Strong duplicate graph of path P_n , $SD(P_n)$, admits the hexagonal difference prime labeling, when n is not a multiple of 3.

Proof. Let $G = SD(P_n)$. Let v_1, v_2, \ldots, v_{2n} be the vertices of G. Here |V(G)| = 2n and |E(G)| = 3n - 2. Define a function $f: V \to \{1, 6, 15, 28, ..., 2n(4n-1)\}$ by $f(v_i) = i(2i - 1), i = 1, 2, ..., 2n.$ For the vertex labeling f, the induced edge labeling f_{hdpl}^* is defined as follows: $f_{hdpl}^*(v_i, v_{i+1}) = (4i+1), i = 1, 2, ..., 2n-1.$ $f_{hdnl}^{*}(v_{(2i-1)}, v_{2i+2}) = 24i+3, i = 1, 2, ..., n-1.$ Clearly, f_{hdpl}^* is an injection. The gcin of $(v_{i+1}) = 1$, i = 1, 2, ..., 2n-2The gcin of $(v_1) = gcd$ of $\{f_{hdpl}^*(v_1v_2), f_{hdpl}^*(v_1v_4)\} = gcd$ of $\{5, 27\} = 1$. The gcin of $(v_{2n}) = gcd$ of $\{f_{hdpl}^*(v_{2n-1}v_{2n}), f_{hdpl}^*(v_{(2n-3)}v_{2n})\} = gcd$ of $\{8n-$ 3, 24n-21 = gcd of {8n-15, 8n-3} = gcd of {12, 8n-15} = 1. So, the gcin of each vertex of degree greater than one is 1. Hence $SD(P_n)$, admits the hexagonal difference prime labeling.

Theorem 5.5. The strong shadow graph of path P_n , admits the hexagonal difference prime labeling.

Proof. Let $G = SD_2(P_n)$. Let $v_1, v_2, ..., v_{2n}$ be the vertices of G. Here |V(G)| = 2n and |E(G)| = 5n - 4. Define a function $f: V \rightarrow \{2, 6, 12, ..., 2n(4n-1)\}$ by $f(v_i) = i(2i - 1), i = 1, 2, ..., 2n$. For the vertex labeling f, the induced edge labeling f_{hdpl}^* is defined as follows:

 $\begin{aligned} f_{hdpl}^{*}(v_{i}, v_{i+1}) &= 4i+1, i = 1, 2, \dots, 2n-1. \\ f_{hdpl}^{*}(v_{(2i-1)}, v_{(2i+1)}) &= 16i-2, i = 1, 2, \dots, n-1. \\ f_{hdpl}^{*}(v_{2i}, v_{2i+2}) &= 16i+6, i = 1, 2, \dots, n-1. \\ f_{hdpl}^{*}(v_{(2i-1)}, v_{2i+2}) &= 24i+3, = 1, 2, \dots, n-1. \\ Clearly, f_{hdpl}^{*} is an injection. \\ The gcin of <math>(v_{i+1}) = 1, i = 1, 2, \dots, 2n-2. \\ The gcin of <math>(v_{1}) = gcd$ of $\{f_{hdpl}^{*}(v_{1}v_{2}), f_{hdpl}^{*}(v_{1}v_{3})\} = gcd$ of $\{5, 14\} = 1. \\ The gcin of <math>(v_{2n}) = gcd$ of $\{f_{hdpl}^{*}(v_{2n}, v_{2n-1}), f_{hdpl}^{*}(v_{(2n-2)}, v_{2n})\} = gcd$ of $\{8n-3, 16n-10\} = gcd$ of $\{8n-7, 8n-3\} = gcd$ of $\{4, 8n-7\} = gcd$ of $\{1, 4\} = 1. \end{aligned}$

So, the *gcin* of each vertex of degree greater than one is 1.

Hence $SD_2(P_n)$ admits the hexagonal difference prime labeling. \Box

6. Conclusion

In this paper, hexagonal difference prime labeling of vertices of ladder graphs, middle graphs and some path graphs are studied.

References

- [1] T. M. Apostol, Introduction to Analytic Number Theory, New Delhi: Narosa, 1998.
- [2] F. Harary, Graph Theory. Reading, MA: Addision-Wesley, 1969.
- [3] J. A. Gallian, "A Dynamic Survey of Graph Labeling," *The Electronic Journal of Combinatorics*, DS6, pp 1-408, 2016.
- [4] T. K. M. Varkey, "Some Graph Theoretic Generations Associated with Graph Labeling," Ph.D. dissertation, Univ. Kerala, Thiruvanthapuram, 2000.