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Hexagonal Difference Prime Labeling of Some
Path Graphs

Sunoj B S∗ and Mathew Varkey T K†

Abstract

Hexagonal difference prime labeling of vertices of a graph
is the labeling of the vertices of the graph with hexagonal
numbers and the edges with absolute value of the differ-
ence of the labels of the incident vertices. The greatest com-
mon incidence number (gcin) of a vertex of degree greater
than one is defined as the greatest common divisor of the
labels of the incident edges. If the gcin of each vertex of
degree greater than one is 1, then the graph admits hexag-
onal difference prime labeling. Here we identify some path
related graphs for hexagonal difference prime labeling.
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1. Introduction

In this paper we deal with graphs that are connected, simple, finite
and undirected. The symbol V(G) and E(G) denote the vertex set and
edge set of a graph G, respectively. The graph whose cardinality of the
vertex set is called the order of G, denoted by p and the cardinality of
the edge set is called the size of the graph G, denoted by q. A graph
with p vertices and q edges is called a (p,q)-graph.

A graph labeling is an assignment of integers to the vertices or
edges or to both. Some basic notations and definitions are taken from
[2], [3] and [4]. Some basic concepts are taken from [1] and [2]. In
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this paper, we investigate the hexagonal difference prime labeling of
some path graphs.

Definition 1.1. Let G be a graph with p vertices and q edges. The
greatest common incidence number(gcin) of a vertex of degree greater
than or equal to 2, is the greatest common divisor (gcd) of the labels of
the incident edges.

Definition 1.2. The nth hexagonal number is n(2n − 1), where n is a
positive integer. The hexagonal numbers are 1, 6, 15, 28, 45, 66, . . .

Definition 1.3. Let G be a graph with p vertices and q edges. Let f: V(G)
→ {1, 6, 15, 28, . . . , p(2p − 1)} be a bijection given by f(vi)= i(2i − 1),
for every i from 1 to p. Let f∗hdpl:E(G) → N be a 1-1 mapping given by
f∗hdpl(uv) = |f(u)-f(v)|. The induced function f∗hdpl is said to be hexagonal
difference prime labeling, if the gcin of each vertex of degree at least
2, is one.

Definition 1.4. A graph which admits hexagonal difference prime la-
beling is called hexagonal difference prime graph.

We now see some graphs that admit the hexagonal prime labeling.

2. Paths

Theorem 2.1. The path Pn admits the hexagonal difference prime la-
beling.

Proof. Let G = Pn. Let v1,v2,. . . ,vn be the vertices of G. Here |V(G)|
= n and |E(G)| = n − 1. Define a function f :V → {1, 6, 15, 28,. . . ,
n(2n − 1)} by f (vi)= i(2i − 1), i = 1,2,. . . , n.
For the vertex labeling f , the induced edge labeling f∗hdplis defined as
follows:
f∗hdpl(vi vi+1) = (4i+1), i = 1, 2,. . . , n-1.
Clearly, f ∗hdplis an injection. The gcin of (vi+1)=gcd of {f∗hdpl(vi, vi+1),
f∗hdpl(vi+1, v(i+2))} =gcd of {(4i+1), (4i+5)}=1, for i = 1, 2, . . . , n-2.
So, the gcin of each vertex of degree greater than one is 1. Hence Pn,
admits the hexagonal difference prime labeling. �

3. Ladder Graphs

Theorem 3.1. The Ladder graph Ln=(Pn�P2) admits the hexagonal
difference prime labeling, when n ≡ 0(mod5).
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Proof. Let G = Ln. Let v1,v2,. . . , v2n be the vertices of G. Here |V(G)|=
2n and |E(G)| = 3n − 2.
Define a function f : V→ {1, 6, 15, 28, . . . , 2n(4n − 1)} by
f (vi)= i(2i − 1), i = 1, 2,. . . , 2n.
For the vertex labeling f , the induced edge labeling f∗hdpl is defined as
follows:
f∗hdpl(vivi+1)= 4i+1, i = 1,2,. . . ,2n-1.
f∗hdpl(viv(2n−i+1))= (2n − i + 1)(4n − 2i + 1) − i(2i − 1), i = 1, 2, . . . , n-1.
Clearly, f∗hdpl is an injection.
The gcin of (vi+1) = 1, i = 1, 2,. . . , 2n-2. The gcin of (v1) =gcd of
{f∗hdpl(v1v2), f∗hdpl(v1v2n)} =gcd of {5, 8n2-2n-1}= 1.
The gcin of (v2n) =gcd of {f∗hdpl(v1v2n), f∗hdpl(v2n−1v2n)} =gcd of {8n-3,
8n2-2n-1}=gcd of {8n-3, n-1}=gcd of {5, n-1}=1.
So, the gcin of each vertex of degree greater than one is 1.
Hence Ln admits the hexagonal difference prime labeling. �

Example 3.2. labeling of the ladder graph L5

b b b b b

b b b b b
v1 v2 v3 v4 v5

v7v8v9v10 v6

9 13 17

63105147189

37

21

33 29 25

5

fig 1 : L 5

4. Middle Graphs

Theorem 4.1. The middle graph of path Pn, admits the hexagonal dif-
ference prime labeling.

Proof. Let G = M(Pn). Let v1, v2, . . . , v2n−1 be the vertices of G.
Here |V(G)|= 2n − 1 and |E(G)| = 3n − 4.
Define f : V→ {1, 6, 15, 28,. . . , (2n-1)(4n-3)} by f (vi) = i(2i− 1), i =
1, 2, . . . , 2n-1.
For the vertex labeling f , the induced edge labeling f∗hdpl is defined as
follows:
f∗hdpl(vi, vi+1)= (4i+1), i = 1, 2, . . . , 2n-2.
f∗hdpl(v2i, v2i+2) = 16i+6, i = 1, 2, . . . , n-2.
Clearly, f∗hdpl is an injection.
The gcin of (vi+1) = 1, i = 1, 2, . . . , 2n-3.
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So, the gcin of each vertex of degree greater than one is 1. Hence
M(Pn) admits the hexagonal difference prime labeling. �

Example 4.2. Labeling of the middle graph of P5

b b b b b

b b b b

fig 2 : M ( P 5 )

v 2 v 4 v 6 v 8

v 1 v 3 v 5 v 7 v 9

5 9 13 17 21 25 29 33

22 38 54

5. Path Graphs

Theorem 5.1. The total graph of path Pn admits the hexagonal differ-
ence prime labeling.

Proof. Let G = T(Pn). Let v1, v2,. . . , v2n−1 be the vertices of G.
Here |V(G)|= 2n − 1 and |E(G)| = 4n − 5. Define a function f : V →
{1, 6, 15, 28, . . . , (2n-1)(4n-3)} by f (vi) = i(2i− 1), i = 1, 2, . . . , 2n− 1.
For the vertex labeling f , the induced edge labeling f∗hdpl is defined as
follows: f∗hdpl(vivi+1) = (4i+1), i = 1, 2, . . . , 2n-2.
f∗hdpl(v2iv2i+2) = 16i+6, i = 1, 2, . . . , n-2.
f∗hdpl(v2i−1v2i+1) = 16i-2, i = 1, 2,. . . , n-1.
Clearly, f∗hdpl is an injection.
The gcin of (vi+1) = 1, i = 1, 2,. . . , 2n-3.
The gcin of (v1) =gcd of {f∗hdpl(v1 v2), f∗hdpl(v1 v3)}=gcd of {5, 14}= 1.
The gcin of (v2n−1) =gcd of {f∗hdpl(v2n−3 v2n−1), f∗hdpl(v2n−1 v2n−2)} =gcd
of {8n-7, 16n-18}=gcd of {8n-7, 8n-11}=1.
So, the gcin of each vertex of degree greater than one is 1.
Hence T(Pn) admits the hexagonal difference prime labeling. �

Example 5.2. labeling of the total graph of P5

Theorem 5.3. The graph P2
n admits the hexagonal difference prime la-

beling.

Proof. Let G = P2
n. Let v1, v2,. . . , vn be the vertices of G.

Here |V(G)| = n and |E(G)| = 2n − 3. Define a function f : V →
{1, 6, 15, 28, . . . , n(2n − 1)} by
f (vi) = i(2i − 1), i = 1, 2, . . . , n.
For the vertex labeling f , the induced edge labeling f∗hdpl is defined as
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b b b b b

b b b b

fig 3 : T ( P 5 )

v 2 v 4 v 6 v 8

v 1 v 3 v 5 v 7 v 9

5 9 13 17 21 25 29 33

22 38 54

14 30 46 62

follows:
f∗hdpl(vivi+1)= (4i+1), i = 1, 2, . . . , n-1.
f∗hdpl(viv(i+2))= 8i+6, i = 1, 2, . . . , n-2.
Clearly, f∗hdpl is an injection.
The gcin of (vi+1) = 1, i = 1,2,. . . ,n-2
The gcin of (v1) =gcd of {f∗hdpl(v1v2), f∗hdpl(v1v3)}=gcd of {5, 14}= 1.
The gcin of (vn)=gcd of {f∗hdpl(v(n−1)vn), f∗hdpl(v(n−2)vn)} =gcd of {4n-3,
8n-10}=gcd of {4n-3, 4n-7}= 1.
So, the gcin of each vertex of degree greater than one is 1.
Hence, P2

n admits the hexagonal difference prime labeling. �

Theorem 5.4. The Strong duplicate graph of path Pn, SD(Pn), admits
the hexagonal difference prime labeling, when n is not a multiple of 3.

Proof. Let G = SD(Pn). Let v1, v2, . . . , v2n be the vertices of G.
Here |V(G)| = 2n and |E(G)| = 3n − 2.
Define a function f : V→ {1, 6, 15, 28, . . . , 2n(4n-1)} by
f(vi) = i(2i − 1), i = 1, 2, . . . , 2n.
For the vertex labeling f , the induced edge labeling f∗hdpl is defined as
follows:
f∗hdpl(vi, vi+1) = (4i+1), i = 1, 2, . . . , 2n-1.
f∗hdpl(v(2i−1), v2i+2) = 24i+3, i = 1, 2, . . . , n-1.
Clearly, f∗hdpl is an injection.
The gcin of (vi+1) = 1, i = 1, 2, . . . , 2n-2
The gcin of (v1) =gcd of {f∗hdpl(v1v2), f∗hdpl(v1v4)} =gcd of {5, 27}= 1.
The gcin of (v2n)=gcd of {f∗hdpl(v2n−1v2n), f∗hdpl(v(2n−3)v2n)} =gcd of {8n-
3, 24n-21} =gcd of {8n-15, 8n-3}=gcd of {12, 8n-15}= 1.
So, the gcin of each vertex of degree greater than one is 1.
Hence SD(Pn), admits the hexagonal difference prime labeling. �

Theorem 5.5. The strong shadow graph of path Pn, admits the hexag-
onal difference prime labeling.

Proof. Let G = SD2(Pn). Let v1, v2,. . . , v2n be the vertices of G.
Here |V(G)| = 2n and |E(G)| = 5n− 4. Define a function f : V→ {2, 6,
12, . . . ,2n(4n-1)} by
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f(vi) = i(2i − 1), i = 1, 2, . . . , 2n.
For the vertex labeling f , the induced edge labeling f∗hdpl is defined as
follows:
f∗hdpl(vi, vi+1)= 4i+1,i = 1, 2, . . . , 2n-1.
f∗hdpl(v(2i−1), v(2i+1))= 16i-2, i = 1, 2, . . . , n-1.
f∗hdpl(v2i, v2i+2) = 16i+6, i = 1, 2, . . . , n-1.
f∗hdpl(v(2i−1), v2i+2) = 24i+3, = 1, 2, . . . , n-1.
Clearly, f∗hdpl is an injection.
The gcin of (vi+1) = 1, i = 1, 2, . . . , 2n-2.
The gcin of (v1) = gcd of {f∗hdpl(v1v2), f∗hdpl(v1v3)} =gcd of {5, 14} =1.
The gcin of (v2n) =gcd of {f∗hdpl(v2n, v2n−1), f∗hdpl(v(2n−2) v2n)} =gcd of
{8n-3, 16n-10}=gcd of {8n-7, 8n-3} =gcd of {4, 8n-7}=gcd of {1,
4}= 1.
So, the gcin of each vertex of degree greater than one is 1.
Hence SD2(Pn) admits the hexagonal difference prime labeling. �

6. Conclusion

In this paper, hexagonal difference prime labeling of vertices of ladder
graphs, middle graphs and some path graphs are studied.
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