
ISSN 0975-3303
Mopono J Sci, 9, 2 (2010), 47-52

PERFORMANCE ENHANCEMENT OF
SOAP VIA MULTI LEVEL CACHING

Samiksha Shukla,* D. K. Mishra** and Kapil Tiwari***

ABSTRACT
Due to complex infrastructure of web application response time for
different service request by client requires significantly larger time. Simple

Obiect Access Protocol (SOAP) is a recent and emerging technology in
the field of web services, which aims at replacing traditional methods of

remote communications. Basic aim of designing SOAP was to increase

interoperability among broad range of programs and environment,

SOAP allows applications from different languages, installed on different

platforms to communicate with .each other over the network. Web

services demand security, high performance and extensibility. SOAP
provides various benefits for interoperability but we need to pay price

of performance degradation and security for that. This formulates SOAP

a poor preference for high performance web services. In this paper we

present a new approach by enabling multi-level caching at client side as
well as server side. Reference describes implementation based on the

Apache Java SOAP client, which gives radically enhanced performance.

Keywords: SOAP, protocol, XML, caching, (time-to-live) TTL

Corresponding author, Christ University, Bongo/ore. samiksha.shukla@gmail.com
• • Acropolis Institute of Technology and Research, Indore
• • • EMC Software & Services India Pvt. Ltd, Bongo/ore

47

https://doi.org/10.12725/mjs.13.6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Christ University Bengaluru: Open Journal Systems

https://core.ac.uk/display/236435214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 . Introduction

Soap stands for Simple Object Access Protocol, it is a communication protocol
between applications, and SOAP is platform independent as well as language
independent. In recent applications communication takes place using Remote
Procedure Calls (RPC) between objects like DCOM and CORBA, but HTIP was
not designed for this. RPC signifies a compatibility and protection problem; firewalls
and proxy servers will normally block this kind of traffic.

An enhanced way.to communicate between applications is over HTIP, because
HTIP is supported by all Internet browsers and servers. In order to achieve this
SOAP was created. Enabling caching over web gives some benefits like: it decreases
network traffic, load on main seiverond response time.

Simple Object Access Protocol (SOAP) [1] is a recent and emerging technology in
the field of web services technology, which aims at replacing traditional methods of
remote commun ications. Basic aim of designing SOAP was to increase
interoperability among broad range of programs and environment, SOAP allows
applications from different languages and installed on different platforms to
communicate with each other over the network. Web services demand security,
high performance and extensibility. SOAP provides various benefits for interoperability
but we need to pay price of performance degradation and security for that. This
formulates SOAP a poor preference for high performance web services.

There has been a remarkable development in the area of web services. SOAP is
one such advancement, which was conceived when there was a requirement for a
standard. SOAP is based on XML and thus achieves high interoperability when it
comes to exchange of information in a distributed computing environment. SOAP,
carrying the advantages that increase with XML, has few disadvantages, which
restrict its usage. As SOAP requires messages to be in XML format, so processing of
these messages takes significant amount of execution time, which is a great overhead
in computation of SOAP.

SOAP is proving its bravery in the enterprise applications. Developers use the
protocol to combine unrelated enterprise applications, and to develop'new distributed
and scalable enterprise applications that employ XML for cross-component
messaging.

In this paper, we ·discuss the client and server side processing of a SOAP request
and analyses the SOAP request made by the client to the server when it requests a
service from it. After using caches how the performance is enhanced. Each of the

'

48

phases is further examined to find out where the most of the clients time is spent. As
SOAP requires messages to be in XML, a typical request from the client involves
XML encoding, which is basically serialization and distribution of the payload,
before it is sent to the server.

The aim of this research is to give an ideo about how SOAP is more efficient to deal
with the requirements of a high performance web service, while still satisfying with
the SOAP standard. The client side, after analysis of each phase of its implementation,
is optimized by using a client-side caching method. It increases the performance
enormously by caching the client requests, which are of small size. In some
application such os stock watches request message will be identical which result in
identical response message fora time interval, in such situation we can do caching
at server side by specifying time-to-live (TIL) value, so in cache hit response time
improves but in cache miss overhead of cache lookup is found. In section 2 we
shall discuss about the related work, section 3 & 4 gives problem definition and
proposed architecture description, section 5 gives limitation of proposed architecture
and in section 6 we conclude the paper with summary of our work and future
enhancement.

Related Work:

In theJovo implementation of Apache SOAP 1.2 and the most common model of
SOAP that is used in distributed software, the RPC-style, rather than the message
style, which is less popular. This choice is obvious among web developers, as it
closely resembles the method-call model.

There hove been various studies comparing SOAP with other protocols, mainly
binary protocols such as Java RMI and CORBA. All of this research has proven
that SOA~ because of its dependency on XML, is inefficient compared to its peers
in distributed computing. References [3, 4, 5, 12] explain, from where SOAPs
slowness originates and considered various attempts to optimize it.

Reference [6] describes client-side caching strategy for SOAP services using the
Business Delegate and Cache Management design patterns.

Problem Definition:

We must consider performance, in order to develop rich Java clients with SOAP
based servers as data providers.

When our client application accesse~ the same information {such as stock market)
frequently from the server, we will promptly recognize the server's performance,

49

and therefore our application's response time. Further, when hundreds of client
applications hit the server concurrently, the performance puts down even foster.
There we will be need of caching, raising a SOAP coli yields costs similar or more,
incurred for running an SQL statement in a RDBMS.

The cache could also be placed at client side as well as server side for performance
enhancement, and in our implementation we are going to propose on approach
where we will use multilevel caching. For every SOAP request message method will
be invoked with few parameters which are always needed by the client for invoking
web services. The cache then returns with a SOAP reply to the caller, either from the
client's cache, by retrieving the message from the Server's cache or by retrieving
the message from the server afresh. The Application will remain transparent about
the source of the response message. It increases performance, if the cache has o
copy of the reply message.

TS

Figure 1: Proposed architecture

In figure l, the proposed architecture we ore implementing client side caching as
well as server side caching. In this architecture it will store SOAP replies in cache
at server side with TIL specification, whenever requirement comes from the application
side, web service client creates a SOAP message Dispatch object and calls the
invoke method on this object. When cache is supposed .to be used then cache
invoke method will be called. The cache uses this SOAP Request and the desired
web service definition language URI as a key into a table and checks if this entry
exists in cache. If it is, then the response can be directly returned by the cache. If
not, a cache miss occurs and the actual web service is invoked. When we invoke

50

actual web service request will be received at server side, and server side cache is
consulted. If a response message exist and TTL of the service has not passed, then
cached message is returned from server. Otherwise the process to service request is
executed and the returned message is cached at server side for forthcoming requests
from any of the client in the network.

In our architecture, the cache is implemented using Entity Beans and a Frontage
(Facade Bean) that brings out the invoke() method. When called, the invoke()
method, the SOAPRequest message is canonicalized first and then does an additional
function that we call as "compact" which removes superfluous whitespace in the
request. We then combine this string message with the web service definition language
URI and calculate the Hash key for this combination. The result of the hash function
is on input for the Entity Bean' s find method. If the key is found, it surely contains
the pertinent reply in cache. However, this reply may hove become old. In order to
assure how old the reply is, we have to compare the current time with the TTL value
stored in addition to the SOAPReply. If either the reply was not found in the cache
or if the cached entry was old, cache sends a real call to the web service and
retrieves the SOAPReply and also examines the WSDL file for the specified operation
and checks if the operation enables caching or not. If operation is cacheable then
the reply is stored in the cache. In both the cases, the reply is returned to the client.
Even if the Web Service is presently disconnected from the client, but if the operation
is cached with the cache, it remains available to the client till the cached copy d ies.

Limitations:

In order to process in SOA~ message should be in XML, and processing of SOAP
message entail significant amount of execution time, which is the utmost overhead
in computation of SOAP cal l. The basic idea behind caching was considered with
the belief that SOAP request from the client remains same in most of the instances.
The primary requirement is that clients should have fixed set of requests that they
can make to the server. Because if it is more, then for each request, the SOAP
response will be saved in the cache, increases the size of cache.

References

1. Sun Microsyslems. J2ME Web Services Technical White Paper, July 2004. http ://jova.sun.com/
j2me/ reference/whitepapers/Web _ Svcs _ wpO 72 904 .pdf.

2. D. Box et ol. "Simple Object Access Protocol 1.1 ", Technical Report, W3C, 2000,
http://www. w3. org/TR/2000/NOTE -SOAP-20000508/.

3. Devcrom Kiron, Andresen Daniel, HSO.AP Optimization via Client-side Caching", ICWS03,
http:/ /people.cis.ksu .edu/-dan/despot/icws03. pdf

51

· 4. F. E. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener, "Efficient wire formats for high
performance computing", In Proceedings of Supercomputing 2000, pages 64-64, 2000.

5. D. Davis and M. Poroshor. "Latency performance of SOAP implementationsN, In Proceedings
of the 2nd IEEE/ACM International Symposium on Cluster computing and the Grid,
pages 407-412, 2002.

6. K. Chiu,M. Govindaraiu, and R. Bramley. "Investigating the limits of SOAP performance
for scientific computing", In Proceedings of the 11th IEEE International Symposium on
High performance Di.stributed computing HPDC-ll 002 (HPDC'02), page 246. IEEE
Computer Society, 2002.

7. 0. Azim and A. K. Hamid, "Cache SOAP Services On The Client-Side",
http://www.javaworld.com/ javawo rld/iw-03-2002/jw-0308-soap.html?, March,2002.

8. K. Devaram and D. Andresen. "SOAP optimizalion via parameterized client-side caching".
In Proceedings of the lASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS 2003), pages 785-790, Marino Del Rey, CA, Nov. 2003

9 . Roy Friedman, "XML Web Service Caching Strategies", MSDN,http:// msdn.microsoft.com/
enus/library/ aa480499.aspx Caching web services in mobile ad-hoc networks: opportunities
and challenges, ACM Workshop

10. On· Principles of Mobile Computing, 2002

11. Kamal Elbashir, "Transparent Caching of Web Services for Mobile Devices «

http://citeseerx.ist.psu.edu/

12. viewdoc/summary?doi= 1 0.1.1.2.1608

13. Samiksha Shukla, Kapil Tiwari "A Research Perspective : SOAP Optimization with Client
Side Caching", In Proceedings of International Conference on Information Technology
and Business Intelligence (ITBI'09).

14. Soaplet, http://www.codehaus.org/ dandiep/soaplet/, June 2004.

52

