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Abstract: One aspect often needed when modelling systems of any kind is time-
based analysis, especially for real-time or in general time-critical systems. Algebraic
place/transition (P/T) nets do not inherently provide a way to model the passing of
time or to restrict the firing behaviour with regards to passing time. In this paper, we
present an extension of algebraic P/T nets by adding time durations to transitions
and timestamps to tokens. We define categories for different timed net classes and
functorial relations between them. Our first result is the definition of morphisms
preserving firing behaviour for all timed net classes. As second result, we define
structuring techniques for timed P/T nets in a way that our category fulfills the prop-
erties of M -adhesive systems, a general categorical framework for structuring and
transforming high-level algebraic structures. We demonstrate our approach by ap-
plying it to model a real-time communication network.

Keywords: algebraic Petri nets, Petri nets with time, timed P/T nets, Petri net struc-
turing technique, P/T net transformation

1 Introduction

Petri nets are a formalism widely used for modelling and analyzing systems and processes. First
introduced by Carl Adam Petri in [Pet62], the notion of (classical) Petri nets (and place/transition
(P/T) nets in particular) has been refined and extended over the time [Rei85, Rei10], also con-
sidering coloured tokens giving rise to the notion of high-level nets, like e. g. Coloured Petri nets
[Jen92, JKW07]. Since Petri nets do not inherently provide a way to model the passing of time
or to restrict the firing behaviour with regards to passing time, a number of approaches have been
established that enhance classical Petri nets by notions of time, such as time Petri nets [BD91],
deterministic timed Petri nets [BH07] and timed coloured Petri nets [JK09].

In the nineties, a main objection against Petri nets as specification technique was that Petri nets
lack abstraction, data-type handling, refinement and structuring. Hence, composition and ab-
straction mechanisms for Petri nets have been formalized in an algebraic setting [MM90, ER97],
viewing an algebraic P/T net as a directed graph whose set of nodes is the free commutative
monoid P⊕ generated by the set P of places, and transitions are the arcs between them. Note that
there is a one-to-one correspondence of classical and algebraic P/T nets. With the definition of
morphisms between algebraic Petri nets categories of Petri nets can be defined with and without
initial markings. The results provide a formal basis to reason on abstraction and refinement, on
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integration and decomposition of nets, and on semantics given by net processes, at an abstract
level using methods from category theory [EM96, EPR94]. Since then, new algebraic Petri net
categories, as well as extensions of existing Petri net categories have been developed, includ-
ing P/T nets with individual tokens (PTI nets) [MGH11], and Algebraic High-Level (AHL) nets
[EHP+02, Ehr04].

Unfortunately, in contrast to classical Petri nets, up to now there exist no extensions of al-
gebraic Petri nets by concepts for modelling the passing of time. Adding such a concept to the
formalism would allow us e. g. to establish structuring techniques for Petri nets with time in a cat-
egorical setting, and to re-use existing results for algebraic Petri nets with respect to rule-based
Petri net reconfiguration [EG11, PEHP08].

In this paper, we provide a definition of algebraic, timed P/T nets, which enables us to define
categories for different classes of timed nets, allowing the definition of the structuring techniques
gluing and restriction, and morphisms to specify processes for timed P/T nets. Moreover, timed
P/T nets can be reconfigured using timed P/T net transformation rules in the well-known alge-
braic double pushout (DPO) approach [EEPT06]. In our formalization, tokens carry timestamps,
usually denoting the earliest point in time when this token may be consumed by a transition. A
global clock models the current time and influences the activation of transitions. Tokens gener-
ated in a firing step get a timestamp computed from the current firing time (the global clock) and
the time duration of the transition.

The paper is structured as follows: After considering existing approaches that extend Petri
nets by time in Section 2, we present our running example, a real-time communication network,
in Section 3. In Section 4, we formalize our algebraic notion of timed P/T nets. Categories of
timed P/T net classes and their functorial relations are presented in Section 5, while structuring
techniques and transformation are introduced in Section 6. We conclude with an outlook to
future work in Section 7.

2 Extending Petri Nets by Time Modelling

There are many approaches for extending Petri nets by time. Our approach is based on the
approach of timed Coloured Petri nets (timed CPNs) [JK09], where the well-known high-level
Petri net variant CPNs [Jen92] has been extended by assigning a duration to a transition and
so-called timestamps to each token, indicating the earliest point in time when a token can be
used by a transition. A transition that fires adds the duration time of the transition to each created
token’s timestamp, so that in general, these tokens cannot be used immediately, but only after the
time the transition takes has passed. The timed CPN firing behaviour requires that a transition
fires at the earliest point in time at which it is activated. During simulation, the global clock
is monotonically increasing, as there is no possibility of a transition being activated at a point
in time that has already passed. In our approach, we do not have this limitation of the firing
behaviour, so in principle, simulations become possible that explore the past (for more details
we refer to [LGM12]). The tool CPN TOOLS provides means to design and analyse timed CPNs,
including state-space analysis and model checking techniques [JKW07].

In Time Petri nets (TPNs) [BD91], two labels are assigned to each transition, denoting the
time that has to pass before the transition can fire after being enabled (earliest firing time), and
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the maximal time it may be enabled until it has to fire (latest firing time). This firing behaviour
is significantly different from that of timed CPNs, allowing for more control over the model
behaviour. TPNs can be analysed using a state-space approach [GLMR05].

Deterministic timed Petri nets [BH07] pursue a rather unique approach for firing behaviour
by introducing a delay between removal and creation of tokens. In addition, each place has a
designated delay, denoting the time before a created token can be consumed from that place.

In time environment-relationship (TER) nets [GMMP91], time is considered as token attribute
(chronos) with special behaviour. Token timestamps are set by specific action relations associated
to transitions, which also require time monotonicity of firing sequences. This approach has
inspired the definition of graph transformation systems with time [GVH04], since considering
time as attribute one may re-use the formal framework of attributed graph transformation.

None of the approaches listed above are based on the general algebraic framework that allows
for the definition of structuring and reconfiguration techniques for P/T nets with time.

3 Running Example: A Communication Network Infrastructure

We consider a communication network of four routers connected in a loop of forwarding tran-
sitions (see Figure 1a). Each client is connected to a router via send and receive transitions
that model sending and receiving of packets from/to the router. A router allows only a certain
number of open connections at a time. This is modelled by the number of tokens on the cor-
responding ready places which represent the maximum number of concurrent connections the
router is able to maintain. Hence, a router is ready to forward a packet to the next router only if
there are enough tokens on the corresponding ready places. Obviously, in the untimed P/T net in
Figure 1a, the ready tokens are consumed and immediately produced again whenever a forward
action occurs. Due to the instant production of the tokens upon firing of a forward transition, the
number of tokens on the ready places has no effect in an untimed P/T net, even if many forward
transactions occur at the same time. Therefore, we need a way to express the duration such a
transaction takes, which is possible using timed P/T nets. The assigned firing durations restrict
the firing sequences possible in the simulation of the net, which yields a behaviour that is more
faithful to that of a real-time communication network.

In the timed P/T net variant, shown in Figure 1b, each token of a marking carries a timestamp
(by which it is represented in the illustration), denoting the earliest point in time when this token
can be consumed by a transition. A global clock is employed in order to be able to specify
“when” transitions are activated and when they fire, with timestamps and clock values being
real numbers. The arc inscriptions represent the time duration of the action associated with the
connected transition. Note that the arc inscriptions are sums of time values in general, so an
output arc creating two tokens would be a sum (⊕) of two time values.1 Analogously to untimed
P/T nets, an arc with no inscription means that there is a single token created or consumed with
no time delay, i. e. an arc without inscription is equivalent to an arc with a single zero. When
firing a transition at a global clock value (not shown in Figure 1b), the newly created tokens get
assigned a timestamp that is the sum of that clock value and the respective time duration specified
by the output arc. For example, transition send2 creates a token with a timestamp of 300 time

1 Note that in our example, we have only sums of size one as arc inscriptions.
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Figure 1: Network as P/T net and timed P/T net

units later than the global clock value at the time of firing.
As further example, consider the firing of transition fwd1 at clock value 85, the earliest clock

value at which the token on router1 can be used according to its timestamp. The firing removes
that token and creates a token on router2 with a timestamp of 235 (= 85 + 150). Also, the tokens
with timestamp zero on ready1 and ready2 are removed and replaced by tokens with timestamp
285. Therefore, transition fwd2 is enabled not earlier than at clock value 285, since this is the
timestamp of the token on ready2, regardless of the timestamp of 235 of the token on router2. In
contrast, in the untimed P/T net in Figure 1a, transition fwd2 could fire immediately, as the token
on ready2 simply is recreated when fwd1 is fired.2

4 Algebraic Formalisation of Timed P/T Nets

We define timed P/T nets and systems based on algebraic P/T nets, adding time values to the
markings (including pre and post domains). Timed P/T states are an extension of timed P/T
systems, incorporating a global clock value.

In the following X⊕ denotes the free commutative monoid over the set X . Note that S ∈ X⊕ is
a formal sum S = ∑

n
i=1 λixi with λi ∈N and xi ∈ X meaning that we have λi copies of xi in S, and

for S′ = ∑
n
i=1 λ ′i xi we have S⊕S′ = ∑

n
i=1(λi +λ ′i )xi. Moreover, a sum S0 ∈ X⊕ is a subsum of S,

written S0 ≤ S if there exists a sum S′ ∈ X⊕ such that S = S0⊕S′.

2 For further examples where pre-arcs are inscribed by time values, see [LGM12].
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Definition 1 (Timed P/T Net Classes and Timed Marking)

1. A timed P/T net or TPT net TN = (P,T, pre, post) consists of a set P of places, a set T of
transitions and functions pre, post : T → (P×R)⊕.

2. A timed P/T system or TPT system is a tuple (T N,M) with timed P/T net TN and a marking
M of TN which is an element M ∈ (P×R)⊕.

3. A timed state or TPT state is a 3-tuple (T N,M,τ) with timed P/T net TN, a marking M of
TN and a global clock value τ ∈ R.

Remark 1 (Relation to Untimed P/T Nets) Note that the definition of timed P/T nets is quite
similar to the definition of untimed algebraic nets [ER97]. The only difference is that in the
timed case the pre and post arcs are equipped with time-values. Accordingly, in a timed marking
each token consists of a time-value, called timestamp.

Example 1 (Timed P/T System) Figure 1b shows a timed P/T net TN = (P,T, pre, post) with
places P and transitions T as described in Section 3. The pre- and post-domains of fwd1, for ex-
ample, are: pre(fwd1) = (ready1,0)⊕(ready2,0)⊕(router1,0), post(fwd1) = (ready1,200)⊕
(ready2,200)⊕ (router2,150).

The depicted marking is M = (router1,85)⊕ (slowclnt,40)⊕ (slowclnt,130)⊕ (ready1,0)⊕
2 · (ready2,0)⊕3 · (ready3,0)⊕ (ready4,0).

Next, we define time delays as relations between markings, to decide whether a transition can
be fired with respect to the timestamps of the tokens involved.

Definition 2 (Time-Delay) Let M1,M2 ∈ (P×R)⊕ be two timed markings of TPT net TN =
(P,T, pre, post). We define the following two types of delays:

• M1 is a location-strict delay of M2, written M1
←
= M2, if π

⊕
P (M1) = π

⊕
P (M2) and for all

p ∈ P: M1[p] ≥M2[p], with M[p] being the list of timestamps of all tokens on place p in
ascending sorted order, and π

⊕
P (M) is the projection that “forgets” the time-values, called

location of M. We call the timestamps in M1 later than those in M2.

• M1 is a delay of M2, written M1
←
≤M2, if there exists a subsum M′2 ≤M2, so that M1

←
= M′2.3

Example 2 (Time-Delay) Consider marking M2 = (slowclnt,40)⊕ (slowclnt,130) of the TPT
net shown in Figure 1b. Then, M1 = (slowclnt,50)⊕ (slowclnt,150) is a location-strict delay
of M2, i. e. M1

←
= M2. For the marking M3 = (slowclnt,40)⊕ (slowclnt,130)⊕ (router1,85) we

have that M1 is a delay of M3, i. e. M1
←
≤M3, since there is M2 ≤M3 with M1

←
= M2.

Now we can define the firing behaviour of timed P/T nets. A transition is enabled under a
marking S ≤M of a timed state (where S is called selection), if the global clock is late enough
in order to satisfy the timestamps of the tokens in the selection. The follower marking is then

3 The symbols chosen for delays are constructed as follows: The bottom comparator indicates which marking is
larger (or that they are of equal location), while the arrow above points to the marking with the later timestamps.
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calculated like for algebraic P/T nets, but now includes the calculation of the newly created
tokens’ timestamps by adding the time duration of the transition to the current global clock
value.

Definition 3 (Firing Behaviour) Given a timed P/T state (T N,M,τ) with timed P/T net T N =
(P,T, pre, post), marking M of TN, global clock value τ , and a selection S ≤M. Then t ∈ T is
enabled under (S,τ) if pre(t)+τ is a location-strict delay of S, i. e. pre(t)+τ ←= S, where pre(t)+τ

means the addition of τ to every timestamp in the marking pre(t).

For t ∈ T enabled under (S,τ), there is a firing step (T N,M,τ)
(t,S)−−→ (T N,M′,τ), where the

follower marking M′ is given by M′ = M	S⊕ post(t)+τ .

Like in algebraic P/T nets, we can link successive firing steps in a firing sequence. Since a
firing step does not advance the global clock, so-called timesteps of the form (T N,M,τ)

∆τ−−→
(T N,M,τ + ∆τ) are inserted between two firing steps where the global clock is changed by
∆τ ∈ R. The differentiation between timesteps and firing steps allows us to model actions that
overlap in time.

Definition 4 (Firing Sequence) Given a timed P/T state (T N,M0,τ0) with timed P/T net T N =
(P,T, pre, post), marking M0 of TN, global clock value τ0, and ti ∈ T enabled under (Si,τi) for
i ∈ {0, . . . ,n−1} and Si ≤Mi. Then,

Seq = (T N,M0,τ0)
(t0,S0)−−−→ (T N,M1,τ0)

∆τ0−−→ (T N,M1,τ1)

(t1,S1)−−−→ . . .(T N,Mn−1,τn−2)
∆τn−2−−−→ (T N,Mn−1,τn−1)

(tn−1,Sn−1)−−−−−−→ (T N,Mn,τn−1)

is a firing sequence in net T N, if for all i ∈ {0, . . . ,n−1} : Mi
(ti,Si,τi)−−−−→Mi+1 is a firing step.

The following is a shorter variant of the same firing sequence, omitting the timesteps, with the
clock value at the time of firing included in the firing step notation:

Seq = M0
(t0,S0,τ0)−−−−−→M1

(t1,S1,τ1)−−−−−→ . . .
(tn−1,Sn−1,τn−1)−−−−−−−−−→Mn.

Note that in general there is no constraint on the global clock values. We can, however, enforce
different restrictions on firing sequences in order to achieve a certain behaviour:

• Seq is called time-monotonic, if for 0≤ i < n, there is τi ≤ τi+1.

• Seq employs eager firing, if for all firing steps Mi
(ti,Si,τi)−−−−→Mi+1 in Seq, there is no firing

step Mi
(t ′i ,S

′
i,τ
′
i )−−−−−→M′i+1 with τ ′i < τi.4

Example 3 (Firing Behaviour) In the timed P/T net depicted in Figure 1b, fwd1 is enabled at
τ = 85 under the selection S = (ready1,0)⊕ (ready2,0)⊕ (router1,85), since pre(t)+τ ←= S, i. e.
pre(fwd1)+85 = (ready1,0+85)⊕ (ready2,0+85)⊕ (router1,0+85) ←= S.

Therefore, fwd1 can fire at τ = 85, leading to the follower marking

M′ = M	S⊕ post(t)+τ = (ready1,285)⊕ (ready2,0)⊕ (ready2,285)

⊕3 · (ready3,0)⊕ (ready4,0)⊕ (slowclnt,40)⊕ (slowclnt,130)⊕ (router2,235).

4 To simulate timed CPNs, time-monotonic firing sequences with eager firing must be used.
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5 Categories for Timed P/T Net Classes and Functorial Relations

In this section, we define the category of timed P/T nets. Timed P/T morphisms are defined in a
way that they preserve firing behaviour, and thus in general the codomain net of a morphism is
more liberal than the domain net. In the following, for a function fP : P1→ P2 between sets of
places P1 and P2, we use f⊕P×R to denote the extension ( fP× idR)⊕ : (P1×R)⊕→ (P2×R)⊕ of
fP to markings over P1 and P2.

Definition 5 (Category TPTNets of Timed P/T Nets) Given timed P/T-nets T Ni = (Pi,Ti, prei,
posti), for i ∈ {1,2}, a timed P/T-net-morphism (or short TPT morphism) f : T N1 → T N2 is
defined by f = ( fP, fT ), with functions fP : P1→ P2 and fT : T1→ T2, such that for all t ∈ T1:

pre2 ◦ fT (t)
←
= f⊕P×R ◦ pre1(t) and post2 ◦ fT (t)

→
= f⊕P×R ◦ post1(t).

A timed P/T-morphism f is called time-strict if for all t ∈ T we have pre2◦ fT (t) = f⊕P×R◦ pre1(t)
and post2 ◦ fT (t) = f⊕P×R ◦ post1(t).

The category TPTNets of timed P/T nets consists of timed P/T nets as objects and timed P/T
morphisms as morphisms. The composition and identities are defined componentwise for places
and transitions in Sets.

Theorem 1 (Timed P/T Morphisms preserve Firing Behaviour) Given timed nets T Ni = (Pi,Ti,
prei, posti) with i = 1,2, with marking M of T N1, selection S ≤ M and a timed P/T morphism

f = ( fP, fT ), f : T N1 → T N2. Let t ∈ T1 be enabled under S and M
(t,S,τ)−−−→ M′ a firing step in

T N1 with M′ = M	S⊕ post1(t)+τ .

Then, there is a firing step f⊕P×R(M)
( fT (t), f⊕P×R(S),τ)−−−−−−−−−−→M′′ in T N2 with f⊕P×R(M

′)
←
= M′′.

Proof Idea. Given a marking M and selection S ≤ M such that S is enabled under t ∈ T1, then
there is pre(t)+τ ←= S. We also have a selection f⊕P×R(S) ≤ f⊕P×R(M), and since the order ←=
is compatible with operations ⊕ and 	 as well as with the marking-extension f⊕P×R of fP, we
have pre2( fT (t))+τ ←= f⊕P×R(pre1(t))+τ = f⊕P×R(pre1(t)+τ)

←
= f⊕P×R(S) which means that fT (t)

is enabled under ( f⊕P×R(S),τ). Moreover, we obtain for the follower markings that f⊕P×R(M
′) =

f⊕P×R(M 	 S⊕ post+τ

1 (t)) = f⊕P×R(M)	 f⊕P×R(S)⊕ f⊕P×R(post+τ

1 (t)) ←= f⊕P×R(M)	 f⊕P×R(S)⊕
post+τ

2 ( fT (t)) = M′′. A detailed proof can be found in [LGM12].

Example 4 (Timed P/T morphism and Preservation of Firing Steps) Figure 2 shows timed P/T
nets T N1, T N2 with morphism f : T N1→ T N2, which maps places and transitions as indicated by
their names. The morphism condition is fulfilled for all transitions, since in T N2, the time values
in the postdomains of the transitions are lower than their counterparts in T N1, i. e. post2 ◦ fT (t)

→
=

f⊕P×R ◦ post1(t), while the values in the predomains are the same (zero).
Consider markings M1 = (router3,100) of T N1 and M2 = f⊕P×R(M1) = (router3,100) of T N2

and firing steps in both nets at τ = 100 with selections S1,2 =(router3,100) and rcv3, respectively
rcv34 as the transitions to fire. The resulting markings are M′1 = (client3,270) for T N1 and
M′2 = (client34,150) for T N2, and we have f⊕P×R(M

′
1) = (router3,270) ←= (router3,150) = M′2.

We define a functor TSkel that maps timed P/T nets onto algebraic P/T nets by forgetting the
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Figure 2: Timed P/T nets with timed morphism f

time values on the pre- and post-arcs. This allows us to analyse the underlying algebraic P/T net
structure using existing techniques for P/T nets. An example is shown in Figure 1, where the P/T
net in Figure 1a is the result of the application of TSkel to the timed P/T net shown in Figure 1b.

Definition 6 (Functor TSkel) The functor TSkel is defined as TSkel : TPTNets→ PTNets with
TSkel(P,T, pre, post) = (P,T, pre∗, post∗), where pre∗(t) = π

⊕
P (pre(t)), post∗(t) = π

⊕
P (post(t))

for all t ∈ T for the objects of TPTNets. For the morphisms, we define TSkel( fP, fT ) = ( fP, fT ).

Remark 2 (Timed P/T Systems and States, Preservation of Firing Behaviour)

1. Analogously to timed P/T net morphisms, timed P/T system morphisms and timed P/T
state morphisms are defined as timed P/T morphisms between the corresponding timed
P/T nets with additional requirements, taking into account the marking and, in the case
of states, also the global clock value. The categories of timed P/T systems and states are
denoted as TPTSys and TPTState, respectively. For more details we refer to [LGM12].

2. In [LGM12] we also define a functor TSkelSys that maps timed P/T systems to P/T systems,
forgetting the timestamps in the corresponding markings.

3. There are functors Abs : TPTSys→ TPTStates with Abs(T N,M) = (T N,M,0), and Rel :
TPTStates→ TPTSys with Rel(T N,M,τ) = (T N,M−τ), establishing an equivalence of
the categories TPTSys and TPTStates as shown in [LGM12]. This means that every
timed state can be expressed as a timed system by subtracting the global clock value from
all tokens’ timestamps, and Abs◦Rel can be used to obtain a “normal form” of timed states.

4. The functors TSkel and TSkelSys preserve firing behaviour, as shown in [LGM12].

6 Structuring and Transformation of Timed P/T Nets

In this section we define gluing and restriction constructions as structuring techniques for timed
P/T nets. We also present an example transformation rule.

Intuitively, the gluing of timed P/T nets T N1 and T N2 over an interface T N0 is a timed P/T net
that contains copies of T N1 and T N2 which are glued together at places or transitions specified
by the interface.

Definition 7 (Gluing of Timed P/T Nets) Given timed P/T nets T Ni = (Pi,Ti, prei, posti) with
i = 0 . . .2, and timed P/T morphism f : T N0→ T N1 and g : T N0→ T N2 where f is time-strict
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(see Definition 5) and injective. Then, the gluing T N3 = (P3,T3, pre3, post3) of T N1 and T N2
along T N0, written T N3 = T N1 +T N0 T N2, with morphisms f ′ : T N2→ T N3 and g′ : T N1→ T N3
is constructed as follows:

• P3, T3 are constructed as pushouts (2) and (3) in Sets (see Figure 3b), and

• pre3(t) =

{
f ′⊕P×R(pre2(t∗)) if ∃t∗ ∈ T2, f ′T (t

∗) = t
g′⊕P×R(pre1(t ′)) if @t∗ ∈ T2, f ′T (t

∗) = t ∧∃t ′ ∈ T1 : g′T (t
′) = t,

and post3(t) is defined analogously.

T N0
f //

g
��

T N1

g′

��
T N2

f ′
// T N3

(1)

(a) Gluing or restriction diagram

P0
fP //

gP

��

P1

g′P
��

P2
f ′P
// P3

(2)

T0
fT //

gT

��

T1

g′T
��

T2
f ′T
// T3

(3)

(b) Pushouts of places and transitions

Figure 3: Gluing and restriction diagrams of timed P/T nets

Remark 3 (Pushout of Timed P/T Nets) In [LGM12] it is shown that the gluing construction
defined above is also a pushout construction. This means that given the gluing (1) in Figure 3a of
timed P/T nets, then (1) commutes and satisfies the following universal property: For all timed
P/T nets T N4 and timed P/T morphisms h : T N1→ T N4, k : T N2→ T N4 with h◦ f = k ◦g there
exists a unique timed P/T morphism m : T N3→ T N4 such that m◦ f ′ = k and m◦g′ = h.

f
p1TN0 TN1

TN3TN2
t1 p1,2

p1

t4 t1

t4

g

f ‘

g‘

t1

t3

p2 p2p4

p3 t1 p1,2

t3

p3

p4

10 10

5 5
20

20

Figure 4: Gluing and restriction of timed P/T nets

Definition 8 (Restriction of Timed P/T Nets) Given a timed P/T morphism g′ : T N1→ T N3 and
a subnet T N2 of T N3 with inclusion f ′ : T N2→ T N3. The restriction g : T N0→ T N2 of g′ along
f ′ is given by g = g′|T N0 where T N0 is constructed as a subnet of T N1 with P0 = g′−1

P (P2) ⊆ P1
and T0 = g′−1

T (T2)⊆ T1 with inclusion f : T N0→ T N1.
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Remark 4 (Pullback of Timed P/T Nets) In [LGM12] a slightly more general restriction con-
struction is defined, where the inclusion f ′ is replaced by a time-strict injective morphism, lead-
ing also to a time-strict injective morphism f . Moreover, it is shown that the restriction construc-
tion is also a pullback construction. This means that given a restriction (1) in Figure 3a of timed
P/T nets, then (1) commutes and satisfies the following universal property: For all timed P/T nets
T N4 and timed P/T morphisms h : T N4→ T N1, k : T N4→ T N2 with g′ ◦h = f ′ ◦ k there exists a
unique timed P/T morphism m : T N4→ T N0 with f ◦m = h and g◦m = k.

Example 5 (Gluing and Restriction of Timed P/T Nets) Figure 4 shows the gluing of timed
P/T nets T N1,T N2 over the interface T N0. The morphism f is an inclusion, whereas g maps the
places p1 and p2 non-injectively to place p1,2, and f2 is not time-strict because arc-inscription 10
between t1 and p1 is mapped to value 5. The gluing object T N3 contains all elements of T N1 and
T N2 which are glued together at transition t1 and places p1 and p2 respectively p1,2. Vice versa,
net T N0 and morphism g can be considered as restriction of T N1 and g′ along inclusion f ′. Net
T N0 contains only those parts of T N1 that have a corresponding preimage in T N2.

Based on these definitions of structuring techniques for timed P/T nets, we can show that our
category TPTNets fulfills the properties of M -adhesive systems [EGH10], a general categorical
framework for structuring and transforming high-level algebraic structures that generalises the
concept of adhesive categories [LS04]. A category C together with a class M of monomor-
phisms closed under composition and isomorphisms is called an M -adhesive category if C has
pushouts and pullbacks along M -morphisms, M -morphisms are closed under pushouts and
pullbacks, and pushouts along M -morphisms satisfy the so-called (vertical) van Kampen prop-
erty (for more details see [EGH10]).

Theorem 2 (Timed P/T Nets Are M -Adhesive) The category (TPTNets,Mstrict) is an M -
adhesive category, where Mstrict = { f = ( fP, fT ) | f is time-strict and fP, fT are injective }.

Proof Idea. According to Remarks 3 and 4, the category TPTNets has pushouts and pullbacks
along time-strict injective morphisms which can be constructed as gluings and restrictions, re-
spectively. The satisfaction of the vertical van Kampen property is shown explicitly in [LGM12].

The fact that our approach of timed P/T nets fits into the abstract categorical framework of
M -adhesive categories means that it is a suitable category for rule-based transformation in the
sense of algebraic graph transformation in the double pushout (DPO) approach [EEPT06]. From
the results in [BEGG10] we know that there exist so-called initial pushouts for all finite timed
P/T nets, enabling us to define a sufficient and necessary condition for the existence of DPO
transformations. Moreover, since all results for weak adhesive HLR categories in [EEPT06] are
also valid for the slightly more general framework of M -adhesive categories, we have unique
results of direct transformations of timed P/T nets, as well as various analysis techniques for
transformations of timed P/T nets, like the concurrency, local Church-Rosser, local confluence,
embedding and extension theorems. In the following, we present an example of a timed P/T net
transformation rule which we will apply to the timed P/T net in Figure 1.
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Example 6 (Timed P/T Net Transformation Rule) The transformation rule changeRouter =
(L← K → R) in Figure 5 moves a client place to another router. The time values are given as
parameters in order to allow arbitrary time values to be used. Note that the rule morphisms l and
r are Mstrict-morphisms.

router1

L

send rcv

router2

out0

in0

router1

K

router2

l

router2

R

send rcv

out1

in1

r

router1

client client client

changeRouter[in0,out0,in1,out1]

Figure 5: Transformation Rule changeRouter

In the DPO diagram in Figure 6, rule changeRouter is applied with router1 mapped onto
router1, router2 mapped onto router4 and the place client mapped onto fastclient by the injective
rule match. This results in a new timed P/T net Network’ where the client has been moved from
router1 to router4. In this case, we decided to keep the time values (i. e. in0 = in1 = 20, out0 =
out1 = 20).

fastclient

send1 rcv1router1

router4

fwd4

20

20

100

...

Network fastclient

router1

router4

fwd4

100

...

Network1

fastclient

send1rcv1

router1

router4

fwd4

100

...

Network'

f1 g1

m1 k1 n1

20

20

changeRouter[20,20,20,20]
router1

L

send rcv

router2

20

20

router1

K

router2

l

router2

R

send rcv

20

20

r

router1

client client client

Figure 6: Application of rule changeRouter (injective matching)

Figure 7 shows the rule to be applied with both router1 and router2 mapped onto router1
(non-injectively) and client mapped onto fastclient. Hence, in the timed P/T net Network” the
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client is not moved, however we chose out1 = in1 = 5, resulting in the client being “upgraded”
in speed, reducing the time delays of the transitions even further.

fastclient

send1 rcv1router1

router4

fwd4

20

20

100

...

Network fastclient

router1

router4

fwd4

100

...

Network2

f2 g2

m2 k2 n2

fastclient

send1 rcv1router1

router4

fwd4

5

5

100

...

Network''

changeRouter[20,20,5,5]
router1

L

send rcv

router2

20

20

router1

K

router2

l

router2

R

send rcv

5

5

r

router1

client client client

Figure 7: Application of rule changeRouter (non-injective matching)

7 Conclusion and Outlook

In this paper we presented a new algebraic approach of timed P/T nets, where transitions have
time durations and tokens consist of timestamps. This allows for the modelling of systems with
concurrent and time-dependent behaviour as we have shown for our running example presented
in Section 3. Due to the algebraic formalisation we are able to define morphisms between timed
P/T nets which preserve the firing behaviour as shown in our first main result in Section 5.
This enables us to define structuring techniques like the gluing and restriction of timed P/T nets
presented in Section 6, leading to an M -adhesive category, which means that our approach is
also suitable for rule-based transformation (also called reconfiguration) of timed P/T nets in the
sense of graph transformation [EEPT06].

In future work we will study how to combine our approach of timed nets with the approach
of Algebraic High-Level (AHL) nets to obtain a Petri net class of timed AHL nets in order to
enable the modelling of time-dependencies and data in an integrated model. Tool support for
timed P/T nets and AHL nets is planned as extension of the environment for reconfigurable AHL
nets that is currently being implemented in our group [EFS11]. Another topic for future work is
the definition of processes of timed P/T nets similar to processes of untimed P/T nets and AHL
nets [Ehr04], in order to allow for analysis and optimization of processes regarding not only the
concurrent firing semantics but also the time.
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[GVH04] S. Gyapay, D. Varró, R. Heckel. Graph Transformation with Time. Fundamenta
Informaticae 58:1–22, 2004.

[Jen92] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1: Basic Concepts. Springer, 1992.

[JK09] K. Jensen, L. M. Kristensen. Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, 2009.

[JKW07] K. Jensen, L. M. Kristensen, L. Wells. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. Int. Journal on Software Tools
for Technology Transfer, 2007.

[LGM12] P. Lingnau, K. Gabriel, T. Modica. An Algebraic Approach to Timed Petri Nets
with Applications to Communication Networks – Extended Version. Technical re-
port 2012/02, Technische Universität Berlin, 2012.
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