
Electronic Communications of the EASST
Volume 5 (2006)

Proceedings of the Sixth OCL Workshop
OCL for (Meta-)Models

in Multiple Application Domains
(OCLApps 2006)

Use of OCL in a Model Assessment Framework:
An experience report

Joanna Chimiak–Opoka, Chris Lenz

17 pages

Guest Editors: Dan Chiorean, Birgit Demuth, Martin Gogolla, Jos Warmer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Use of OCL in a Model Assessment Framework:
An experience report

Joanna Chimiak–Opoka, Chris Lenz

Quality Engineering Research Group
Institute of Computer Science, University of Innsbruck

Technikerstrasse 21a, A–6020 Innsbruck
joanna.opoka@uibk.ac.at

Abstract: In a model assessment framework different quality aspects can be exami-
ned. In our approach we consider consistency and perceived semantic quality. The
former can be supported by constraints and the later by queries. Consistency can be
checked automatically, while for the semantic quality the human judgement is ne-
cessary. For constraint and query definitions the utilisation of a query language was
necessary. We present a case study that evaluates the expressiveness of the Object
Constraint Language (OCL) in the context of our approach. We focuson typical
queries required by our methodology and we showed how they can be formulated
in OCL. To take full advantage of the language’s expressiveness, weutilise new
features of OCL 2.0. Based on our examination we decided to use OCL in ourana-
lysis tool and we designed an architecture based on Eclipse Modeling Framework
Technology.

Keywords: model assessment, semantical model quality, model integration, model
consistency, information retrieval

1 Introduction

The necessity of model maintenance is growing together with the increasing utilisation of models
in real applications. The importance ofintegration grows with the size and the number of
designed models. The aspect of integration becomes crucial if the modelling environment is
not homogeneous, i.e., it has to be dealt with diverse modelling tools and evenwith diverse
notations. Such a situation is common if various aspects of the same system haveto be described.
For example in the domain of enterprise architecture modelling, for the description of business
processes and technical infrastructure different tools and notations can be used.

If additionally the models are large scale models with hundreds or thousands of elements
they might very likely contain inconsistencies and gaps. Quality assurance of these models can
not be done by pure manual inspection or review but requires tool assistance to supportmodel
assessment.

We have developed aframework that is dedicated to both the integration and the assessment
of models. To support the former we designed a modular architecture with a generic repository
as a central point, with a common meta model and consistency checks. For the latter we defined
a mechanism for information retrieval, namely queries of different types. In our entire approach
we focus on the static analysis of models.

1 / 17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report

Modelling
Environment

←→
Model Data
Repository

←→
Analysis

Tool

Figure 1: Base components of our framework

The language for expressingconstraints and queriesover models is an important part of the
model assessment process. Depending on the language expressiveness it is possible to cover a
wider or a narrower range of constraints and to retrieve more or less information from models.

One of the components of our heterogeneous tool environment for modelassessment [CGIT06]
is a generic analysis tool supporting queries over the model repository. Therefore, we started our
case study with the Object Constraint Language (OCL, [OMG05, WK99]). In our study we want
to examine all types of queries required by our methodology [BC05]. The OCL 2.0 provides
a new definition and a querying mechanism which extend the expressiveness of this language.
As described in [AB01, MC99], previous versions of OCL (1.x) were not expressive enough to
define all of the operations required by relational algebra (RA) and were not adequate query lan-
guages (QLs). The main deficiency of previous versions was the absence of the tuples concept. In
the current version of OCL, tuples are already supported. Thus all primitive operators [Cod72]
needed to obtain full expressiveness of a QL, namelyUnion, Difference, Product, Selectand
Project, can be expressed. This fact encouraged us to use OCL within our framework.

The remainder of the paper is structured as follows. In the next section wegive a brief intro-
duction to our methodology. Then, we present exemplary models (section3.1) on which the case
study (section3.2) relies. In section4 we present a design of our analysis module and finally, in
the last section we draw a conclusion.

2 Model Assessment Framework

In this section, the methodology developed within theMedFlow project [BC05, CGIT06] is
briefly described. A broader description of the methodology developed for systematic model
assessment can be found in [BC05]. The architecture of the first prototype and the technologies
and standards used for its implementation were described in [CGIT06]. The design of the second
prototype based on the Eclipse Modeling Framework with a generic analysis tool is described in
section4. We decided to change utilised technologies to be up to date with the current projects
and to take advantages from integration with the open source community. In thelater phase we
plan to release our tool on a public licence.

In this section, only the main ideas related to OCL application within our framework, which
are necessary to understand the examples presented in section3.2, are described.

2.1 Structure of the framework

As depicted in Figure1 at the topmost level of our architecture three components can be distin-
guished: a modelling environment, a model data repository, and an analysis tool.

Proc. OCLApps 2006 2 / 17

ECEASST

The main assumption in our framework is that all designed models are based ona common
meta model. Based on the meta model, the constraints for modelling tools are provided and the
structure of the common central repository of model elements is generated.User modelscan be
imported into the repository from modelling tools via adapters (c.f. Figure2). The usage of a
common meta model is crucial for model integration in a heterogeneous modelling environment
with diverse notations and modelling tools.

The analysis tool allows the definition of constraints and queries, and as described in the sub-
sequent section, we plan to integrate metrics and regression tests into the analysis module. The
metrics are thought to be a mechanism to evaluate models in a quantitative way. The regression
tests provide a mechanism for continues quality checks. All expressions are also saved in the
repository thus they can be shared among different clients. The analysistool includes also an in-
terpreter for constraints and queries, an interpreter for test suites (for regression tests) is planned.
The interpreter can work on the user models saved in the repository. There are two manners of
using the interpreter, it can be used as a stand–alone application as well aspart of the modelling
tools (c.f. Figure2).

Figure 2: The architecture design of the framework

2.2 The analysis module and OCL expressions

An analysis module for our methodology should be generic enough to enableboth the definition
and interpretation of arbitrary queries. In this section we present the purpose and application
of constraints and queries expressed in OCL. We give a detailed classification of expressions in
context of our framework and at the end we describe how the expression can be initialised and
evaluated. In section3.2, we examine the expressiveness of OCL and evaluate the possibility of
its usage in the analysis module.

3 / 17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report

2.2.1 Constraints and queries

Within our framework we consider two types of OCL expressions: constraints and queries, both
defined at the meta model level and evaluated over user models.

Constraints extend the specification of models. The aim of using constraints is to support
model consistencyin an early modelling phase. They can be checked automatically each time
model elements are saved to the repository or on demand. The expressionsused for ensuring
syntactical correctness are calledchecks(compare section3.2).

Queries provide aggregated information on sets of model elements. The analysis by means
of queries supportssemantic qualityof models. As stated in [KS00], semantic quality belongs
to the social layer and needs to be judged by humans. Our framework supports the user in the
judgement process by providing mechanisms for information retrieval. Moreover, we can only
evaluate the perceived semantic quality comparing user knowledge of the considered domain
with his interpretation of models [KS00] or in our case the results obtained by query evaluations.
Both aspects of semantic quality examination —validity andcompleteness— can be supported
by queries. In the first case we check if all model elements are relevant tothe domain. This can
be achieved by listing all instances of a given meta model element and human inspection of their
relevance. In the second case we look for elements from the domain in the model data repository.

2.2.2 Detailed classification

We classify the constraints and queries in four categories (see examples insection3.2). The
dependencies between categories are depicted in Figure3.

Primitive query is the simplest query, which takes as arguments OCL Primitive Types or MOF
Classes.

Check is a special kind of primitive query which returns a Boolean value. It is considered as a
constraint for a model or, in particular case, as an invariant for a classifier.

Compound query is a query which aggregates results of primitive queries. The arguments of
the query are collections. For a given collection the Cartesian Product is built and for each
of its element a given primitive query is evaluated. The result is ofSet(TupleType) type.

Complementary query is a query evaluated over the result of a given compound query. All
other queries are evaluated over a set of model elements. The query canuse checks and
primitive queries for result calculation.

2.2.3 Initiation and evaluation scopes

All types of queries and checks can be evaluated on demand in differentscopes selected by a user.
We distinguish two types of scopes, namely an evaluation and an initiation scope. The evaluation
scope (Figure4.a) determines, over what content the query will be interpreted, and the initiation

Proc. OCLApps 2006 4 / 17

ECEASST

Query

Primitive <

aggregates results from

subtype

>

Compound

subtype

∧

<

evaluated over
Complementary

subtype

<

Check

subtype

∧

Figure 3: The queries hierarchy

evaluation scope initiation scope

repository
<

model
∨

diagram
>

single
<

global

>

a) b)

Figure 4: The classification of scopes

scope (Figure4.b), how the query is called. Furthermore in both scopes we distinguish modes.
In the evaluation scope we distinguish following three modes.

Repository mode — the complete set of model elements is considered, i.e., a given expression
is evaluated over the content of the repository.

Model mode — only a single user model is considered, e.g. in a running modelling tool on a
local machine or model of a predefined type (filtered from the repository). This mode can
be used if the queries do not need to be evaluated in the context of the complete set of
elements (e.g. checks).

Diagram mode — only one diagram is considered. The usage of this mode is similar to the
model mode.

The repository mode is typical for queries in the analysis phase. The advantage of the model
and the diagram mode is the possibility of making fast evaluation and ongoing corrections during
the modelling phase. In the initiation scope consider two different modes, bothcan be evaluated
in any evaluation scope.

Single (element) mode— only queries related to a given element can be activated. This mode
enables fine granular analysis of models.

Global mode — all queries can be activated. This mode enables global analysis of models.

3 Case study

In this section the case study from theMedFlowproject is presented. At first (section3.1) the
excerpt of the domain in question, in form of meta and user models, is presented. Then exam-

5 / 17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report

ples of queries are presented (section3.2) and their analysis within our framework is conducted
(section3.3).

3.1 Modelling of clinical processes

In the subsequent sections, parts of a meta model designed within theMedFlow project and
exemplary user models are presented. The meta model is used as a base forcheck and query
definitions, the user models as a base for check and query evaluations (section3.2). For our
study we used a tool dedicated for OCL compilation, namely the OCL Environment (OCLE,
[LCI05]). In this tool, OCL expressions can be compiled and evaluated for single instances or
for an entire project. The models and all queries were implemented in the OCLE version 2.0.
We stress the fact that the used OCL syntax is the one implemented in OCLE. Currently it is also
possible to evaluate all the queries presented below within our analysis module.

3.1.1 Meta model

The aim of theMedFlowproject was the optimisation of clinical processes. Within the project,
we developed a meta model of the clinical processes domain. Figure5 shows a fragment of the
meta model (the complete meta model can be found in [BC05]). For technical reasons our meta
model was designed in OCLE as a model (at the M1 level) and user models as object models (at
the M0 level). In our framework we are working at M2 and M1, respectively.

LogicalTool

~isMedium : Boolean
~name : String

Information

+persistence : PeristenceLevel
−name : String

PaperBasedITBasedSystem

+providedByTool

0..*

+information

0..*
+uses

0..*

+usedBy

0..*

Figure 5: Part of theMedFlow’s meta model

In the meta model excerpt we can distinguish two main classes:Information andLogicalTool.
LogicalTool is an abstract class with two subclasses:ITBasedSystem andPaperBasedSystem. Information

can be saved inLogicalTool, expressed by an associationprovidedByTool. LogicalTool can use an-
otherLogicalTool, what is expressed by the associationuses. This simplified meta model is used
as a base for the check and query definitions in section3.2.

3.1.2 User models

Based on an meta model (c.f. the previous section) user models are created.In our case study, we
used the simplified meta model and two exemplary user models presented in Figure6. Models
presented in the Figure are objects models, whereas within our framework they are at the M1
level (compare the explanation in the previous section).

In the first user model (Figure6.1) four instances ofInformation and four instances ofLogicalTool

are defined. The instances ofInformation have diverse persistence levels (low, medium, high) and

Proc. OCLApps 2006 6 / 17

ECEASST

PN : PaperBased

isMedium = true
name = Pater Noster

Cal : ITBasedSystem

isMedium = false
name = Personal Calculator

KIS : ITBasedSystem

isMedium = true
name = Hospital Information System

PACS : ITBasedSystem

isMedium = true
name = Image Archive

XDF : Information

name = X−ray diagnostic findings
persistence = high

XWI : Information

name = X−ray windpipe image
persistence = medium

XR : Information

name = X−ray referral
persistence = low

XLI : Information

name = X−ray lang image
persistence = medium

PN : PaperBased

isMedium = true
name = Pater Noster

KIS : ITBasedSystem

isMedium = true
name = Hospital Information System

PACS : ITBasedSystem

isMedium = true
name = Image Archive

Cal : ITBasedSystem

isMedium = false
name = Personal Calculator

(1) (2)

Figure 6: Exemplary user models: (1) instances of classesInformation, LogicalTool and associa-
tions between them, (2) hierarchy of instances ofLogicalTool

instances ofLogicalTool are of diverse type (IT– and paper–based). AnInformation can be saved in
a LogicalTool if the LogicalTool is a medium (c.f. Example2). There are four association links be-
tween instances ofInformation and instances ofLogicalTool. In the second user model (Figure6.2)
the hierarchical dependencies between four instances ofLogicalTool are defined. These simplified
user models are used as a base for the check and query evaluations in thenext section.

3.2 Definition and evaluation of checks and queries

In this section, we present typical checks and queries. All definitions conform to theMedFlow
meta model (Figure5) and their results are evaluated over the exemplary user models (Figure6).
The examples are based on a representative selection of all types of checks and queries used
within our framework for model assessment.

In the examples the checks and queries are defined in natural language and inspected manu-
ally. The corresponding listings are expressed in OCL 2.0 and automatically evaluated in OCLE
version 2.0.

If not stated otherwise, definitions (def) and invariants (inv) are defined and evaluated in
the context ofInformation (context Information) and based on the diagram depicted in
Figure 6.1. This context is added for technical reasons to enable easier compilationof OCL
expressions. The definitions themselves are not context dependent (no reference ofself is used
within them).

3.2.1 Primitive query

A primitive query can return a value of primitive type (except the Boolean type), class type or
collection type. The construction of a primitive query is similar to the below defined examples
for checks, thus we do not provide additional examples.

3.2.2 Check

The simplest concept for information retrieval is a check. It is a function with a set of objects
as a domain. In Example1 and Listing1, the check is defined and evaluated. It checks if there

7 / 17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report

exists an association between a givenInformation and a givenLogicalTool.

Example1 (theCheck)
Definition: Is a given information saved in a given logical tool?
Evaluation for XLI andKIS: no.

Listing1 (theCheck)
Definition:

1 def : l e t
theCheck(i : In format ion , l t : Log ica lToo l)

3 = i . prov idedByTool−> i n t e r s e c t i o n (Set{ l t })−>notEmpty ()

Evaluation:

1 def :
l e t o b j I n f o = In format ion . a l l I n s t a n c e s

3 −>s e l e c t (name=”X−ray lung image ”)
−>any (t r u e)

5 l e t objLTool = Log ica lToo l . a l l I n s t a n c e s
−>s e l e c t (name=” H o s p i t a lIn format ion System ”)

7 −>any (t r u e)
l e t t heCheckResu l t= theCheck(o b j I n f o , ob jLTool)

9 −− S e l e c t i o n : Boolean = f a l s e

Predefined check Checks can be used to express some well–formedness rules. Such checks
should be defined during the meta modelling phase and are called predefinedchecks. In Example
2 and Listing2 a predefined check is defined and evaluated.

Example2 (thePredefinedCheck)
Definition: An information can be saved only in logical tools which are mediums.
Evaluation: is fulfilled for all instances.

Predefined checks can be expressed in the form of invariants and checked for all instances of
the context class by calling the functioncheck UML models for errorsin the OCLE tool.

Listing2 (thePredefinedCheck)
Definition:

1 inv : s e l f . prov idedByTool−>f o r A l l (l t | l t . isMedium=t r u e)

Evaluation check UML models for errors:

- Model appears to be correct according to the selected rules.

3.2.3 Compound query

In order to aggregate information collected with single queries, we can build acompound query.
The collections of elements, used as arguments, can be built in different manners, we can use all
instances or a subset of them. Example3 and Listing3 depict the results of the compound query
with the check defined in Example1 and Listing1, applied for all instances ofInformation and

Proc. OCLApps 2006 8 / 17

ECEASST

LogicalTool. In Example3, the result is presented in form of a table while in the Listing3 it is
presented as a set of tuples.

Example3 (theCompoundQuery)
Definition:
EvaluatetheCheck for all instances ofInformation andLogicalTool classes.
Evaluation:
Information\ Logical Tool KIS PACS PN Cal
XR no no no no
XLI no yes yes no
XWI no yes no no
XDF yes no no no

Listing3 (theCompoundQuery)
Definition:

1 def : l e t
theCompoundQuery(In fC : Set(In format ion) , LToolC : Set(Log ica lToo l)) :

3 Set(TupleType (
i : In format ion ,

5 l t : Logica lToo l ,
r : Boolean)) =

7 InfC−>c o l l e c t (i n f o | LToolC−>c o l l e c t (l t o o l |
Tuple {

9 i : In format ion = in fo ,
l t : Log ica lToo l = l t o o l ,

11 r : Boolean = theCheck(in fo , l t o o l)
}))−> a s S e t ()

Evaluation:

def :
2 l e t theCompoundQueryResul t=

theCompoundQuery(In format ion . a l l I n s t a n c e s ,Log ica lToo l . a l l I n s t a n c e s)
4 /∗

S e l e c t i o n : S e t (Tup le (i : I n f o r m a t i o n , l t : Log ica lToo l , r :Boolean)) = S e t{
6 Tup le{ XDF , PN , f a l s e } , Tup le{ XDF , PACS , f a l s e} ,

Tup le{ XDF , Cal , f a l s e } , Tup le{ XDF , KIS , t r u e } ,
8 Tup le{ XR , PN , f a l s e } , Tup le{ XR , PACS , f a l s e} ,

Tup le{ XR , Cal , f a l s e } , Tup le{ XR , KIS , f a l s e } ,
10 Tup le{ XWI , PN , f a l s e } , Tup le{ XWI , PACS , t r u e } ,

Tup le{ XWI , Cal , f a l s e } , Tup le{ XWI , KIS , f a l s e } ,
12 Tup le{ XLI , PN , t r u e } , Tup le{ XLI , PACS , t r u e } ,

Tup le{ XLI , Cal , f a l s e } , Tup le{ XLI , KIS , f a l s e }
14 } ∗ /

Filtering We can additionally apply filters before or after evaluating the result of a given com-
pound query. The filtered compound query presented in Example4 and Listing4 is evaluated
only for instances ofInformation andLogicalTool classes, which fulfil additional constraints.

Example4 (theFilteredCompoundQuery)
Definition:
EvaluatetheCheck for instances ofInformation, which have thepersistence attribute set tomedium or
high and instances ofLogicalTool, which have the attributeisMedium equal totrue.

9 / 17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report

Evaluation:
Information\ Logical Tool KIS PACS PN
XLI no yes yes
XWI no yes no
XDF yes no no

The definition oftheFilteredCompoundQuery presented in Listing4 uses the result
theCompoundQuery from Listing3. Like in the previous section, the result (theFiltered-
CompoundQueryResult) is presented as a set of tuples.

Listing4 (theFilteredCompoundQuery)
Definition:

def : l e t
2 theF i l te redCompoundQuery() = theCompoundQueryResul t−>s e l e c t (t |

(t . i . p e r s i s t e n c e =#mediumor t . i . p e r s i s t e n c e =# h igh)
4 and t . l t . isMedium = t r u e)

Evaluation:

def :
2 l e t t heF i l t e redCompoundQueryResu l t= theF i l te redCompoundQuery()

/∗
4 S e l e c t i o n : S e t (Tup le (i : I n f o r m a t i o n , l t : Log ica lToo l , r :Boolean))= S e t{

Tup le{ XDF , PN , f a l s e } , Tup le{ XDF , KIS , t r u e } ,
6 Tup le{ XDF , PACS , f a l s e} , Tup le{ XWI , PN , f a l s e } ,

Tup le{ XWI , KIS , f a l s e } , Tup le{ XWI , PACS , t r u e } ,
8 Tup le{ XLI , PN , t r u e } , Tup le{ XLI , KIS , f a l s e } ,

Tup le{ XLI , PACS , t r u e } } ∗ /

Collecting Elements can be collected according to specific properties (e.g. values of slots,
existing links). In the example below we collect elements according to the elementhierarchy
(c.f. Figure6.2). We do not construct a complete definition of a compound query, we only
demonstrate how to create a collection using a recursive OCL function.

Example5 (theCollection)
Definition:
Collect allLogicalTools used by a givenLogicalTool.
Evaluation for KIS: {PN, Cal, PACS}

Proc. OCLApps 2006 10 / 17

ECEASST

Listing5 (theCollection)
Definition:

1 con tex t Log ica lToo l
def : l e t

3 ge tUsedToo ls (t : Log ica lToo l) : Set(Log ica lToo l)
= t . uses−>c o l l e c t (x| ge tUsedToo ls (x))−> a s S e t ()−>un ion (t . uses)

Evaluation:

def :
2 l e t objLTool = Log ica lToo l . a l l I n s t a n c e s

−>s e l e c t (name=” H o s p i t a lIn format ion System ”)
4 −>any (t r u e)

l e t LToolC = ge tUsedToo ls (ob jLTool)
6 −−− S e l e c t i o n : S e t (L o g i c a l T o o l) = S e t{ PN , Cal , PACS}

3.2.4 Complementary query

After the evaluation of a compound query, complementary queries can be evaluated over the
obtained result. In Example6, a complementary query is defined and evaluated.

Example6 (theComplementaryQuery)
Definition:
Which instances ofLogicalTool are used to saveInformation objects with persistence levelmedium.
Evaluation:
{PACS,PN}

The OCL expression presented below depicts one of the possible ways to express this comple-
mentary query. The condition in line 4 corresponds to the filtering condition and the remaining
conditions correspond to the iteration over the result of the compound query.

Listing6 (theComplementaryQuery)
Definition:

def : l e t
2 theComplementaryQuery: C o l l e c t i o n (Log ica lToo l) =

Log ica lToo l . a l l I n s t a n c e s ()
4 −>s e l e c t (l t o o l | theCompoundQueryResul t

−>s e l e c t (t | (t . i . p e r s i s t e n c e = #medium)and
6 (t . l t = l t o o l and t . r = t r u e))−>notEmpty ())

Evaluation:

def :
2 l e t theComplementa ryQueryResu l t= theComplementaryQuery

−− S e l e c t i o n : C o l l e c t i o n (L o g i c a l T o o l)= S e t{ PACS , PN}

One can notice that the usage of compound queries does not simplify OCL expressions for
complementary queries. The complementary query defined in Example6 can be expressed based
on the result of the previously defined compound query (theCompoundQueryResult) as in
Listing 6 or without any definition as in Listing7. The results in both listings,6 and7, are equal.
The expression in Listing7 seems to be easier and does not depend on any other definitions.

11 / 17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report

Listing7 (theComplementaryQueryBis)
Definition:

1 Log ica lToo l . a l l I n s t a n c e s
−>c o l l e c t (l t o o l | In format ion . a l l I n s t a n c e s

3 −>s e l e c t (i | i . p e r s i s t e n c e =#medium) . prov idedByToo l)−>a s S e t ()

At this point, the question why compound queries are useful for complementary queries may
arise. Let us explain our motivation for the usage of the first variant. In our prototype for
the MedFlowproject we have a common repository for all models. To evaluate a compound
query we have to gather information from the repository, which can be located on a remote
server. If we define a complementary query based on the result of the compound query, then
the evaluation is faster, otherwise for the evaluation of a complementary query we again need
to gather information from the repository. Moreover, we can evaluate morecomplementary
queries over the same compound query without further connection to the repository. The second
reason for using the variant with compound queries is the modified presentation of the results
of complementary queries. With some additional effort the result can be presented as a set of
elements in form of highlighted elements in the result of a compound query (c.f.Example7).

Example7 (theComplementaryQuery)
Evaluation: {PACS,PN}
Persistence\ Logical Tool KIS PACS PN Cal
low 0 0 0 0
medium 0 2 1 0
high 1 0 0 0

3.3 Summary

We showed how to construct all types of checks and queries used in ourframework. The OCL
2.0 is expressive enough to be applied in our framework for model assessment.

The models created in our framework are MOF compliant and as the OCL supports the ob-
ject oriented paradigm, it is easy to navigate through the object structures and create checks
(Example1) and queries. The invariants can be used as consistency checks before saving mo-
dels to the repository (Example2). Tuples provide useful mechanisms for the aggregation of
information of different types. Using tuples it is possible to evaluate the Cartesian Product of
given sets, what was used within our compound queries concept (Example 3). Using the select
operation it is possible to filter collections. The select operation can be applied either to the
result of a compound query (Example4) or to a domain of it (for each argument separately). The
first manner enables the expression of more complex conditions. OCL doesnot have a built–in
operator for transitive closure, but it allows definitions of recursive functions. In Listing5 used
tools are recursively collected in order to represent the transitive closure of the relation defined
by uses. Complementary queries can be expressed in OCL in two different manners. The first is
based on a previously defined compound query and the second is a definition from scratch. The
first one seems to provide an easier manner to automate query definition and results presentation.

Proc. OCLApps 2006 12 / 17

ECEASST

4 Technical aspects

In theSQUAMproject we continue development of the system for quality assessment of models
started in theMedFlowproject [CGIT06]. In this section we present redesigned architecture
of our system which utilises the newest components developed within the Eclipse Modeling
Framework (EMF1). The architecture presented below integrates three components of Eclipse
Modeling Framework Technology (EMFT2), namely Connected Data Objects (CDO3), Object
Constraint Language (OCL4) and Query (QUERY5), to create a system with a central model
repository and a generic analysis tool. The architecture of the repositoryand the management of
checks and queries are described in subsequent sections.

4.1 Architecture

As mentioned above the design of the model data repository is based on the EMF and some of the
EMFT projects.EMF is a modelling framework and code generation facility for building tools
and other applications based on a structured data model[Ecl06]. The model data repository
uses EMF as the meta model, it can save model instances of different EMF metamodels (c.f.
Figure7).

The architecture of the model data repository is based on the client–serverparadigm. The
repository clients can connect to a relational database management systemvia CDO, or they
connect to a version control system like subversion (SVN6). The connection via CDO provides
multi user support. The connected clients can search, load, save or create new EMF model in-
stances of an arbitrary EMF meta model. Moreover CDO provides a notification mechanism
to keep connected clients up to date on model changes. SVN provides versioning, change his-
tories, merging and also locking mechanisms. The clients can save the EMF model instances
to SVN which makes multi user support implicit available because of the merging and locking
functionalities.

The repository client integrates the EMFT projects, OCL and QUERY, to specify and exe-
cute queries on EMF model elements. OCL component provides an ApplicationProgramming
Interface (API) for OCL expression syntax which can be used to implement OCL queries and
constraints. The QUERY component facilitates the process of search, retrieval and update of
model elements; it provides an SQL like syntax.

TheSQUAMtool family is based on the above described core functionalities out of the EMF
and EMFT projects. The repository client API (CDO, EMF, OCL and QUERY) provides an ac-
cess mechanism for other tools, mostly modelling tools. The tree–based editorscan be generated
out of EMF meta model definitions. The native editors are especially usefulfor the prototyping
phase, later on we plan to integrate some graphical editors to create model instances. In the

1 http://www.eclipse.org/emf/
2 http://www.eclipse.org/emft/
3 http://www.eclipse.org/emft/projects/cdo/
4 http://www.eclipse.org/emft/projects/ocl/
5 http://www.eclipse.org/emft/projects/query/
6 http://subversion.tigris.org/

13 / 17 Volume 5 (2006)

http://www.eclipse.org/emf/
http://www.eclipse.org/emft/
http://www.eclipse.org/emft/projects/cdo/
http://www.eclipse.org/emft/projects/ocl/
http://www.eclipse.org/emft/projects/query/
http://subversion.tigris.org/

Use of OCL in a Model Assessment Framework:

An experience report

MedFlowprototype we integrated the MS Visio7 and MagicDraw8 modelling tools. We plan to
integrate these two modelling tools as well as editors developed within the Graphical Modeling
Framework (GMF9) with theSQUAMtool family.

Figure 7: The model data repository architecture design

For analysis purposes we use the repository client which uses the OCL component to make
queries on the model instances. The management of checks and queries isdescribed in the
subsequent section.

4.2 Checks and queries management

The OCL component provides mechanisms for check and query definitionsand evaluations. In
our framework it should be possible to evaluate checks and queries on demand, thus we need an
OCL management system to store OCL expressions. For this purpose we implement a checks
and queries catalogue. The catalogue enables users to evaluate OCL expressions in different
modes (c.f. Figure4 in section2).

The meta model of the OCL management system is also modelled in EMF, thereforethe OCL
expressions can also be saved in the model data repository in the same manner as other model
instances.

Figure8 illustrates the simplified meta model for the OCL management system. The model
data repository supports the storage of several meta models. To differentiate between queries
specific to a given meta model we assign OCL expressions to a specificBundle. The Bundle
defines the type of the model instances by specifying the meta model they haveto conform to.

Further we consider queries, theQuery element contains oneOCLExpression. We distinguish
between a definition (Definition) and an evaluation (Evaluation) of queries. Within oneDefinition
the prior definitions can be used, e.g. a compound query can use a primitivequery (compare sec-
tion 3.2). An OCL expression in theEvaluation also uses definitions. TheDefinition is split into
the Check, Primitive, Compound andComplementary expressions. TheDefinition elements are
elements which can be used as subroutines in other expressions and theEvaluation elements are
evaluated over an explicit data model. EachEvaluation element is placed in a particularOCLCon-
text. The context of the OCL expression enables the usage of theself element. The context can

7 http://office.microsoft.com/visio/
8 http://www.magicdraw.com/
9 GMF is a combination of the EMF and GEF (Graphical Editing Framework) projects,http://www.eclipse.org/gmf/

Proc. OCLApps 2006 14 / 17

http://office.microsoft.com/visio/
http://www.magicdraw.com/
http://www.eclipse.org/gmf/

ECEASST

Figure 8: The meta model of the OCL management system

also beNULL, it is useful for expressions without any particular contexts. In the example listings
presented in section3.2, for all listings except Listing2 and Listing5, NULL context can be used
(these listings do not use theself keyword and the definitions are not related to a particular
classifier). For interpretation of aEvaluation element theOCLContext has to be set to an explicit
instance of a model element.

The presented design is a proof of concept for the model data repository. Used technologies
and design allow easy extensions with additional features such as dynamic load of new meta
models, or an extended editor for the OCL management system with OCL syntaxcheck and
compilation at design time.

5 Conclusion

Our examination shows that the OCL is expressive enough to be applied as aquery language for
model analysis. It is possible to define all types of checks and queries required by our model
assessment framework (section3.2). There are two other reasons for OCL usage within our
framework. Firstly, there are more and more tools supporting the OCL notation, also non–
commercial tools (e.g. OCL project within EMFT described in section4 or tools presented in
[BCC+05]). The second reason follows from the first: the knowledge of the notation is getting
broader among scientists and pragmatic modellers.

We presented a proof of concept for the model data repository createdwithin EMF and EMFT
technologies. In the presented architecture OCL queries for assessment of models can be saved
in the repository (section4.2) and evaluated on demand. Currently we are developing full sup-
port for the OCL management system (section4.2). We plan to carry out more case studies
to determine more requirements for model assessments queries and define patterns for query
definitions.

15 / 17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report

Acknowledgement

We would like thankDan Chioreanfor the presentation of the OCLE tool at our University
and the later helpful tips for OCL expression implementation in the OCLE. We would like to
thank all of the people who reviewed our paper and gave us constructive input, especiallyFrank
Innerhofer–Oberperflerandreviewers. And at last but not leastRuth Breu, who supported us in
our work.

Bibliography

[AB01] D. H. Akehurst, B. Bordbar. On Querying UML Data Models with OCL. In Gogolla
and Kobryn (eds.),UML. Lecture Notes in Computer Science 2185, pp. 91–103.
Springer, 2001.
http://link.springer.de/link/service/series/0558/bibs/2185/21850091.htm

[BC05] R. Breu, J. Chimiak-Opoka. Towards Systematic Model Assessment. In Akoka and
al. (eds.),Perspectives in Conceptual Modeling: ER 2005 Workshops CAOIS, BP-
UML, CoMoGIS, eCOMO, and QoIS, Klagenfurt, Austria, October 24-28. Lecture
Notes in Computer Science 3770, pp. 398–409. Springer-Verlag, October 2005.
doi:http://dx.doi.org/10.1007/1156834643

[BCC+05] T. Baar, D. Chiorean, A. L. Correa, M. Gogolla, H. Hußmann, O. Patrascoiu, P. H.
Schmitt, J. Warmer. Tool Support for OCL and Related Formalisms - Needs and
Trends. In Bruel (ed.),MoDELS Satellite Events. Lecture Notes in Computer Sci-
ence 3844, pp. 1–9. Springer, 2005.
http://lgl.epfl.ch/members/baar/oclwsAtModels05/reportOCLWSAtModels05.pdf

[CGIT06] J. Chimiak-Opoka, G. Giesinger, F. Innerhofer-Oberperfler, B. Tilg. Tool–Supported
Systematic Model Assessment. In Mayr and Breu (eds.). Lecture Notes in Informat-
ics (LNI)—Proceedings P–82, pp. 183–192. Gesellschaft fuer Informatik, 2006.

[Cod72] E. F. Codd. Relational Completeness of Data Base Sub-Languages.Data Base Sys-
tems, Rustin(ed), Prentice-Hall publishers, 1972.

[Ecl06] Eclipse Foundation Inc. Eclipse Modeling Framework homepage. 2006.
http://www.eclipse.org/emf/

[KS00] J. Krogstie, A. Solvberg. Quality of conceptual models. InInformation systems en-
gineering: Conceptual modeling in a quality perspective. Chapter 3, pp. 91–120.
Kompendiumforlaget, Trondheim, Norway, 2000.
http://www.idi.ntnu.no/∼krogstie/publications/2003/quality-book/b3-quality.pdf

[LCI05] LCI team. Object Constraint Language Environment. 2005. Computer Science Re-
search Laboratory, ”BABES–BOLYAI” University, Romania.

Proc. OCLApps 2006 16 / 17

http://link.springer.de/link/service/series/0558/bibs/2185/21850091.htm
http://dx.doi.org/http://dx.doi.org/10.1007/11568346_43
http://lgl.epfl.ch/members/baar/oclwsAtModels05/reportOCLWSAtModels05.pdf
http://www.eclipse.org/emf/
http://www.idi.ntnu.no/~krogstie/publications/2003/quality-book/b3-quality.pdf

ECEASST

[MC99] L. Mandel, M. V. Cengarle. On the Expressive Power of OCL.In Wing et al. (eds.),
World Congress on Formal Methods. Lecture Notes in Computer Science 1708,
pp. 854–874. Springer, 1999.
http://link.springer.de/link/service/series/0558/bibs/1708/17080854.htm

[OMG05] OMG. Object Constraint Language Specification, version 2.0.May 2005.
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

[WK99] J. Warmer, A. G. Kleppe.The Object Constraint Language—Precise Modeling with
UML. first edition, 1999.

17 / 17 Volume 5 (2006)

http://link.springer.de/link/service/series/0558/bibs/1708/17080854.htm
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

	Introduction
	Model Assessment Framework
	Structure of the framework
	The analysis module and OCL expressions
	Constraints and queries
	Detailed classification
	Initiation and evaluation scopes

	Case study
	Modelling of clinical processes
	Meta model
	User models

	Definition and evaluation of checks and queries
	Primitive query
	Check
	Compound query
	Complementary query

	Summary

	Technical aspects
	Architecture
	Checks and queries management

	Conclusion

