
Electronic Communications of the EASST
Volume 47 (2012)

Proceedings of the
11th International Workshop on Graph Transformation and

Visual Modeling Techniques
(GTVMT 2012)

Model Checking Communicating Processes:
Run Graphs, Graph Grammars, and MSO

Alexander Heußner

15 pages

Guest Editors: Andrew Fish, Leen Lambers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Communications of the EASST (European Association of Software Science and Technology)

https://core.ac.uk/display/236423662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Model Checking Communicating Processes:
Run Graphs, Graph Grammars, and MSO

Alexander Heußner

Université Libre de Bruxelles – Belgium

Abstract: The formal model of recursive communicating processes (RCPS) is im-
portant in practice but does not allows to derive decidability results for model check-
ing questions easily. We focus a partial order representation of RCPS’s execution
by graphs—so called run graphs, and suggest an under-approximative verification
approach based on a bounded-treewidth requirement. This allows to directly derive
positive decidability results for MSO model checking (seen as partial order logic on
run graphs) based on a context-freeness argument for restricted classes run graphs.

Keywords: Pushdown Systems, Hyperedge Replacement Grammars, MSO

Communicating ProcesseS (CPS) allow to model an important class of distributed processes that
asynchronously communicate, e.g., via TCP-based channels or MPI, over a network topology.
Hence, synchronization takes place on unbounded, lossless fifo channels. As CPS subsume com-
municating finite-state machines, they inherit their well-known undecidability results, e.g., for
reachability [BZ83]. Local infinite data and unbounded recursion suggests to model each process
by a finite control flow automaton with a pushdown stack leading to recursive CPS (RCPS). The
latter allow to reduce the Post correspondence problem or the emptiness-testing of the intersec-
tion of two context free languages to RCPS’s reachability question [Ram00], and thus give rise to
a second source of undecidability. Hence, classical verification questions become a challenging
problem on these models, especially when leaving behind simple reachability questions.
Our Contribution Extending positive decidability results from the (control-state) reachabil-
ity problem of a (semantically) restricted class of RCPS introduced in [HLMS11] to the model
checking problem of linear temporal logics (LTL) proves to be impossible [Ram00], as one can
(ab)use LTL interpreted on an interleaving run to locally synchronize events that take place
on different processes and that are a priori independent. Thus, we propose to leave CPS’s
interleaving-based semantics behind. We represent the underlying partial order of events of a
CPS’s (finite) execution as graphs—so called run graphs—and interpret monadic second order
logic (MSO) thereupon. However, it is well-known that MSO is undecidable on general graphs.
We avoid this intricacy by extending some of our previous insights, e.g., the context-freeness
of runs of eager RCPS on non-confluent architectures [HLMS11], to the graph setting. We
show that one can represent the run graphs of several (semantically) restricted classes of finite
CPS/RCPS with the help of context-free graph grammars, in our case hyperedge replacement
grammars [DKH97]. As graphs generated by these grammars have bounded treewidth, we can
easily transfer the fundamental positive decidability result on MSO model checking of bounded-
treewidth graphs [CE11] to our setting. The latter was already proposed in [Heu10] but is first
detailed in this article. This gives rise to a new way of approaching CPS from a partial-order per-
spective, and proposes an unifying view on known semantic boundedness conditions via graph
measures.
1 / 15 Volume 47 (2012)

Model Checking Communicating Processes

Overview In the following section, we introduce the formal model of (R)CPS as well as give
an overview of known restrictions and decidability results for a suite of reachability questions.
Next, we recall some notions on MSO interpreted on graphs, and hyperedge replacement gram-
mars, before introducing run graphs. Last, we give decidability results for MSO interpreted
on run graphs of two important classes of (R)CPS. We refer to the appendix for additional de-
tails/proofs.

Notation Given a set S, let |S| denote its cardinality. For an I-indexed family of sets (Si)i∈I ,
we write elements of ∏i∈I Si in bold face, i.e., s∈∏i∈I Si. The i-component of s is written si ∈ Si,
and we identify s with the indexed family of elements (si)i∈I . An alphabet Σ is a finite set of
letters. We write Σ∗ for the set of all finite words over Σ. Let ε denote the empty word. Let
w = w1w2 · · · ∈ Σ∗, then its forgetful projection on Γ⊆ Σ is the word w′ = w′1w′2 . . . with wi = w′i
if wi ∈ Γ, else wi = ε (for i ∈ {1,2, . . .}). A labeled transition system (LTS) S = 〈S,s0,Act,→〉
is given by a set of states S, an initial state s0, an action alphabet Act, and a (labeled) transition
relation→⊆ S×Act×S. We usually write s a−→ s′ in place of (s,a,s′)∈→. A pushdown system
is given by a tuple 〈Z,z0,Act,Γ,∆〉 where Z is a finite set of (control) states, z0 ∈ Z the initial
state, Γ a finite stack alphabet, and Act = {push(γ),pop(γ)|γ ∈ Γ} the set of pushdown actions
where transition rules are given by ∆ ⊆ Z×Act× Z. The semantics of a pushdown system is
given by an infinite transition system over configurations in Z×Γ∗, i.e., tuples of a control state
and a word representation of the stack’s content. Note that a push(γ) action adds the letter γ to
the top of the current stack content, and that a pop(γ) action blocks if the topmost letter is not
equal to γ .

1 Verifying (Recursive) Communicating Processes

A topology T is a directed graph whose vertices are processes Proc and whose edges are chan-
nels Ch. The set of possible communication actions of a process p ∈ Proc are defined by
Comp(T,M) = {c!m | c ∈Ch,src(c) = p,m ∈M}∪{c?m | c ∈C,dst(c) = p,m ∈M}. We denote
by c!m the sending of message m into channel c, and by c?m the reception of message m from c.

Definition 1 A system of communicating processes (CPS) Q = 〈T,M,(Sp)p∈Proc〉 is given by
a topology T, a message alphabet M, and an LTS Sp for each process p ∈ Proc of the form
〈Sp,sp

0 ,Actp,→p〉 such that:

– the action alphabets Actp, p ∈ Proc, are pairwise disjoint, and

– Actp
com = Actp∩ (C×{!,?}×M)⊆ Comp(T,M) for each p ∈ Proc.

States sp ∈ Sp are called local states of p. We write S = ∏p∈Proc Sp for the set of global states.
Note that the sets Sp, and hence S, may be infinite. A finite CPS is a CPS where for all p ∈ Proc
the Sp are finite.

The operational semantics of Q is defined by a global LTS JQK = 〈X ,x0,Act,→〉, where X =
S× (M∗)C is the set of configurations, x0 = (s0,(ε)c∈Ch) is the initial configuration (note that
channels are initially empty), Act =

⋃
p∈Proc Actp is the set of actions, and →⊆X ×Act×X is

Proc. GTVMT 2012 2 / 15

ECEASST

the transition relation; the latter is defined as follows: for a ∈ Actp, (s1,w1)
a−→ (s2,w2) if the

subsequent conditions are satisfied:

(i) sp
1

a−→p sp
2 and sq

1 = sq
2 for all q ∈ Proc with q 6= p,

(ii) if a ∈ Actp
loc then w1 = w2,

(iii) if a = c!m then wc
2 = wc

1 ·m and wd
2 = wd

1 for all d ∈C with d 6= c,

(iv) if a = c?m then m ·wc
2 = wc

1 and wd
2 = wd

1 for all d ∈C with d 6= c.

A (finite) run in the LTS Q is an alternating sequence ρ = (x0,a1,x1, . . . ,an,xn) of configu-
rations xi ∈ X and actions ai ∈ Act that satisfies, for all 1 ≤ i ≤ n, xi−1

ai−→ xi. A configuration
x ∈ X is reachable in a CPS Q if there exists a finite run of Q from the initial configuration
x0 to x. We define the reachability set of Q as Reach(Q) = {x ∈ X | x is reachable in Q}. For
a given CPS Q and a global state s ∈ S, the state reachability problem for CPS asks whether
Reach(Q)∩{s}× (M∗)C is non-empty.

A pair of send/receive actions ai = c!m,a j = c?m is called matching in ρ if i < j and the
number of receives on c within ai · · ·a j equals the length of c in xi. In the following we will
mainly focus runs of a certain form, so called eager runs.

Definition 2 A run ρ = (x0,a1,x1, . . . ,an,xn) is eager if for all ai with 1 ≤ i ≤ n when ai is a
receive action then i > 1 and ai−1 is its matching send action.

A configuration x ∈ X is eager-reachable in a CPS Q if there exists a finite, eager run from
the initial configuration x0 to x. The eager-reachability set of Q is the set Reacheager(Q) of
eager-reachable configurations. We say that a CPS Q is eager when Reacheager(Q) = Reach(Q).
One can show that eagerness of CPS arises under some natural (and decidable) restriction on
cyclic communication, called mutex; the latter is a generalization of the well-known half-duplex
restriction from mutual channels to larger topologies. Deciding the eagerness of a finite CPS
proves to be undecidable, however, deciding whether a given finite CPS is mutex is complete
in PSPACE [HLMS11]. Eager CPS subsume globally existentially 1-bounded finite-state ma-
chines [LM04].

Recursive communicating processes (RCPS) R = 〈T,M,(Dp)p∈Proc〉 are CPS whose local
transition systems Dp are pushdown systems. Formally, each Dp is given by 〈Zp,zp

0 ,Actp,Γp,∆p〉
where Zp is a finite set of control states, zp

0 an initial state, Actp an alphabet of actions, Γp a stack
alphabet and ∆p ⊆ Zp×Actp×Zp the set of actions.

The (local) semantics of each Dp is the common one and we assert the stack operations to
be expressed by Actp

stack = {push(γ),pop(γ) | γ ∈ Γp} ⊆ Ap
loc; local configurations are written

(zp,up) ∈ Zp× (Γp)∗. Note that each pop action must have a matching push action before, such
that the forgetful projection of a local run of Dp on Actp

stack is a Dyck word, i.e., a word where
the push(γ) and pop(γ) actions for γ ∈ Γ are “well-nested”.

Let Z = ∏p∈Proc Zp the set of global control states. A state of R is written s = (z,u) where
sp = (zp,up) for each p ∈ Proc. For a given RCPS R and a global control state z ∈ Z, the state
reachability problem for RCPS asks whether Reach(R)∩ {z}× (∏p∈Proc((Γ

p)∗))× (M∗)C is
empty. We recall the following decidability results for (R)CPS:

3 / 15 Volume 47 (2012)

Model Checking Communicating Processes

Fact 1 The state reachability problem is undecidable for finite CPS, even if we restrict the
topology to two processes that are mutually connected by two channels. [BZ83]

Fact 2 The state eager-reachability problem for finite CPS is decidable. [HLMS11]

Fact 3 The RCPS state eager-reachability problem is undecidable when the underlying topol-
ogy contains at least two pushdown processes that are connected by one channel. [HLMS11]

Even if eagerness is sufficient for arriving at positive results for finite CPS, we need additional
architectural constraints to gain the following positive reachability result for RCPS.

Fact 4 A typed topology has a deciable RCPS state eager-reachability problem if and only if
it is non-confluent. The problem is EXPTIME-complete in the latter case. [HLMS11]

The previous result considers a semantic restriction against the direct synchronization of a
RCPS’s local pushdown systems, inspired by, e.g., [LMP08, CV09]. A typed topology restricts
the usage of a (point-to-point) channels as follows: either the process sending on this channel
can use its channel end only when its local stack empty, or the receiving process can read only
when its local stack empty, or both of the previous two restrictions (i.e., sending and receiving
requires the active process’s local stacks to be empty).

A typed topology is confluent if there exists a sequence (p0,c1, p1, ...,cn, pn) of distinct pro-
cesses pi ∈Proc (for 0≤ i≤ n) and channels c j ∈Ch (1≤ j≤ n) such that p0 and pn can use their
channel ends of c1 and cn without restriction. A non-confluent typed topology is not confluent.
Informally, non-confluent topologies do not allow to let the information generated/read by two
pushdown systems to “flow together”.

The proof of Fact 4 relies on the following: for each eager run of a non-confluent RCPS
one can efficiently construct an order-equivalent run whose forgetful projection onto Actstack is
globally a Dyck word, i.e., which can be simulated on one exponentially larger global pushdown
process. We capture the latter by the following definition.

Definition 3 A finite run ρ of an RCPS is one-stack if the forgetful projection of a′1 · · ·a′n on⋃
p∈P Actp

stack is a Dyck word.

Lemma 1 All runs of eager RCPS over non-confluent architectures are one-stack.

Lemma 2 Given an RCPS, it is undecidable whether all its runs are one-stack.

Remark 1 Directly extending the previous positive results from safety/reachability verification
to the model checking of ω-regular properties is however not possible. Let us take a look at an
RCPS consisting of two local pushdown process with no channel in between, hence, an RCPS
on a non-confluent architecture where all runs are eager. Interpreting linear temporal logics
(LTL) on runs of this RCPS allows to express the synchronization of two pushdown processes
via a logical formula [Ram00]. Restricting the logic to a “weaker” (from the standpoint of
expressiveness) fragment does not help either, as the negative result can already derived for the
X-less fragement of LTL interpreted only on the sequence of actions induced by a run. The

Proc. GTVMT 2012 4 / 15

ECEASST

culprit can be found in the possibility to express the synchronization of independent events via a
formula that is interpreted on the global interleaving. Regarding our example: when there is no
communication between the underlying local processes, all fireings of actions on both processes
are assumed independent.

Thus we propose to abandon interleaving-based semantics in favor of a partial-order one and
to consider (temporal) logics based on this structure. In the following, we will focus monadic
second order logic (MSO) on a rendering of the underlying partial of a run of a CPS into graphs.

2 Run Graphs and MSO

Definition 4 For finite alphabets Λ and Π, a (Λ,Π)-labeled directed graph is a tuple G =
〈V,A,arc,λ ,π〉 where V is the finite, non-empty set of vertices, A the set of arcs (often called
edges), the function arc maps each arc to an ordered pair of vertices, as well as λ : V → 2Λ labels
each vertex by an element from 2Λ and π : A→Π labels each arc by an element from Π.

For arc(a) = (v,v′) where a ∈ A and v,v′ ∈ V , we say that v is the source vertex of a and v′

its destination. Given a graph G = 〈V,A,arc,λ ,π〉, then a graph G′ = 〈V ′,A′,arc′,λ ′,π ′〉 is a
subgraph of G if V ′ ⊆ V and A′ ⊆ V , and arc′, λ ′, π ′ can be derived by restricting the original
counterparts to V ′ and A′. An induced subgraph demands in addition that for all a ∈ A with
arc(a) = (x,y) and x,y ∈ V ′ it holds that a ∈ A′. For a ∈ A let G \ a be the graph obtained by
removing a from G and by contracting the source and destination of a to one new vertex. A
graph H is a minor of a graph G if H is isomorphic to a graph G′′ that can be derived from G
by finitely many arc contractions, as well as deletions of arcs and vertices (the latter implies the
deletion of arcs connected to these vertices).

Given a graph G, we define the treewidth of G as usual via graph decompositions [RS86]. The
treewidth measures by a natural number how “close” G is to a tree where trees have treewidth 1.
(Recall that the treewidth of a graph corresponds to the size of a separator for the graph, i.e.,
the number of edges one has to delete to separate the graph into components, which equals 1
for trees.) A class of graphs has bounded treewidth if there exists a constant k ∈ N such that all
graphs in this class have a treewidth lower or equal to k; else it has unbounded treewidth.

Fact 5 For k ∈ N, let Gk be the k× k grid; then (i) Gk has treewidth k, thus (ii) the class of all
grids {Gk | k ∈N} has unbounded treewidth; further, (iii) if H is a minor of G then the treewidth
of H is lower or equal to the one of G. [Bod98]

Monadic Second Order Logic on Graphs We introduce MSOV interpreted over the previ-
ously introduced graphs where formulas are constructed as below for first-order variables x,y
over vertices, and X is a second-order variable over sets of vertices. Correct MSOV formulae are
given by the following BNF expression:

ϕ ::= x = y | Labl(x) | Arc(x,y) | x ∈ X | ϕ ∧ϕ | ¬ϕ | ∃x(ϕ) | ∃X(ϕ)

Informally, we interpret = as equality on V , the predicate Labl(x) for l ∈ 2Λ is true if the
vertex x is labeled by l, and x∈ X is true if x is in the set represented by the second order variable
X . The core of MSOV is the incidence predicate Arc(x,y) that is true if there exists an arc whose

5 / 15 Volume 47 (2012)

Model Checking Communicating Processes

source vertex is represented by x and whose destination is represented by y. Note that we have
existential quantification over both first and second order variables. (A formal introduction of
the semantics can be found in [CE11].) We write G |= ϕ if a graph G satisfies a formula ϕ . We
add the usual additional syntactic sugar by introducing (ϕ ∨φ), (ϕ → φ), and (∀x(ϕ)).

MSOA (often written MSO2 or MSO-2 in the literature) is introduced analogously whereas we
additionally allow first and second order variables over arcs, and first- and second-order quan-
tification over arcs. The central difference between MSOA and MSOV is the ternary incidence
predicate Arc(x,y,z) in MSOA which is true if x is an arc with source y and destination z. We
extend Labl(x) to include arc labellings when x is an arc and l ∈ Π, as well as demand the
=-relation to extend to arcs.

Note that
(
∃x
(

Arc(x,y,z)
))

is equivalent to the incidence predicate of MSOV . Thus, we can
directly translate any formula from MSOV to MSOA. The reverse direction only holds if we
restrict ourselves to the class of graphs of bounded treewidth [CE11]. As this is the case in the
following, we will not distinguish between MSOV and MSOA, thus only refer to “MSO”.

Example 1 The following MSOA formula χ(x,y, l) (with free variables x,y, l) expresses a “causal”
reachability problem: there exists an l-labeled path from vertex x to vertex y:

χ(x,y, l)≡ ∀X
(

x ∈ X ∧∀u,v
(
u ∈ X ∧arc(z,u,v)∧Labl(z)→ v ∈ X

)
→ y ∈ X

)
Then again, we can characterize classes of graphs that are “incompatible” with MSO as follows:

Fact 6 If a class of graphs contains for each k ∈N a graph G that has Gk as induced subgraph,
then MSO is undecidable on this class of graphs. [See75]

Hyperedge Replacement Grammars We introduce hypergraphs as extension of “classical”
graphs. A ((Λ,Π)-labeled) hypergraph is tuple H = 〈V,A,arc,λ ,π〉, analogous to the previous
definition of graphs, whereas A is a finite sorted set A =

⋃
i∈N Ai (i.e., the Ai are disjoint), whose

elements are called hyperarcs (or hyperedges), and we define arity(a) = i if a ∈ Ai; further, arc
maps an arc a ∈ Ai to a sequence of nodes of size i, i.e., arc(a) = (v1, · · · ,vn) for n = arity(a).
Note that the previously introduced graphs are hypergraphs where the only possible arity of
(hyper-)arcs is 2.

Embeddable hypergraphs are a tuple 〈H,ext〉 where ext is a sequence of distinct “external”
vertices (v1, · · · ,vk) of H (with v1, · · · ,vk ∈ V). We abuse notation and write H for the tuple
〈H,ext〉 and ext(H) for the sequence ext; further let type map an embeddable hypergraph H to
the size of its sequence ext(H). Let us assert that all the hypergraphs in the remainder are over
the same two set of labels Λ and Π. We depict external vertices by • and others by ◦.

We define the operation of hyperedge replacement as follows: let H be a hypergraph, a∈A one
of its arcs, and H′ an embeddable hypergraph disjoint from H with arity(a) = type(H′) (if they
are not disjoint, we take disjoint copies the usual way), then H[a←H′] is the hypergraph that is
equivalent to the disjoint union of H and H′ where we deleted the arc a in H and fused arc(a) =
(v1, · · · ,vn) componentwise with ext(H ′) = (v′1, · · · ,v′n). Further, we adapted the labellings of
vertices accordingly as disjoint union of the labellings of H and H′ where we assign the union
of the original labels to the fused vertices.

Proc. GTVMT 2012 6 / 15

ECEASST

A hyperedge replacement grammar (HRG) is a tuple G = 〈N,T,P,H0〉 where N and T are
the sets of non-terminal and terminal hyperarcs. H0 is the initial hypergraph. P is a finite
set of production rules that map a hyperedge a ∈ N to an embeddable hypergraph H such that
arity(a) = type(H) and all vertices in ext(H) are labeled by /0. We write rules as R : a ↪→ H

where we add the syntactic sugar of an identifier R. The width of an HRG G is the maximal
number of vertices of the hypergraphs at the right-hand sides of all rules in P minus one.

Given an HRG G = 〈N,T,P,H0〉, we define the derivation relation⇒G between two hyper-
graphs H,H′ as follows: H⇒G H

′ iff H′ =H[a←Hi], and a ↪→Hi is a rule in P for a∈N and
an embedded hypergraph Hi. Let L(G) be the class of hypergraphs that can be derived from H0
in a finite number of⇒G-derivations, and that do only contain arcs in T . We refer to [DKH97]
for more details on HRG and HRG languages.

Fact 7 Given an HRG G of width k (for k ∈ N), then the treewidth of the class of graphs L(G)
is bounded by k. [Lau88]

As graphs generated by HRG have bounded treewidth, one can draw a bridge to the known
fundamental connection of decidability of MSO on classes of graphs with bounded treewidth:

Fact 8 Given a hyperedge replacement grammar G that describes a class of graphs, and an
MSO formula ϕ , then checking whether there exists a graph G in this class with G |= ϕ is
decidable. (follows directly by combining Fact 7 with [CE11])

From CPS to Run Graphs In Section 1 we focused an interleaving-based semantics by view-
ing CPS runs as alternating sequences of configurations and actions. Alternatively, we can regard
runs as linear sequence of events that are labeled by actions. Formally, let E be a set of events,
λ : E → Act their labelling by actions, then a finite run ρ is a word in E∗. Analogously to the
partition of Act into Actp for p ∈ Proc, we partition E into sets E p.

Due to the underlying semantics of a CPS, the events in the sets E p (for p ∈ Proc) are linearly
ordered; interprocess dependencies arise via communication, i.e., via events labeled by matching
pairs of send and receive actions. For RCPS, we also need to take a closer look on events labeled
by matching push/pop actions. We thus introduce the three order relations succp, <m, and <pd
on E for (e,e′) ∈ E×E:

– (e,e′) ∈ succp for p ∈ Proc if e′ is a direct successor of e on process p

– e <m e′ if (e,e′) is labeled by a matching pair of send/receive actions

– e <pd e′ if e and e′ are labeled by a matching pair of push/pop actions.

Given a run ρ = (x0,a1,x1, . . . ,an,xn) of a CPS, we derive the corresponding natural order of
events [ρ] = 〈{1, . . . ,n},≤,λ 〉 where≤ is the transitive reflexive closure of

⋃
p succp∪<m. Note

that we do not need to include <pd explicitly as it is already covered by the transitive closure of
direct successors, however it plays an important role in causal entanglements.

The run graph corresponding to a run ρ of a CPS Q is a (Λ,Π)-labeled graph where Λ equals
{fst, lst}∪

⋃
p∈Proc(∆

p∪Zp) and Π = {succp | p ∈ P}∪{pd,m} over the vertex set E ∪{ep
0 ,e

p
F |

p∈Proc} and arcs labeled succp / pd / m if the underlying source and destination vertices’s events

7 / 15 Volume 47 (2012)

Model Checking Communicating Processes

are related by succp /<pd /<m. In addition we assert an initial and final event vertex ep
0 / ep

F per
process which is connected by an succp arc to the first and from the last event and which is
labeled by fst / lst. We depict m-labeled arcs by m (dashed) and pd-labeled by pd (dotted).

Given an CPS Q, let RG(Q) the set of graphs that are run graphs of a possible run of Q.
We want to use MSO to represent propositions about run graphs. As the set Λ depends on the
underlying CPS Q, we parametrize the logic by the CPS and write ϕ ∈MSO(Q) for an MSO
formula ϕ over this signature of labels.

Example 2 We can now transfer Example 1 to specify the behaviour of an RCPS R. The
following formula φp(zp) ∈ MSO(R) expresses that process p of R must pass a local control
state zp ∈ Zp at least once along its run:

φp(zp)≡ ∃e,e′
(
χ(e,e′,succp)∧Labfst(e)∧

∨
a∈Act p,z∈Zp Lab(z,a,zp)(e′)

)

3 Representing Classes of Run Graphs by HRG

3.1 Bounded Finite CPS

Proposition 1 Given a finite CPS Q and ϕ ∈ MSO(Q), then it is undecidable whether there
exists G ∈ RG(Q) such that G |= ϕ .

Idea of Proof Combining Fact 5(iii) and Fact 6 allows for the counterargument to the previous
decision question, as one can embed any k× k-grid into the run graphs of a finite CPS over
the topology p q . We will exemplify the derivation of G3 as graph minor in Figure 1a.
Contracting the gray marked vertices and deleting the dotted arcs leads to G3 as proper minor.
Analogous constructions are possible for all other Gk for k ∈ N.

Thus, we need to focus on limitations for finite CPS. The well-established connection to
MSO logics interpreted on “bounded” message sequence graphs in [GKM07, LM04] suggests
the following restriction which we subsequently lift into our setting of run graphs:

Definition 5 A run of a CPS is (locally) b-bounded, if for all of its prefixes the number of
unreceived messages on each channel is less than or equal to b. A CPS is (existentially locally)
b-bounded for b ∈ N, if for any run there exists an order-equivalent one that is b-bounded.

A cut of a run graph is a sequence (ep)p∈Proc of vertices such that ep ∈ E p, and it holds that
if there is a path in the run graph from ep to eq (for p,q distinct elements of Proc) then ep is the
only element of E p in this path.

Definition 6 A run graph is b-bounded (for b∈N) if for each cut (ep)p∈Proc there is no channel
c ∈Ch with src(c) = p such that there are more than b send events on this channel before ep that
are not received before eq with dst(c) = q.

We construct a HRG G(Q,b) = 〈N,T,P,H0〉 directly from the finite transition system JQK of
a b-bounded finite CPS as follows (see below for a concrete example):

Proc. GTVMT 2012 8 / 15

ECEASST

1 2 3

4 5 6

7 8 9

G3 =

succp

succq

1 2 3 7 8 9

4 5 6

m m m

m m m

(a) Embedding G3 into runs on p q .

z1
. . .
zn

w1(1)
w1(2)

wk(1)
wk(2)
wk(3)

p1

pn

c1

ck

x

(b) Translate x ∈ X to a
Non-Terminal.

1/2

q?

s1 s′1

s2 s′2

w1
w′1

w2 w′2

x x′

(c) Translating x q?−→ x′ to
a Derivation Rule.

Figure 1. Decidability Anti-Pattern via Embedding Grids / Positive Patterns via Grammar.

– G(Q,b) generates a run graph from left to right, i.e., a single succp-labeled path of E p ver-
tices for all p ∈ Proc and appropriate m-labeled arcs;

– each non-terminal stores the capacity of the channel bound that is already used as well as
stores unreceived messages in fifo order, i.e., each non-terminal represents a cut/configuration
of JQK (see Figure 1b);

– thus we can directly translate each transition x a−→ x′ in JQK to a HRG rule (see Figure 1c);

– and the inital configuration maps to the following initial hypergraph x0
fst, p1

fst, pn

We can interpret non-terminals as cuts: starting from the initial cut H0, where all processes are
in its initial events, a derivation in G(Q,b) corresponds to a sequence of cuts that finally arrives
at the last cut, where all processes are in lst-labeled events.

Example 3 Figure 2 represents the HRG generation of a run graph of a 2-bounded finite CPS
over the architecture p q where |M| = |Sp| = |Sq| = 1, i.e., both processes only have one
state and the message alphabet is of size one. Thus we label event vertices only by actions. (The
detailed grammar can be found in the appendix.)

Lemma 3 For a given b ∈ N and a b-bounded finite CPS Q, the class L(G(Q,b)) equals the
class of run graphs RG(Q).

Proof. For a G ∈ RG(Q), we assume that ρ is a b-bounded run conform to G. Then we can
generate a sequence of cuts of G that left-to-right traces ρ . This sequence of cuts can be generated
by G(Q,b).

For the other direction, a derivation of G(Q,b) is a sequence of cuts, such that each cut can
be represented by a non-terminal. By construction, there are no more than b pending messages
per channel at each non-terminal. Assert that there exists a cut in G ∈ L(G(Q,b)) that was
not generated by the current derivation of G but which has more then b messages pending for
a channel. As a the production rules of G(Q,b) are derived from the transition of JQK and as
derivation in the HRG is equivalent to a run ρ in JQK, we would have found a prefix of a run that
has more than b pending messages, contradicting the boundedness of ρ .

9 / 15 Volume 47 (2012)

Model Checking Communicating Processes
0/

0

fst

fst

=⇒G

fst

fst

1/
0

p!

=⇒G

fst

fst

p!

1/
1

q!

=⇒G

fst

fst

p!

m

q?q!

0/
1 =⇒G

fst

fst

p!

m

m

q?

p?

q!

0/
0 =⇒G

fst

fst

m

p!

m

m

q?

p?

q!

lst

lst

Figure 2. Possible Derivation of the HRG of Example 3 .

Corollary 1 Given a b-bounded finite CPS Q, then all run graphs in RG(Q) have treewidth
bounded by |Proc| ·b · |Ch|.

Alternatively stated, the message sequence graphs (the graph rendering of the underlying mes-
sage sequence charts) of b-bounded finite CPS have bounded treewidth.

Proposition 2 Given a b-bounded finite CPS Q, and ϕ ∈MSO(Q), then we can decide whether
there exists a graph G ∈ RG(Q) such that G |= ϕ .

Proof. We reduce the given decision problem to deciding whether there exists a graph G in
the HRG language L(G(Q,b)) such that G |= ϕ . The latter is decidable due to Fact 8, and, by
Lemma 3, returns the demanded run graph of Q.

3.2 Eager 1-stack RCPS

Proposition 3 Given a eager RCPS R and ϕ ∈MSO(R), then it is undecidable whether there
exists G ∈ RG(R) such that G |= ϕ .

Instead of focussing RCPS with the non-confluent restriction, we will restrict ourselves in the
following to the larger class of eager RCPS where for each run there exists an order-equivalent
one that is both eager and 1-stack (cf. Lemma 1). W.l.o.g. we assume all channels of eager
RCPS to not enter their growing phase. However, we will not derive a HRG directly as in the
previous case, but follow the subsequent three steps:

First, given an RCPS R over the set of processes Proc = {p1, · · · , pn}, we construct an HRG
G(R) = 〈N,T,P,H0〉 as follows:

– H0 equals X
p1 ,fst

pn ,fst

lst,p1

lst,pn

..
.

..
. , where we additionally label vertices by process names;

– N = {X , I} consists of two (2 ·n)-ary hyperedges;

– the production rules P presented in Figure 3 depend only on P;

– we depict the arc representing a matching send/receive related vertex pair in the case of
eager communication by m and interpret it as

m

m
with respect to graph properties

like paths.

Second, we extend G(R) to an HRG G̃(R) that generates run graphs with a vertex labeling over
∆ as follows: we label the initial vertices for each process additionally by zp

0 , we transform
a production rule of G(R) that generates a send/receive matching set of vertices for distinct
pi, p j ∈ P (below on the right) to a set of rules in G̃(R) (left):

Proc. GTVMT 2012 10 / 15

ECEASST

R1 : X..
.

..
. ↪→ X X..
.

..
.

..
.

..
. I..
.

..
. X..
.

..
.

pdp1 p1

for each
process pi

. . .
X..

.

..
.

pd
pn pn

R2 : I..
.

..
. ↪→ I I..
.

..
.

..
.

..
.

m

p1

p2

for each tuple pi, p j

1≤ i < j ≤ n
. . .

m..
.

..
.

p1

pn

Figure 3. Production Rules of G(R) for 1-stack RCPS R over Proc = {p1, · · · , pn}.

I..
.

..
. ↪→

..
.

..
.

m

pi

p j

maps to

{
I..

.

..
. ↪→

..
.

..
.

m

pi ,δi

p j ,δ j

∣∣∣∣∣ for m ∈M, let δi ∈ Zpi ×{pi!p j(m)}×Zpi

and δ j ∈ Zp j ×{p j?pi(m)}×Zp j , as well as
vice versa for p j sending and pi receiving

}

Thus, we guess the exchanged message m ∈ M, assure that both vertices are labeled by the
appropriate matching actions, and additionally guess two control-states for each process.

We analogously translate production rules that generate matching push/pop vertex pairs to a
set of rules that has the same right-hand-side hypergraph but additionally guesses the γ ∈ Γp;
thus translating G’s rules (right) to a set of rules in G̃(R) (left):

X..
.

..
. ↪→ X..
.

..
.

pdpi pi

maps to

{
X..

.

..
. ↪→ X..
.

..
.

pdpi,δi pi,δ j
∣∣∣∣∣ for γ ∈ Γpi ,

let δi ∈ Zpi ×{push(γ)}×Zpi

and δ j ∈ Zpi ×{pop(γ)}×Zpi

}

Note that we assure that the same letter from the pushdown alphabet is assigned to a matching
push/pop vertex pair.

Third, we verify that the previous guess of triples δ is correct with respect to the underlying
(Ap)p∈Proc by the MSO formula

ϕ∆ ≡ ∀v
(∧

p∈Proc

(
ϕ

p
label(v)∧ϕ

p
trans(v)

))
which tests whether nodes are (i) correctly labeled by either a transition rule, or by fst/lst; and
(ii) the labels of neighboring nodes mirror a correct transition of R.

ϕ
p
label(v)≡ Labfst(v)∨Lablst(v)∨

(∨
(z,a,z′)∈∆p Lab(z,a,z′)(v)

)
ϕ

p
trans(v)≡

∨
(z,a,z′)∈∆p

(
Lab(z,a,z′)(v)→ Predecessorp(v,z)∧Successorp(v,z′)

)
Thus, the direct predecessor/successor of a node—if is not tagged by fst/lst—is labeled by a

rule that ends/starts in the control state required by the current rule.

Predecessorp(v,z)≡ ∃v′
(

Arcsuccp(v′,v)∧
(

Labfst(v′)∨
∨

a∈Actp,z′∈Zp Lab(z′,a,z)(v′)
))

Successorp(v,z)≡ ∃v′
(

Arcsuccp(v,v′)∧
(

Lablst(v′)∨
∨

a∈Actp,z′∈Zp Lab(z,a,z′)(v′)
))

11 / 15 Volume 47 (2012)

Model Checking Communicating Processes

Lemma 4 Given an RCPS R where all runs can be reordered into a run that is both eager
and 1-stack, then the class of graphs, consisting of those in L(G̃(R)) that additionally fulfill ϕ∆,
equals RG(R).

The proof of the previous lemma relies on an argument close the proof of Fact 4 that allows to
“cut” a run with respect to a context-free pattern. As before, we can directly apply Fact 8 on the
formula ϕ ∧ϕ∆ to derive the following:

Proposition 4 Given an RCPS R where all runs are order equivalent to a run that is both
eager and 1-stack, and an MSO formula ϕ over the appropriate signature of run graphs, then
we can decide whether there exists a graph G ∈ RG(R) such that G |= ϕ .

4 Conclusion

This article proposes to leave behind the combination of linear temporal logic and CPS in favor
for MSO on the underlying partial order of events. A graph-based representation of a run by a run
graph proves ideal for a high-level view on MSO-based partial order logics. Describing the evo-
lution of CPS by graph grammars is a versatile tool to (i) get better insights into the intricacies
that lead to undecidability result (both [BZ83] and [Ram00] can be reduced as intermediary step
to a simple semantic argument on grid graphs that allow to represent halting runs of Turing ma-
chines); as well as (ii) to naturally derive semantic boundedness conditions that include currently
known ones (e.g., existential b-boundedness) and open the door for new ones; thus, (iii) this lifts
the idea of semantic boundedness to the bounded width of graph grammars. The latter can also
be seen as a different rendering of the fact that decidability results rely on the ability to parse
the structure of a run by only storing a finite amount of information. However, the question of
deriving syntactic restrictions that lead to the semantic ones found above remains often open,
e.g, in the case of eager RCPS where there always exists an order-equivalent one-stack run (see
Lemmata 1 & 2).

Related Works Generating graph representations of partial order runs via graph grammars
is orthogonal to encoding the runs of transition systems itself into derivations of an appropriate
graph grammar [Roz97]. The presented approach allows to specify/verify properties on runs,
and not to only verify whether a configuration of a certain pattern is reachable.

Our run graphs are close in spirit to message sequence charts (MSC), and high-level MSC. The
connection of MSO and (restricted classes of) MSC (Proposition 2) is well-known, e.g., [Mad03,
GKM07]. However, Corollary 1 introduces the novel aspect of bounded treewidth. The rela-
tion of MSO and a nested-word representation of RCPS’s runs was first considered in [MP11],
whereas the focus remained on proving the bounded treewidth of RCPS and related models
by sophisticated graph decomposition schemata. MSO for finite processes synchronizing over
shared variables were already investigated in [MTY05] and extended in [BCGZ11] to recursive
processes with a global phase boundedness restriction. The latter article was able to derive a
(2)EXPTIME complexity for model checking MSO on the underlying traces, based on an a priori
known trace decomposition from [MP11]. Our considerations would give rise to a more gen-

Proc. GTVMT 2012 12 / 15

ECEASST

eral approach based on a given graph grammar and its straightforward relation to tree automata
recognizing term representations of run graphs [CE11].

A closer look onto the complexities of Propositions 2 and 4 reveals a tower of exponentials
depending on the quantifier height of the MSO formula [CE11]. Recent results on MSO defin-
able temporal logics on traces derive better complexities [BCGZ11, GK10] based on optimized
translations to automata problems. Those fragments of MSO could, e.g., define an operator F p

(for “reachable for process p ∈ Proc”) as MSO formula with one free variable λx(φ(x)) (see
Example 2). Optimal algorithms for these MSO fragments on the classes of RCPS considered
here remain an open question.

Outlook One can directly extend the previously introduced proof technique to other settings
like bounded lock graphs [KW10] or the k-phase bounded RCPS [HLMS11]. A natural ex-
tension of our grammars would focus infinite run graphs or branching time properties. Besides
MSO, we also started to take a look on interpreting linear temporal logics on Mazurkiewicz traces
in our graph setting, which also would propose a propositional logic weaker than full MSO. Cur-
rently, a variety of other graph measures came into focus, like bounded path-width [DSG11] or
the vertex cover number [PL11]; these could be the point of departure for deeper insights into
novel semantic restrictions for other subclasses of (R)CPS.

Acknowledgements We thank the anonymous reviewers and the GT-VMT community for
constructive feedback, as well as J. Leroux, A. Muscholl, and G. Sutre for stimulating discus-
sions. This work was partly supported by the project ANR AVerISS (ANR-06-SETIN-001).

Bibliography

[BCGZ11] B. Bollig, A. Cyriac, P. Gastin, M. Zeitoun. Temporal Logics for Concurrent
Recursive Programs: Satisfiability and Model Checking. In Proc. of MFCS’11.
LNCS 6907, pp. 132–144. Springer, 2011.

[Bod98] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. TCS
209(1–2):1–45, 1998.

[BZ83] D. Brand, P. Zafiropulo. On Communicating Finite-State Machines. JACM
30(2):323–342, 1983.

[CE11] B. Courcelle, J. Engelfriet. Graph Structure and Monadic Second-Order Logic, a
language theoretic approach. Cambridge Univ. Press, 2012. (to be published).

[CF05] G. Cécé, A. Finkel. Verification of programs with half-duplex communication. In-
formation and Computation 202(2):166–190, 2005.

[CV09] R. Chadha, M. Viswanthan. Deciding branching time properties for asynchronous
programs. TCS 410(42):4169–4179, 2009.

[DKH97] F. Drewes, H.-J. Kreowski, A. Habel. Hyperedge Replacement Graph Grammars. In
[Roz97]. pp. 95–162.

13 / 15 Volume 47 (2012)

Model Checking Communicating Processes

[DSG11] G. Delzanno, A. Sangnier, G. Zavatarro. On the Power of Cliques in the Parame-
terized Verification of Ad Hoc Networks. In Proc. of FOSSACS’11. LNCS 6604,
pp. 441–455. Springer, 2011.

[GK10] P. Gastin, D. Kuske. Uniform satisfiability problem for local temporal logics over
Mazurkiewicz traces. Information and Computation 208:797–816, 2010.

[GKM07] B. Genest, D. Kuske, A. Muscholl. On communicating automata with bounded chan-
nels. Fundamenta Informaticae 80:147–167, 2007.

[Heu10] A. Heußner. Run Graphs of Communicating Processes and MSO. In CONCUR’10
YR Workshop. pp. 75–78. 2010.

[HLMS11] A. Heußner, J. Leroux, A. Muscholl, G. Sutre. Reachability Analysis of Communi-
cating Pushdown Systems. LMCS, 2011. to be published.

[KG07] V. Kahlon, A. Gupta. On the analysis of interacting pushdown systems. In Proc of
POPL’07. Pp. 303–314. ACM, 2007.

[KW10] V. Kahlon, C. Wang. Universal Causality Graphs: A Precise Happens-Before Model
for Detecting Bugs in Concurrent Programs. In Proc. of CAV 2010. LNCS 6174,
pp. 434–449. 2010.

[Lau88] C. Lautemann. Decomposition Trees: Structured Graph Representation and Efficient
Algorithms. In Proc. of CAAP’88. LNCS 299, pp. 28–39. Springer, 1988.

[LM04] M. Lohrey, A. Muscholl. Bounded MSC communication. Information and Compu-
tation 189(2):160–181, 2004.

[LMP08] S. La Torre, P. Madhusudan, G. Parlato. Context-Bounded Analysis of Concurrent
Queue Systems. In Proc. of TACAS’08. LNCS 4963, pp. 299–314. Springer, 2008.

[Mad03] P. Madhusudan. Model-checking Trace Event Structures. In Proc. of LICS. Pp. 371–
380. 2003.

[MP11] P. Madhusudan, G. Parlato. The Tree Width of Automata with Auxiliary Storage. In
Proc. of POPL 2011. ACM, 2011.

[MTY05] P. Madhusudan, P. S. Thiagarajan, Yang. The MSO Theory of Connectedly Commu-
nicating Processes. In Proc. of FSTTCS 2005. LNCS 3821, pp. 201–212. Springer,
2005.

[PL11] M. Praveen, K. Lodaya. Parameterized Complexity Results for 1-safe Petri Nets. In
Proc. of CONCUR’11. LNCS 6901, pp. 358–372. Springer, 2011.

[Ram00] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2):416–430, 2000.

[Roz97] G. Rozenberg. Handbook of Graph Grammars and computing by Graph Transfor-
mation. World Scientific, 1997.

Proc. GTVMT 2012 14 / 15

ECEASST

[RS86] N. Robertson, P. D. Seymour. Graph minors III: Planar tree-width. Journal of Com-
binatorial Theory, Series B 41:92–114, 1986.

[See75] D. Seese. Ein Unentscheidbarkeitskriterium. WZ HU Berlin Mathem.-Naturw. Reihe
XXIV 6:772–780, 1975.

15 / 15 Volume 47 (2012)

	Verifying (Recursive) Communicating Processes
	Run Graphs and MSO
	Representing Classes of Run Graphs by HRG
	Bounded Finite CPS
	Eager 1-stack RCPS

	Conclusion

