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Abstract: Parallel rewriting of typed attributed graphs, based on the single-pushout
approach extended by connection transformations, serves as the backbone of the
multi-paradigm language XL, which is widely used in functional-structural plant
modelling. XL allows to define instantiation rules, which enable an instancing of
graphs at runtime for frequently occurring substructures, e.g., in 3-d models of
botanical trees. This helps to save computer memory during complex simulations
of vegetation structure. Instantiation rules can be called recursively and with refer-
ences to graph nodes, thus providing a unifying formal framework for various con-
cepts from the literature: object instancing, structural factorization, Xfrog multiplier
nodes, L-systems with interpretation. We give simple examples and measure the
computation time for an idealized growing virtual plant, taken from the GreenLab
model, in its implementation with instantiation rules in XL, compared to a version
without instantiation rules.

Keywords: instantiation rules, structural factorization, XL, growth grammar

1 Introduction

Realistic simulation of large vegetation scenes or growing plant structure may become computa-
tionally very intensive if no methods to reduce the geometrical complexity are used. Especially
in the case of tree growth simulations, the number of organs may fast exceed several millions.

To save computer memory, different techniques have already been proposed in the field of
computer graphics. When employing one of them, object instancing [Sut63], the geometric
representation is specified just for one or more representative plants (master). Other identical
plants (instances) are placed at different positions in the scene, having a reference to the master
object. Instances may be exact copies of the referenced object [Har92] or approximate ones
[DHL+98, Bro96].

Thanks to the repetitive nature of plants, instancing may also be applied on several levels
within the plant structure. To efficiently render trees that look realistic from both distant and
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Structural Factorization with Parallel Graph Grammars

close views Max [Max96] modelled larger structures from smaller ones: a leaf is used to form a
twig with several leaves, several twigs form a big twig, big twigs form a subbranch, and so on.

Cournède proposed a mathematical formalism [CKM+06] for decomposition of a growing
plant into substructures [RGQH03], that strongly relies on botanical principles. It assumes that
all organs of the same kind, created at the same time, behave identically. Identical organs, or
rather groups of organs (substructures), are then treated as instances. This formalism of “struc-
tural factorization” of plants is of special interest in the area of functional-structural plant mod-
elling, where plant structure and growth is modelled as the result of underlying physiological
processes governed by environment. These models are calibrated on real measurements, and
to identify the model parameters, the simulation process has to be performed a large number
of times [CKM+06]. The algorithm is used in the GreenLab model [CKM+06, MCL+09] and
allows efficient computation of both, plant development (deterministic and stochastic) and func-
tioning. In combination with parallel computing, it was also used for fast simulations of forest
growth [CGB+09].

In higher plants, the elementary botanical units named metamers or phytomers are set in place
rhythmically or continuously depending on the type of plants [BC07]. In the rhythmic case, the
plant grows by successive shoots of several metamers produced by buds. The appearance of these
shoots defines the architectural growth cycle. A growth unit is the set of metamers built by a bud
during a growth cycle. Growth units can be of different kinds and ordered according to botanical
rules, like acrotony. Plant growth is said continuous when meristems keep on functioning and
generate metamers one by one. The number of metamers on a given axis (that is to say gener-
ated by the same meristem) is generally proportional to the sum of daily temperatures (above a
reference temperature depending on the species) received by the plant. In such case, the growth
cycle is defined as the thermal time unit necessary for a meristem to build a new metamer. In
both continuous and rhythmic cases, the chronological age of a plant (or of an organ) is defined
as the number of growth cycles it has existed for, and the organogenesis is used as the time step
to model the plant as a discrete dynamical system.

Quite naturally, owing to the simultaneous functioning of the meristems, parallel string rewrit-
ing grammars, i.e. L-systems [PL90], are most widely used to model plant organogenesis. The
possibility to factorize L-system productions was pointed out already by Smith [Smi84]. Hart
[Har92] and Brownbill [Bro96] studied methods for converting L-system models into object in-
stancing models. In [Har92], also recursive instancing was allowed. Using the idea of substruc-
ture instances [YBRH02], Ding et al. [DZZ06] demonstrated an improvement of the efficiency
of an L-system-based algorithm for creation of simple trees. If only organogenesis is mod-
elled, the mathematical formalism of structural factorization can also be expressed by L-systems
[CKM+06].

Widely used in the area of functional-structural plant modelling is the language XL (eXtended
L-system language) [Kni08]. XL is a superset of the language Java and supports the specification
of graph grammars. It also allows to define instantiation rules, which enable an instancing of
graphs for frequently occuring substructures, e.g., in 3-d models of botanical trees. Instantiation
rules were successfully used to implement multiplication components for modelling of plants as
used in the modelling software Xfrog [Hen06]. In this paper we would like to explore their use
for implementing the formalism of structural factorization.

We first give a theoretical background on the language XL, including the formal definition of
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instantiation rules. Afterwards we show how to use these rules to produce inflorescence patterns,
fractals, and to efficiently simulate plant development based on structural factorization.

2 Theoretical Background

The graph model which describes the basic data structure of the language XL is that of typed
attributed graphs with inheritance over a type graph [Kni08] (p. 98). “Typed” means that nodes
of the graph belong to a finite number of classes, called “modules” in XL, and in an application
of a graph grammar rule, the types of matching nodes have to coincide. Likewise, the edges
belong to a finite number of edge types, which have also to be taken into account during graph
matching. For a given edge type, at most one edge of this type is allowed between two given
nodes. The edge types can thus be interpreted as relations on the set of nodes. A “type graph” can
be specified to restrict the allowed types of edges between nodes of given types. “Inheritance”
is a concept taken from object-oriented programming and allows a hierarchy among the node
types. “Attributed” refers to the nodes which can have a finite number of attributes of arbitrary
data type.

The parallel application of a graph grammar on a graph conforming to this model is in [Kni08]
(p. 101ff.) defined as a special case of the single-pushout approach from algebraic graph gram-
mar theory [EHK+97] extended by connection transformations and operators. The latter provide
an embedding mechanism for the right-hand sides of rules into the host graph which allows
to consider classical parallel string-rewriting rules (L-system rules) as a special case of graph
rewriting.

In the following, we simplify the definitions from [Kni08] in order to avoid too much technical
overhead. Particularly, we omit the attributes, the inheritance relation and the restriction imposed
by a type graph. “Instantiation rules” as a special sort of graph transformation rules have not been
formally defined in [Kni08], although they have been described as part of the language XL there
and have been used in various examples.

Definition 1 A Relational Growth Grammar graph (RGG graph) is a quintuple
G = (TN ,TE ,N,E, t), where TN 6= /0 is a finite set of node types, TE 6= /0 a finite set of edge types,
N a set of nodes, E ⊆ N×TE ×N a set of typed edges, and t : N → TN a node typing function.
An RGG graph isomorphism is a graph isomorphism which preserves node and edge types.

The language XL makes use of a string notation of RGG graphs which is demonstrated in
Figure 1.

Definition 2 A bi-rooted RGG graph (G,n0,n1) is an RGG graph with two distinguished nodes
n0,n1 ∈ N.

Definition 3 An (unconditional) RGG rule with L-system style embedding is a pair
((G1,m0,m1),(G2,n0,n1)) of two bi-rooted RGG graphs (G1,m0,m1) (the left-hand side or search
pattern) and (G2,n0,n1) (the right-hand side or production pattern). The application of an RGG
rule to a host RGG graph H consists of the simultaneous replacement of all subgraphs of H which
are isomorphic (via an RGG graph isomorphism) to G1 by G2, with a subsequent redefinition of
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Figure 1: Example of an RGG graph G with node types A, B, C and edge types p, q, r. Given
is also a string notation s(G) of the graph in XL (not unique). b and c are labels referring to
particular nodes.
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Figure 2: Result of a parallel rule application to the RGG graph of Figure 1 (see text).

some of the incoming and outgoing edges: Each edge going from the rest of the host graph to
the node m0 in G1 is redirected to n0, and each edge going from m1 in G1 to the rest of the host
graph gets n1 as its new start node. All other edges going into or out of G1 are deleted.

In the case that an edge goes from m1 in one isomorphic copy of G1 to m0 in another copy, an
edge of the same type is inserted from n1 of the first copy of G2 to n0 of the second copy of G2
(see [Kni08] for a more rigorous definition). In the case of overlapping copies of G1 in H, the
result of rule application is undefined.

For shortness, we write G1 ==> G2 for an RGG rule, omitting the nodes m0,m1,n0 and n1.
In the language XL, the distinguished nodes of an RGG rule are not given explicitly, but are
taken from the string representation of the graphs: m0 is the leftmost and m1 the rightmost node
in s(G1), and analogously for G2. For instance, the application of the RGG rule

A ==> D -r-> E

to the graph in Figure 1 will result in the graph depicted in Figure 2.
The advantage of this form of embedding the right-hand side into the host graph is its consis-

tency with parallel string rewriting by L-systems. A string which is transformed by an L-system
can simply be represented by a linear chain of nodes, connected by edges of just one special type,
which we call “successor edges”. The symbols of the L-system correspond to the node types.
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Note that our definition of an RGG rule does not require that the l.h.s. G1 and the r.h.s. G2 are
disjoint. This allows to preserve individual nodes of G1, standing for objects in the applications,
with all their attributes during rule application. In XL, this preservation is enforced by node
labels which serve as unique identifiers. E.g., after an application of the rule

a:A -p-> B ==> a -q-> B,

the type A node named a from the l.h.s. is preserved, while the type B node is deleted and
replaced by another type B node.

Definition 4 An RGG (Relational Growth Grammar) (TN ,TE ,G0,R) consists of a finite set of
node types TN 6= /0, a finite set of edge types TE 6= /0, a start RGG graph (axiom) G0 and a finite
set of RGG rules R, with G0 and R having all node and edge types from TN , resp., TE .

The parallel application of rules from an RGG to a host graph is performed in the same way
as in the case of a single rule. In XL, all node types in TN have to be declared first, using the
keyword “module” (also possible: “class”). XL allows to split the set of rules into several subsets
which are accessible under user-defined names. Control structures like conditional branches or
loops can be used. Likewise, these control structures can also occur on the r.h.s. of rules to
control the production of subgraphs. We omit these extensions in our definitions because they
are not central for the notion of instantiation rules.

Definition 5 An instantiation rule is an RGG rule N ==> G, where the l.h.s. consists only of
a single node of type N. An RGG with instantiation rules is a quintuple (TN ,TE ,G0,R, I) where
the first 4 components form an RGG and I is a finite set of instantiation rules with node and edge
types from TN , resp., TE .

The application of an RGG with instantiation rules is performed as shown in Figure 3.
G1,G2, ... are the RGG graphs which are successively obtained from the start graph G0 by parallel
application of (potentially) all rules from R in each transformation step. They usually correspond
to rough structural descriptions of the simulated objects at discrete timesteps. S0,S1, ... are the
RGG graphs which are obtained from G0,G1, ... by parallel application of (potentially) all rules
from I. These rules can also be applied recursively. The graphs Si usually stand for detailed
geometrical descriptions (scene graphs) of the simulated objects. S0,S1, ... can be regarded as
a simulated developmental sequence of the objects. Note that this way of applying two sets of
rules is not equivalent to that used in “table L-systems”, since the graphs Si do not undergo a
new application of rules in the next step. Nondeterminism is possible for both rule sets, R and I,
when it makes sense in an application, and can be resolved in XL by stochastic choice of rules
with given probabilities. When XL is used, the graphs Si are not stored as data structures in the
computer memory, but are derived “on the fly” by applying rules from I to Gi at runtime in the
moment when they are needed (e.g., for rendering an image of the simulated structures). In the
case of large graphs, this can lead to a gain in efficiency.

The same scheme of rule application is also valid for L-systems or graph grammars with
interpretive rules [Kni08] (also called interpretative [Kur94] (p. 25), interpretation [PHM00],
or homomorphism rules [Měc05]). Interpretive rules differ from instantiation rules in the feature
that multiple instances of a right-hand side of an interpretive rule which are obtained from Gi
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G0 G1 G2 . . .

S0 S1 S2 . . .

I
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I

R
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Figure 3: Way of operation of an RGG with normal RGG rules R and instantiation rules I, starting
from RGG graph G0.

are stored as different copies (being parts of Si) and can thus later be accessed and manipulated
individually. This is not possible for the results of instantiation rule application. The latter are,
however, less demanding in terms of computation space and time.

A further extension of the concept of instantiation rule allows to construct graphs which en-
code in a concise manner the way how objects or groups of objects are multiplied and trans-
formed in space, including recursive constructions leading to fractals. As special cases, the mul-
tiplicator nodes used in the interactive plant modelling software Xfrog [DL05] can be derived
this way [Hen06].

Definition 6 An RGG with instantiation rules and references is an RGG where the right-hand
sides of the instantiation rules can contain specific nodes of the form Re f (e), where e is an edge
type. When applied to a node a in the host graph H, each node of form Re f (e) is replaced by
a copy of the subgraph of H which is directly connected with a via an edge of type e emerging
from a, if such an edge exists (otherwise the Re f (e) node is deleted). In case of more than one
edge of type e starting in a, the choice of the adjacent subgraph is nondeterministic.

For instance, the instantiation rule

R ==> Ref(p) -q-> Ref(p),

applied to the host graph R -p-> A, will result in the graph A -q-> A -p-> A. Since in
most applications, the edges of type p will be ignored during further processing (e.g., rendering
- only the subgraph spanned by a special subset of edge types is used for rendering in XL), we
will effectively have a copy of the referenced A node: A -q-> A. This can be extended to more
complex copy operations, as we will see in the examples sections. In the language XL, the Ref
nodes are effectively realized by calls of the method getFirst(e).

3 Examples

3.1 Inflorescence Patterns and Fractals

We will first show two simple examples, providing the complete code in the language XL, which
demonstrate that the concepts introduced above can be expressed in XL in a straightforward way.
The first example (code listed in Table 1) defines a node “Infl” (standing for “inflorescence”)
by an instantiation rule with references. Similar to the effect of the “Hydra” node from Xfrog
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Table 1: Listing of the XL code for the inflorescence example (see text).

1 const int m = EDGE_0;
2 module Infl ==> for (int i: 1:250) ([
3 { float h = i * 0.02;
4 float s = 0.2 * Math.sqrt(i); }
5 M(-h) RH(i*137.5) Translate(s,0,0) RU(i*80/250)
6 Scale(0.2,0.2,0.3*h+0.1) getFirst(m)
7 ]);
8 public void run() [
9 Axiom ==> P(10) Cylinder(20, 1) Cone(5.2, 2.4) P(14)

10 Infl -m-> Sphere;
11 ]

[DL05], the execution of this rule creates 250 scaled copies of the structure attached via an edge
of type m and arranges them in a pattern following spiral phyllotaxis (Figure 4, right-hand part;
see [Hen06] for the emulation of the other Xfrog arrangement nodes in XL).

In XL, edges of the standard type “successor” are automatically generated when nodes are
separated by blanks (or linefeeds), as in the right-hand side of the rule in line 9. An edge type
other than the standard ones requires a declaration of a corresponding identifier (here “m”, done
in line 1) and can then be used in the form “-m->” (line 10), here to connect the node of type
Infl with a node corresponding to a geometrical object, here a Sphere with default radius
1. Sphere belongs, together with Cylinder, Cone and the geometrical transformation node
types M (move), Translate (shift by a vector), RH (rotate around head direction), RU (rotate
around up direction), P (set colour index) and Scale (rescale coordinates for the subsequent
scene subgraph) to the default node types of XL, which do not need to be declared in the code,
whereas Infl is a user-defined node type declared with an instantiation rule in lines 2-7. The
“for” control structure in line 2 (with its body ending in line 7) iterates the production of the
nodes which are specified in lines 5-6, together with the execution of the imperative statements
in lines 3-4, with a counting index i running from 1 to 250. The calculations of h and s and the
rotation angles and scaling factors in lines 5-6 were fitted to the botanical object to be modelled.
The user can edit these lines to adapt the structure of the created inflorescence to empirical
findings - and has thus much more flexibility than with a given standard portfolio of multiplier
nodes as provided by the Xfrog software [DL05].

From the default start node called “Axiom”, the execution of the “run” method (line 8) gen-
erates in one step of rule application a chain of four nodes with geometrical/visible meaning
(line 9), followed by a node of type Infl and – attached by an m edge – a single Sphere node
(line 10). This graph is saved internally (Figure 4 left).

During rendering, the Infl node is further transformed by the instantiation rule: In each
iteration of the loop (line 2), a separate branch (enclosed by brackets [ ], line 2 and 7) is created,
consisting of geometry nodes (line 5) and a scaled copy of the sphere from line 10, which is
found by following the getFirst reference (line 6) along the edge -m-> from the processed
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Figure 4: Structure resulting from the inflorescence example (Table 1). Left: Generated graph
after the application of the single non-instantiation rule (lines 9-10 in Table 1). Unbroken edges
stand for the successor relation, broken edges for a type m connection. Right: Rendered view
of the corresponding 3-d structure, taking the application of the instantiation rule (lines 2-7) into
account.

Infl node in line 10. getFirst(m) corresponds to a reference node Re f (m). This results in
the visual arrangement of 250 ellipsoids shown in Figure 4 (right part).

In an analogous way, the code from Table 2 produces after n steps of application of the run
rules (lines 8-9) a chain of n− 1 nodes of type Rec and one node of type A (Figure 5, left
part). The instantiation of the Rec nodes by the translated copies which are referenced in the
instantiation rule in lines 3-6 renders this graph into a Sierpinski triangle of recursion depth n
(Figure 5, right part). Note that the stored graph is growing only linearly in n. The initiator A
is here getting its shape from a sphere (line 2), but the shape of the initiator has no influence on
the resulting fractal pattern for large n. The method can easily be generalized to other iterated
function systems (IFS) or recurrent IFS (RIFS), cf. [Har92].

The Sierpinski triangle can also be generated by an instantiation rule in a purely recursive
way, without references (Table 3). The generated graph is then even simpler: it consists of only
two nodes, Root → Rec, and its structure does not change during rule application. Only the
parameter n of the Rec node, denoting recursion depth, is incremented. A disadvantage is that
the graph carries less visible information for the user.

Both recursive versions of the XL code for the Sierpinski fractal are not optimal in terms of
efficiency, since in an implementation on a real computer the size of the recursion stack will
soon be limiting when n is increased. However, XL provides also the possibility to implement
the rewriting rule of the Sierpinski triangle in a direct way (without instantiation), avoiding heavy
stack loading, as was shown in [TBB+08] (p. 528). This solution turned out to be quite efficient
and allowed to reach a recursion depth of 20, resulting in a graph with more than 5 million nodes.
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Table 2: XL code for Sierpinski triangle, version with instantiation rules with references.

1 const int m = EDGE_0;
2 module A extends Sphere(0.4);
3 module Rec ==>
4 Scale(0.5) [ Translate(0, 0.5, 0) getFirst(m) ]
5 [ Translate(-0.433, -0.25, 0) getFirst(m) ]
6 [ Translate(0.433, -0.25, 0) getFirst(m) ];
7 public void run() [
8 Axiom ==> A;
9 A ==> Rec -m-> A;

10 ]

Figure 5: Structure resulting from the Sierpinski triangle example (Table 2). Left: Generated
graph, right: rendered view of the corresponding 3-d structure.

Table 3: XL code for the Sierpinski triangle, recursive version without references (output as in
Figure 5, right-hand side).

1 module Rec(int n) ==>
2 if (n == 0) (
3 Sphere(0.4)
4 ) else (
5 Scale(0.5) [ Translate(0, 0.5, 0) Rec(n-1) ]
6 [ Translate(-0.433, -0.25, 0) Rec(n-1) ]
7 [ Translate(0.433, -0.25, 0) Rec(n-1) ] );
8 public void run() [
9 Axiom ==> Rec(0);

10 Rec(n) ==> Rec(n+1);
11 ]
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3.2 Structural Factorization of Plant Architecture

In an individual plant, cohorts of similar organs are created at each growth cycle. Many simula-
tion models handle each of them individually, which may lead to cumbersome computation in the
case of tree growth simulations, as the number of organs may exceed several millions. However,
it is often not necessary to consider local environmental conditions at the organ level. Thus, we
suppose that all organs of the same kind, created at the same growth cycle, behave identically.
From a modelling point of view, this leads to a powerful structural factorization of the plant,
based on botanical instantiations: organs are grouped by categories, for example based on their
physiological ages, characterizing their morphogenetic differentiation, see [BC07]. Compact
inductive equations of organogenesis can thus be deduced, as detailed in [CKM+06].

Let P be the maximum number of metamer categories that we consider in the plant. It is gen-
erally very small, inferior to 5. At growth cycle t, a metamer is characterized by its physiological
age p, the physiological age of its axillary branches q (with q≥ p) and its chronological age n. It
will be denoted by mt

pq(n). These three indices p, q, n are sufficient to describe all the metamers
and their numbers grow linearly with t. A bud is only characterized by its physiological age p
and will be denoted by sp.

The terminal bud of a plant axis produces different kinds of metamers bearing axillary buds of
various physiological ages. These buds themselves give birth to axillary branches and so on. A
substructure is the complete plant structure that is generated after one or several cycles by a bud.
In the deterministic case, all the substructures with the same physiological and chronological
ages are identical if they were set in place at the same moment in the tree architecture. At cycle
t, a substructure is thus characterized by its physiological age p and its chronological age n. It
will be denoted by St

p(n). Since the physiological age of the main trunk is 1, at growth cycle t, the
substructure of physiological age 1 and of chronological age t, St

1(t), represents the whole plant.
The total number of different substructures in a plant of chronological age t is small, usually less
than 30, even if the total number of organs is high. Substructures and metamers are repeated a
lot of times in the tree architecture, but they need to be computed only once for each kind.

We use the concatenation operator (represented by the product symbol) to describe the orga-
nization of plant metamers and substructures and deduce their construction at growth cycle t by
induction, as follows:

• Substructures of chronological age 0 are buds:

St
p(0) = sp

• If we suppose that they built all substructures of chronological age n− 1, we deduce the
substructures of chronological age n

St
p(n) =

[
∏

p≤q≤P

(
mt

pq(n)
)upq(t+1−n)(St

q(n−1)
)bpq(t+1−n)

]
St

p(n−1) (1)
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Figure 6: Construction of substructures for a plant with deterministic development. The sub-
structure of physiological age 1 and chronological age 2, S1(2), is built of the base growth unit,
consisting of two metamers of type m13 and one metamer of type m12, and of substructures of
chronological age 1 (created in the previous step): two lateral substructures of physiological age
3, one lateral substructure of physiological age 2, and the terminal substructure of physiological
age 1.

For all (p,q) such that 1 ≤ p ≤ P, p ≤ q ≤ P,
(
upq(t)

)
t and

(
bpq(t)

)
t are sequences of in-

tegers that are characteristic of the plant organogenesis: upq(t) corresponds to the number of
metamers mpq in growth units of physiological age p appearing at growth cycle t; bpq(t) is the
number of axillary substructures of physiological age q in growth units of physiological age p
that appeared at growth cycle t. These sequences can be deterministic (fixed or determined by
the functional part of the plant as detailed in [MCL+09]) or stochastic (the induction equation
(1) would be generalized in such case with the generating functions of the number of elements
in plant architecture, see [LC08]).

In Equation 1, substructure St
p(n) is decomposed into:

• its oldest growth unit, called base growth unit:

∏
p≤q≤P

(
mt

pq(n)
)upq(t+1−n)

• the lateral substructures borne by the base growth unit (they are one cycle younger):

∏
p≤q≤P

(
St

q(n−1)
)bpq(t+1−n)

• the substructure grown from the apical bud of the base growth unit (also one cycle younger):

St
p(n−1)
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Table 4: XL code for plant development based on structural factorization, recursive version with
an instantiation rule.

1 module Bud(int p) extends Sphere
2 { ... /* set radius, shader */ }
3 module Metamer(int p, int q) extends Cylinder
4 { ... /* set radius, length, shader */ }
5 module Substructure(int p, int n) ==>
6 if (n > 0) (
7 for (int j = 5; j >= p-1; j--) (
8 for (int i = 0; i < u[p-1][j]; i++) (
9 RH(ang_ph[p-1]) Metamer(p, j+1)

10 for (int k = 0; k < b[p-1][j]; k++) ( [
11 if (k > 0) ( RH(360.0 / b[p-1][j] * k) )
12 RU(ang_br[p-1][j]) Substructure(j+1, n-1)
13 ] )
14 )
15 )
16 Substructure(p, n-1)
17 ) else (
18 Bud(p)
19 );
20 public void run() [
21 Axiom ==> Substructure(1, 0);
22 Substructure(p, n) ==> Substructure(p, n+1);
23 ]

Note that for deterministic growth, the substructures are independent of growth cycle t. The
decomposition of a plant with deterministic development is illustrated in Figure 6. If we ap-
pend geometrical rules (e.g., internode lengths, branching angles, phyllotaxy) to the structural
equations, we will obtain the 3-d architecture of a geometrical tree.

The (deterministic) construction of substructures can be directly translated to XL code, using
instantiation, as shown in Table 4. The phyllotactic and branching angles are part of the instan-
tiation rule, with parameters ang ph and ang br, respectively. The arrays u, b stand for upq,
resp. bpq, with values set as in [KRB+03]. The resulting structure is shown in Figure 7 (middle,
right). The graph generated after the rule applications consists, similarly to the purely recursive
Sierpinski triangle example, of two nodes, Root -> Substructure.

We have modified the recursive algorithm from Table 4 to store the substructures of all phys-
iological and chronological ages (as shown in Figure 6) in a list, so that they could be reused as
instances later on. An example of the underlying graph is shown in Figure 7 (left).

Furthermore, our basic algorithm for plant development, not taking advantage of structural
factorization and instantiation rules, was presented in [SHK12].
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Figure 7: Model example. Left: The essential structure of the generated graph (non-recursive
version) for the substructure of physiological age 1 and chronological age higher than 0. It con-
sists of metamers (M) of the base unit and corresponding substructures (S). Lateral substructures
are connected to metamers by a branching edge (dash-dot style). Middle: Simulated topology
at growth cycle 5 for S1(5). Right: The same topological structure with improved geometrical
representation.

To compare the computation cost of structure generation in the three above-mentioned imple-
mentations of plant development, simulation time for the development of the same virtual plant
(Figure 7 middle, cf. [KRB+03, SHK12]) as well as memory requirements were measured on
a computer with Intel Core i7 CPU 950, 3.07 GHz, and 12 GB RAM. We show the results in
Table 5 and Figure 8 for six age stages. At the last stage, represented by age 30, the number of
metamers in the plant structure reaches over 4 million. Together with buds, the total number of
objects in the simulated structure is over 4.3 million. Without instantiation rules, the computa-
tion time for the simulation is about 103 seconds. With instantiation rules, the time is reduced
by factor of 2,000 if the algorithm with lists is used, and even more if the recursive algorithm
is used. Also the memory requirements are reduced; to 5% or 2%, respectively. Note that the
measured time corresponds to the execution of the growth rules in the method run. To obtain
the final geometry if instantiation rules are used, e.g., for rendering, the graph has to be traversed
(the instantiation rules are executed).

4 Conclusions

Object instancing is an established technique improving the performance when modelling and
rendering vegetation. Giving the theoretical background first, we presented the features of the
XL language, supporting instancing of graphs, i.e., instantiation rules. The language XL with its
instantiation rules provides a unifying formal framework for concepts of object instancing, Xfrog
multiplier components, structural factorization, L-systems with interpretation. Here, we demon-
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Table 5: Simulation time (in ms) and memory requirement (in MB) for the growing plant from
Figure 7. A (Basic) refers to the basic algorithm without structural factorization from [SHK12],
B (Recursion) refers to the recursive algorithm from Table 4, and C (List) shows the perfor-
mance of the algorithm that stores the substructures in a list. Simulation time (Time A, B, C)
corresponds to the execution of the growth rules. To measure the total time (with final geometry)
if instantiation rules are used, the time for the graph traversal has to be added. See text for more
details.

Plant age 5 10 15 20 25 30
Metamers 2,440 44,480 238,120 775,360 1,928,200 4,048,640
Objects 3,621 54,441 272,461 857,681 2,090,101 4,329,721
Time A (Basic) 30.96 618.61 3,915.22 15,421.00 40,540.11 103,633.07
Time B (Recursion) 0.29 0.59 0.83 1.06 1.39 1.71
Time C (List) 6.55 14.39 23.17 31.38 41.39 50.63
Graph traversal B 6.47 63.06 301.68 957.49 2,391.31 4,578.85
Graph traversal C 9.21 81.61 391.00 1,192.62 2,739.19 5,370.88
Total time B 6.76 63.65 302.51 958.55 2,392.70 4,580.56
Total time C 15.76 96.00 414.17 1,224.00 2,780.58 5,421.51
Time ratio C/B 22.6 24.4 27.9 29.6 29.8 29.6
Time ratio A/C 4.7 43.0 169.0 491.4 979.5 2,046.9
Total time ratio A/B 4.6 9.8 12.9 16.1 16.9 22.6
Total time ratio A/C 2.0 6.4 9.5 12.6 14.6 19.1
Memory A 32 42 155 341 791 1573
Memory B/A (%) 88 69 17 6 3 2
Memory C/A (%) 247 183 54 23 10 5
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Figure 8: Simulation time for the growing plant from Figure 7 (for algorithms A, B, C according
to Table 5).
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strated their use for modelling inflorescence patterns and fractals, and finally for the structural
factorization of deterministically growing plants, decreasing the computational cost of simula-
tions greatly.

Further work may comprise several issues. We would like to explore which algorithm, imple-
menting structural factorization, is most suitable for modelling stochastic structures and physi-
ological processes within plants. Although the recursive algorithm gives the best results for the
tested structure in terms of computation time and memory, it might carry too less information
for further use. The proposed instantiation rule for generating a plant structure is very simple.
By varying the input parameter values it can be used to generate various plant species. The rule
can easily be extended to support bud mutation (for explanation of the term see [RGQH03]), too.
Certainly, the ability to factorize a plant structure, i.e. to specify the parameter values for the
topology, depends on the experience of the user. Another direction of the future work would be
to investigate how to automatically factorize existing L-system plant models (based on [SS01])
while minimizing artefacts in visual appearance and functioning caused by possible reduction of
geometry. Important factor that should be kept in mind is the botanical fidelity of the models.

Acknowledgements: We thank Ole Kniemeyer, Reinhard Hemmerling and Michael Henke for
helpful comments. This research was funded by the German Research Foundation (DFG) under
project identifier KU 847/8-1.
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