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Abstract: Interaction nets are a particular kind of graph rewriting system that have
many properties that make them useful for capturing sharing and parallelism. There
have been a number of research efforts towards implementing interaction nets in
parallel, and these have focused on the implementation technologies. In this paper
we investigate a related question: when is an interaction net system suitable for par-
allel evaluation? We observe that some nets cannot benefit from parallelism (they
are sequential) and some have the potential to be evaluated in a highly parallel way.
This first investigation aims to highlight a number of issues, by presenting experi-
mental evidence for a number of case studies. We hope this can be used to help pave
the way to a wider use of this technology for parallel evaluation.

Keywords: Interaction nets, parallel evaluation, case studies

1 Introduction

Interaction nets are a model of computation based on a restricted form of graph rewriting: the
rewrite rules must be between two nodes on the left-hand side, be local (not change any part of
graph other than the two nodes), and there must be at most one rule for each pair of nodes. These
constraints have no impact on the expressive power of interaction nets (they are Turing complete),
but they offer a very useful feature: they are confluent by construction. The confluence property
taken together with the locality constraint means that they lend themselves to parallel evaluation:
all possible rewrites can be done in parallel.

There have been a number of studies on the parallel evaluation of interaction nets. Examples
include Pinto [Pin00], Jiresch [Jir14], and more recently Kahl [Kah15]. In all these works, it is
the parallel implementation that is the focus. Pinto’s work focusses on building abstract machines
for interaction nets that bring out the parallelism. Jiresch studies compiling nets for evaluation
on graphic processing units (GPUs), and finally, the work of Kahl uses a parallel implementation
of Haskell to build a simple interpreter on the underlying Haskell parallel framework. In all
these studies, evidence is obtained that interaction nets can benefit from parallel implementation:
examples are shown where speedup is possible. In this paper, we look at a completely different
aspect of this issue. We want to study which kinds of programs are suitable for, and thus can
take advantage of, parallel evaluation. Thus we study when is a net able to take advantage of
parallelism, and when it cannot (i.e., if it is sequential). We will do this though a number of
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case studies, and back up the work with experimental evidence using our own parallel evaluator
developed to support this study.

The specific question that we propose in this paper is: when is a particular interaction net
system well suited for parallel evaluation? More precisely, are some interaction nets “more
parallel” than others? A question that naturally follows from this is: can we transform a net so
that it is more suited for parallel evaluation? Once we have understood this, we can also ask
the reverse question: can a net be made sequential? The purpose of this paper is to make a start
to investigate these questions, and we begin with an empirical study of interaction systems to
identify when they are suitable for parallel evaluation or not.

We take a number of typical examples (some common ones from the literature together with
some new ones we developed for this paper) to see if they can benefit from parallel evaluation. In
addition, we make some observations about how programs can be transformed so that parallelism
is more useful. Using these examples, we give some heuristics for getting more parallelism out
of an interaction net system. Our focus will be restricted to comparing different interaction net
systems. Other platforms and programming languages supporting Parallel evaluation can be
found in the literature (see for example [JS08, HS08]). We leave for a future study how useful
interaction nets are in comparison to these alternative approaches.

The main contributions of the paper are:

1. Through examples and case studies we identify that some nets are sequential and some
have potential for parallelism. We observe that it is also possible to transform a net to
make it more parallel (and therefore by the reverse transform, more sequential).

2. We define an unbounded notion of parallel evaluation (all reductions possible are done in
one step). We build an evaluator to measure this, and we test it with a number of examples.

3. Finally, we use our own parallel evaluator that not only gives some practical aspect of the
case studies, but we can compare with extant parallel implementations.

This paper is the start of a research effort to understand better parallel evaluation of interaction
nets, and to put them to practical use.

Structure. In the next section we recall the definition of interaction nets, and describe the
notion of parallel evaluation that we are interested in. Through examples we motivate the ideas
behind this work. In Section 3 we give a few small case studies to show how parallelism can
have a significant impact on the evaluation of a net. In Section 4 we give some experimental
results, and discuss these. Finally, we conclude in Section 5.

2 Background and Motivation

In the graphical rewriting system of interaction nets [Laf90], we have a set Σ of symbols, which
are the names of the nodes in our diagrams. Each symbol has an arity ar that determines the
number of auxiliary ports that the node has. If ar(α) = n for α ∈ Σ, then α has n+ 1 ports: n
auxiliary ports and a distinguished one called the principal port.
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α

· · ·x1 xn

Nodes are drawn variably as circles, triangles or squares. A net built on Σ is an undirected graph
with nodes at the vertices. The edges of the net connect nodes together at the ports such that
there is only one edge at every port. A port which is not connected is called a free port.

Two nodes (α,β ) ∈ Σ×Σ connected via their principal ports form an active pair, which is the
interaction net analogue of a redex. A rule ((α,β ) =⇒ N) replaces the active pair (α,β ) by the
net N. All the free ports are preserved during reduction, and there is at most one rule for each
pair of agents. The following diagram illustrates the idea, where N is any net built from Σ.

α β
...

...
x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

The most powerful property of this system is that it is one-step confluent: the order of rewrit-
ing is not important, and all sequences of rewrites are of the same length (in fact they are just
permutations). This has practical consequences: the diagrammatic transformations can be ap-
plied in any order, or even in parallel, to give the correct answer. It is the parallelism aspect that
we develop in this paper.

We define some notions of nets and evaluation. A net is called sequential if there is at most
one active pair that can be reduced at each step. We say that a net is evaluated sequentially if one
active pair is reduced at each step. For our notion of parallel evaluation, we require that all active
pairs in a net are reduced simultaneously, and then any redexes that were created are evaluated
at the next step. We do not bound the number of active pairs that can be reduced in parallel.
We remark that the number of parallel steps will always be less than or equal to the number of
sequential steps (for a sequential net, the number of steps is the same for sequential and parallel
evaluation).

As an example, consider unary numbers with addition. We represent the following term rewrit-
ing system

add(Z,y) = y
add(S(x),y) = add(x,S(y))

as a system of nets with agents Z, S, +:

Z S +

together with two rewrite rules:
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Z

+

S

+

S

+

=⇒ =⇒

In this example, nets correspond to the terms in a very straightforward way. If we construct
the net corresponding to the addition of two numbers, then we can observe that the addition of
two numbers is sequential: at any time there is just one active pair, and reducing this active pair
creates one more active pair, and so on. We call operations like this batch operations. In terms
of cost, reducing the net corresponding to add(n,m) requires n+1 interactions. If we consider
the net corresponding to the term add(add(m,n),p), then the system is still sequential, and
the cost is now 2m+ n+ 2. Using associativity of addition, the situation changes significantly.
The net corresponding to add(m,add(n,p)) has sequential cost m+1+n+1 = m+n+2,
and parallel cost max(m+1,n+1). Thus, using the associativity property of numbers, we obtain
a system that is significantly more efficient sequentially, and moreover is able to benefit from
parallel evaluation. The example becomes even more interesting if we change the rules of the
rewrite system to an alternative version of addition:

add(Z,y) = y
add(S(x),y) = S(add(x,y))

The two interaction rules are now:

Z

+

S

+

+

S
=⇒ =⇒

Unlike the previous system, the term add(add(m,n),p) already has scope for parallelism.
We call operations like this stream operations. The sequential cost is now 2m+ n+ 2 and the
parallel cost is m+n+2. But again, if we use associativity then we can do even better and achieve
sequential cost m+n+2 and parallel cost max(m+1,n+1) for the term add(m,add(n,p)).

These examples illustrate that some nets are sequential; some nets can use properties of the
system (in this case associativity of addition) to get better sequential and parallel behaviours;
and some systems can have modified rules that are more efficient, and also more appropriate to
exploit parallelism. The next section gives examples where there is scope for parallelism in nets.

3 Case studies

The previous arithmetic example demonstrates that some systems are more amenable to parallel
evaluation than others. In this section we give some empirical case studies for a number of
different systems to show that when a suitable system can be found, the parallel evaluation gives
significantly better results than sequential evaluation.
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Fibonacci. The Fibonacci function is a good example where many recursive calls generate a
lot of possibilities for parallel evaluation. We build the interaction net system that corresponds
to the term rewriting system:

fib 0 = fib 1 = 1
fib n = fib(n-1) + fib(n-2)

Using a direct encoding of this system together with addition defined previously, we can obtain
an interaction system:

Fib Fib2Z
⇒

S

Z

Fib
⇒

S

Fib2 Z
⇒

S

Z

Fib S

Fib

Dup

+

Fib2
⇒

S

SDup ⇒

S S

Dup Dup ⇒Z
Z Z

The following is an example of rewriting:

Fib

Fib S

Fib

Dup

+

S

Z

S

S

Fib2

S

Z

�→ �→

Fib S
Fib

+

S

Z

S

Z

S

S

Z

�→
�

fib 3 fib 1 + fib 2

With respect to the two versions of the addition operation introduced in Section 2, we call the
former a batch operation, which returns the computational result after finishing processing all of
the given data, and the latter a streaming operation, which computes one (or a small number of)
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Figure 1: Comparing batch and streaming operations

elements of the given data and returns partial parts of the computational result immediately. The
graphs in Figure 1 show the number of interactions in each version, where we plot sequential
steps against parallel steps to indicate the rate of growth of each one. Both graphs demonstrate
that the sequential computation is exponential, while the parallel one is quadratic. We remark
that, in the parallel execution, the number of steps with the streaming operation are less than a
half of the numbers with the batch operation. This result is illustrated in the third graph in the
figure.

By allowing attributes as labels of agents, we can include integer numbers in agents. In addi-
tion, we can use conditional rewritings, preserving the one-step confluence, when these condi-
tions on attributes are disjoint. In this case, the interaction net system representing the Fibonacci
function is written as follows:

n ⇒Fib

n=0

1

n ⇒Fib

n=1

1

n ⇒Fib

not(n=0) and 

not(n=1)

Fib n-1

Fib n-2

Add

n ⇒ Addn

(n)

m n+m⇒

Add

Addn

(n)

There is very little difference between the load balances of fib(n-1) and fib(n-2), and thus
this system gives the following graph, demonstrating that the growth rate for parallel computation
is linear, while the sequential rate is exponential:
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Ackermann. The Ackermann function is defined by three cases:

ack 0 n = n+1
ack m 0 = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))

We can build the interaction net system on the unary natural numbers that corresponds to the
term rewriting system as follows:

SA
⇒

A2A
⇒

Z

y r xy r

S

y r

r y

S

x

A2 ⇒Z

r

A

rx

x

S

Z

Pred SA2 ⇒

yrx

A

r

A

y

Pred

Dup

x

where the agent Dup duplicates S and Z agents. The following is an example of rewriting:

SA

Z

�→

A2

�→

A

A

Pred

Dup

ack 1 2

�→
�

S

S

Z

S

S

Z

S

Z

S

Z

S

Z

AS

Z

A

S

Z

Z

ack 0 (ack 1 1)
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(b) integers
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Figure 2: Benchmarks of the execution of Ackermann function in sequential and parallel

When we use numbers as attributes, the system can be written as:

1

⇒

m=0
m

A

A2(m)⇒

not(m=0)
m

A

n ⇒

n=0

m-1
A

n ⇒

not(n=0)
m-1

A

m

n-1

A

Addn
(1)

A2(m)

A2(m)

Figure 2 shows the number of interactions in the cases of (a) unary natural numbers and (b)
integer numbers, where we plot sequential steps against parallel steps to indicate the rate of
growth of each one. Unfortunately, in Figure 2 (b), there is no significant difference in the
sequential and the parallel execution, and thus there is no possibility of the improvement by
parallel execution. This is because the Addn agent works as the batch operation, thus it waits for
part of the result. For instance, after the last step in the following the computation step ack 2 1,
the Addn(1) agent, which is the result of ack 0 (ack 1 0), waits for the computational
result of ack 1 0. However, the computation of A2 should proceed because the result of the
Addn(1) will be more than 0.

A
2

1

�→
�

A2(1) A

A

0

1

0

�→ A2(1) A
1

0

Addn
(1)

On the other hand, in the case of the computation on unary natural numbers, A2 interacts with
the streaming result of ack 0 (ack 1 0):
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SA

Z

S
S

Z

�→
�

AA S

Z
Z

Z

A2

S

Z

�→

A S

Z
Z

A2

S

Z

S

Here, borrowing the S agent to denote numbers greater than 0, we change the rules, especially in
the case of ack 0 n, by replacing Addn by S as follows:

1

A2(m)⇒

not(m=0)
m

A

n ⇒

n=0

m-1
A

n ⇒

not(n=0)
m-1

A

m

n-1

A

A2(m)

A2(m)

A2(m) ⇒
m-1

A

m
A

⇒

m=0
m

A S

Sum

(n)
m ⇒ n+m

Sum

(n)
⇒

Sum

(n+1)
S S

Thanks to the introduction of the S agent, A2 can be processed without waiting for the result of
ack 1 0. This therefore gives a streaming operation:

A
2

1

�→
�

Sum
(0) A2(1) A

A

0

1

0

�→ A2(1) A
1

0

S

Sum
(0)

Sum
(0)

In addition, the benchmark graph shows that the improved system is more efficient and more
appropriate to exploit parallelism:
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To summarise this section, a system can exploit parallelism by changing some batch operations
into streaming ones. We leave as future work the criteria to determine when this transformation
can benefit from parallelism.

Bubble sort. The simple sorting algorithm bubble sort can benefit from parallel evaluation
in interaction nets. One version of this algorithm, written in Standard ML [MTHM97], is as
follows:

fun bsortsub (x::x2::xs) =
if x > x2 then x2::(bsortsub (x::xs)) else x::(bsortsub(x2::xs))

| bsortsub x = x

fun bsort t =
let val s = bsortsub t
in if t=s then s else bsort s
end;

Using a direct encoding of this program, we obtain the interaction system:

⇒

B(x)
BS x

B(x) xBS Nil ⇒

⇒

Nil

⇒

⇒B(x)

B(x) y x B(y)

y B(x)

Nil Nil

x

�

y

not

(x

�

y)

EQn(x) �

y

EQn(x)
y

x = y

⇒
EQ

y

EQn(x)
y

not(x = y)

⇒

BS y

�

EQ
Nil ⇒ N
i
l

�

EQ
x ⇒ EQn(x)

where the δ and ε agents are defined as a duplicator and an eraser:

�

�

n

n

�

⇒

⇒

Nil

n

Nil

Nil

� ⇒Nil

� n ⇒ �

For instance, a list [3,4,2] is sorted as follows:

BS 3 4 2 Nil �→

B(3)
EQn(3) � 4 2 Nil

3

�→
�

B(3)
EQn(3)

4 2 Nil

4 2 Nil

�→

B(4)

EQn(3)
4 2 Nil

2 Nil
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23

�→
EQn(3)

4 2 Nil

4 Nil

3

2

�→
4 2 Nil

4 Nil

EQ

3 2

�→
� 2 Nil

4 NilBS

�

B(3)
EQn(3)

2 4 Nil

2 4 Nil

�→
�

32

�→
�

2 4 Nil

4 Nil

�

BS

�→
�

B(2)
EQn(2)

3 4 Nil

3 4 Nil

2 3

�→
�

Nil

4

Nil

EQ 2 3�→
� 4 Nil

This system shows that parallel bubble sorting is linear, whereas sequential evaluation is
quadratic, as indicated in the graph below.
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However, it contains the equality test operation by EQ and EQn to check whether the sorted list
is the same as the given list. In comparison to the typical functional programming languages,
interaction nets require copying and erasing of lists for the test that can cause inefficient compu-
tation. Moreover, the sorting process is applied to the sorted list by B again and again. Taking
into account that the B moves the maximum number in the given unsorted list into the head of
the sorted list, we can obtain a more efficient system:

⇒

⇒B(x)BS x

B(x) x

x

BS Nil ⇒

⇒

Nil

BS B(x)

BS M ⇒

⇒

⇒B(x)

B(x) y x B(y)

y B(x)

Nil M Nil

M M

x

�

y

not

(x

�

y)

y

For instance, a list [3,4,2] is sorted as follows:
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BS 3 4 2 Nil �→ BS B(3) 4 2 Nil

�→ BS B(4)3 2 Nil �→ BS B(4)3 2 Nil

�→ BS 3 2 M Nil4 �→ 2 M Nil4BS B(3)

�→ 2 M Nil4BS B(3) �→ 2 M Nil4BS 3

M Nil43�→ BS B(2) �→ M Nil43BS 2

Nil43�→ 2

The system reduces the number of computational steps significantly, and gives the best expected
behaviour as follows:
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Map function. The map function map takes a function f and a list [a1,a2, . . . ,an], returns a
list as follows:

map f [a1,a2, . . . ,an]= [ f (a1), f (a2), . . . , f (an)].

This function is well-known as a higher-order function in functional languages and also Google’s
MapReduce [DG04]. Generally, we can build, for an agent f that has one auxiliary port:

f

the interaction net system such that an agent map f works as the map function as follows:

mapf ⇒

f

n

n

mapf

opCons mapf ⇒Nil Nil

where the agent opCons is defined as follows:

opCons
n

⇒ n

For instance, computation of map fib [0,1,2] is performed in the interaction nets system
as follows:

Selected Revised Papers from GCM 2015 12 / 20



ECEASST

mapFib 0 1 2 Nil

0Fib

�→

mapFib

opCons

1 2 Nil

�→
�

0Fib

opCons 1Fib

opCons 2Fib

opCons
Nil

�→
� 1 1 2 Nil

Here, for the benchmark, we just write MAPFib m n as the map application with the Fi-
bonacci function and a n-length list of m such that [m,m,. . .,m], thus MAPFib 10 4 means
map fib [10,10,10,10]. The following graph shows the benchmark of the execution
MAPFib 10 n in sequential and parallel evaluation:
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This shows that both of the evaluations are linear, however the slope in the sequential evaluation
is more steep than in the parallel evaluation. In the sequential evaluation each execution of
fib 10 is accumulated, whereas in the parallel evaluation each is performed simultaneously.

All these examples show the scope for harnessing parallelism from an empirical study: some
systems do not benefit, whereas others allow quadratic computations be executed in linear par-
allel complexity. However, these results give a flavour of the potential, and do not necessarily
mean that they can be implemented like this in practice.

4 Discussion

Here we examine the potential of parallelism illustrated by the graphs in Section 3, by using a
multi-threaded parallel interpreter of interaction nets, called Inpla [Sat14], implemented with gcc
4.6.3 and the Posix-thread library. We compare the execution time of Inpla with other evaluators
and interpreters. The programs were run on a Linux PC (2.4GHz, Core i7-3630QM, 16GB)
and the execution time was measured using the UNIX time command as the average of five
executions.

First, for executions of pure interaction nets, we take INET [HMS09], amineLight [HMS10]
and HINet [Kah15], and compare Inpla with those by using programs—the Fibonacci function
(streaming additive operation) and the Ackermann function.

Table 1 shows the execution time in seconds among interaction nets evaluators, where HINet
runs on a single thread although it supports multi-thread execution. We see that HINet runs
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INET amLight HINet Inpla Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

fib 29 2.31 2.05 127.62 0.80 0.82 0.52 0.43 0.41 0.43
fib 30 3.82 3.40 609.64 1.25 1.26 0.76 0.63 0.61 0.60
ack 3 10 18.26 11.40 438.79 4.30 4.42 2.31 1.60 1.54 1.40
ack 3 11 66.79 46.30 1697.30 17.55 18.18 9.42 6.80 5.81 6.06

Table 1: The execution time in seconds of the pure interaction nets on interaction nets evaluators

 1
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(n
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Figure 3: The speedup-ratio by multi-thread execution on HINet and Inpla

slowest since it evaluates a given net on an interpreter written by the Glasgow Haskell Com-
piler (GHC) in comparison with INET that compiles it to source codes of the C programming
language, and amineLight and Inpla that evaluate it on interpreters written by the C language.
Inpla runs faster than INET since Inpla is a refined version of amineLight, which is the fastest
interaction nets evaluator [HMS10].

In the table the subscript of Inpla gives the number of threads in the thread pool, for instance
Inpla2 means that it was executed by using two threads. Figure 3 illustrates the speedup-ratio

S(n) =
T (1)
T (n)

where T (i) is an execution time by i-threads. HINet uses Haskell parallel and

memory management framework, whereas Inpla manages these by simple mechanism for the
sake of realising the fastest computation. Generally, we see similarity between these trends,
although they are fluctuating.

Next, we compare Inpla with Standard ML of New Jersey (SML v110.74) [MTHM97] and
Python (2.7.3) [RD11] in the extended framework of interaction nets which includes integer
numbers and lists. SML is a functional programming language and it has the eager evaluation
strategy that is similar to the execution method in interaction nets. Python is a widely-used in-
terpreter, and thus the comparison with Python gives a good indication on efficiency. Here we
benchmark the Fibonacci function and the streaming operation versions of the Ackermann and
the improved version of the Bubble Sort algorithm for randomly generated list elements. Table 2
shows that SML computes those arithmetic functions fastest. Inpla uses agents to represent the
functions and integer numbers, and those agents are consumed and reproduced repeatedly during
computation. Thus the execution time becomes slower eventually, compared to the execution in
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SML Python Inpla Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

fib 34 0.12 2.09 1.67 1.50 0.80 0.70 0.68 0.82
fib 38 0.66 16.32 11.39 10.22 5.68 4.47 4.40 4.75
ack 3 6 0.03 0.05 0.02 0.03 0.02 0.02 0.02 0.02
ack 3 9 0.06 -1 0.69 0.72 0.38 0.27 0.24 0.24
BS 10000 1.64 6.71 2.11 2.25 1.17 0.87 0.76 0.68
BS 20000 8.38 30.35 8.38 8.93 4.57 3.64 2.98 2.49
MAPFib 34 5 0.49 9.89 8.92 8.09 4.55 3.21 2.54 2.73
MAPFib 34 10 0.94 19.77 17.81 17.23 9.28 6.44 5.22 5.38
1 RuntimeError: maximum recursion depth exceeded

Table 2: The execution time in seconds on interpreters
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Figure 4: The speedup-ratio by multi-thread execution on Inpla

SML that performs computation by function calls and managing stacked arguments. In compar-
ison with Python, Inpla computes those functions faster. The sort algorithm is a special case in
that interaction nets are efficient to implement these algorithms. In the case of the map applica-
tion, because fib 34 is applied 5 and 10 times, the execution time increases also about 5 and
10 times, respectively. Figure 4 illustrates the speedup-ratio by multi-thread execution on Inpla.
Generally, since Core i7 processors have four cores, it tends to reach the peak with four or five
execution threads.

Table 3 shows execution time in seconds on another Linux PC (4.2GHz, Core i7-6700K,
32GB), corresponding to Table 1 and 2. The speedup-ratio by multi-thread execution is illus-
trated by Figure 5. This processor also has four cores, hence it tends to reach the peak with four
or five execution threads as well.

Next we analyse the results of the parallel execution in Inpla by using graphs in Section 3,
which show the trends of steps in parallel execution on the assumption of the unbounded re-
sources. We may write “parallel(n)” in the following graphs to make explicit that Inplan is
used for the experiment.
Fibonacci function. Figure 6 shows the execution time of each program for the Fibonacci
function by using Inpla. We see that each sequential execution is exponential as shown in the
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Inpla Inpla1 Inpla2 Inpla3 Inpla4 Inpla5 Inpla6 Inpla7 Inpla8

fib 29 0.70 0.75 0.52 0.46 0.45 0.45 0.45 0.44 0.44
fib 30 1.04 1.11 0.73 0.63 0.59 0.59 0.58 0.58 0.58
ack 3 10 2.61 2.82 1.46 1.08 0.86 0.75 0.75 0.70 0.70
ack 3 11 10.62 11.44 5.92 4.64 3.74 2.99 2.86 2.81 2.82
fib 34 0.93 0.96 0.51 0.39 0.38 0.34 0.40 0.40 0.41
fib 38 6.28 6.51 3.41 2.58 2.38 2.17 2.39 2.34 2.50
ack 3 6 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
ack 3 9 0.39 0.43 0.23 0.17 0.16 0.13 0.12 0.12 0.12
BS 10000 1.33 1.58 0.79 0.55 0.51 0.46 0.39 0.38 0.37
BS 20000 5.30 6.11 3.11 2.57 2.04 1.71 1.49 1.43 1.38
MAPFib 34 5 4.74 4.90 2.54 1.87 1.64 1.40 1.49 1.48 1.46
MAPFib 34 10 9.48 9.78 5.06 3.49 3.25 2.81 2.75 2.72 2.62

Table 3: The execution time in seconds on another PC
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Figure 5: The speedup-ratio by multi-thread execution on another PC
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Figure 6: The execution time of Fibonacci function by Inpla

graphs on the assumption of unbounded resources (Figure 1). The increase rate of execution
time in the parallel execution by Inpla gradually becomes close to, as we increase the number of
threads, the trends of the parallel computation as given in Figure 1.

We note that, in the computation of unary natural numbers, the execution of the streaming
version is slower than the batch version as shown in the graph on the left side in Figure 7. The
graph on the right side shows the ratio of steps in the streaming version to steps in the batch
version on the assumption of the unbounded resources. The ratio becomes around 0.4 according
to increasing n in fib n. This means that there is a limited benefit of the parallelism, even if
we assume unbounded resources. In the real computation, the cost of parallel execution more
affects the execution time in comparison to the benefit of the parallelism, and thus the streaming
version becomes slower.
Ackermann function. Figure 8 shows the execution time of each program for the Ackermann
function by using Inpla. We see that, except for the batch operation version, the parallel com-
putation follows well the trends on the assumption of the unbounded resources. On the other
hand, the parallel execution of the batch operation version takes quite a long time compared to
the streaming version. This is because, in the unbounded resources, not only that there is no
significant difference in sequential and parallel execution, but also that there is a cost of parallel
execution such as scheduling of threads execution uselessly. These are some of the reasons why
the parallel execution does not always have good performance, but are improved in the streaming
version.
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Figure 7: Comparison between the batch and the streaming addition in parallel execution by
Inpla
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Figure 8: The execution time of Ackermann function by Inpla
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Figure 9: The execution time of Bubble sort by Inpla

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

 0  2  4  6  8  10  12  14  16  18

ti
m

e
 (

s
e

c
)

n

MAPFib 34 n (inpla)

sequential
parallel(2)
parallel(4)

Figure 10: The execution time of the map application by Inpla

Bubble sort. Figure 9 shows the execution time of the two programs for Bubble sort using Inpla.
As anticipated by the graphs on the assumption of the unbounded resources, we see that the
improved version performs best as expected.
Map function. Figure 10 shows the execution time of the map application MAPFib 34 n using
Inpla. As with Bubble sort, this algorithm performs well as we increase the number of threads.

5 Conclusion

Although discussed for many years, we believe that parallel implementations of interaction nets
is still a very new area and much needs to be done. In this work we have assumed unbounded re-
sources in terms of the number of processing elements available. This is a reasonable assumption
with GPU when many thousands of processing elements are available. We analysed the execu-
tion result of the multi-threaded execution by using the investigation result on the assumption,
and also showed that, on the one hand, these perform as the best expected, and on the other hand,
some of execution results take something away from the investigation results due to an overhead
of using parallel technologies as anticipated by the investigation. We hope the ideas in this paper
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may help in moving this work forward.
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