
Electronic Communications of the EASST
Volume 32 (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

From the Behavior Model of an Animated Visual Language to its Editing
Environment Based on Graph Transformation

Torsten Strobl, Mark Minas, Andreas Pleuß, Arnd Vitzthum

13 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

From the Behavior Model of an Animated Visual Language to its
Editing Environment Based on Graph Transformation

Torsten Strobl1, Mark Minas1, Andreas Pleuß2∗, Arnd Vitzthum3

1 [Torsten.Strobl,Mark.Minas]@unibw.de, Univ. der Bundeswehr München, Germany
2 Andreas.Pleuss@lero.ie, Lero, Univ. of Limerick, Ireland

3 Vitzthum@informatik.tu-freiberg.de, Technische Univ. Bergakademie Freiberg, Germany

Abstract: Animated visual models are a reasonable means for illustrating system
behavior. However, implementing animated visual languages and their editing envi-
ronments is difficult. Therefore, guidelines, specification methods, and tool support
are necessary. A flexible approach for specifying model states and behavior is to
use graphs and graph transformations. Thereby, a graph can also represent dynamic
aspects of a model, like animations, and graph transformations are triggered over
time to control the behavior, like starting, modifying, and stopping animations or
adding and removing elements. These concepts had already been added to Dia-
Meta, a framework for generating editing environments, but they provide only low-
level support for specifying and implementing animated visual languages; specify-
ing complex dynamic languages was still a challenging task. This paper proposes the
Animation Modeling Language (AML), which allows to model behavior and anima-
tions on a higher level of abstraction. AML models are then translated into low-level
specifications based on graph transformations. The approach is demonstrated using
a traffic simulation.

Keywords: animated visual language, behavior modeling

1 Introduction

Visual modeling languages (VLs) are widespread in engineering and computer science. Several
frameworks and tools have been realized that make implementing VLs, i.e., providing tool sup-
port for such models, easier. DiaGen/DiaMeta [7], GenGED [1] or AToM3 [6] are only a few of
them. Many VLs have an execution semantics, i.e., models can be executed and executions are
visualized by animations, e.g., Statecharts [3], Pictorial Janus [4], or ToonTalk [9] and many fur-
ther examples, especially in simulation. However, there is still a lack of tool support, so dynamic
VLs usually have to be implemented manually. Recently, a new approach for specifying inter-
active dynamic VLs based on graph transformation (GT) has been proposed and realized within
the DiaMeta tool [13]. Previous approaches based on GT (e.g., [1]) use graphs for representing
static model states whereas the effects of GTs can be animated. In contrast, graphs in [13] do
not necessarily represent the static aspect of a model, but rather its dynamic aspects. GTs, when
triggered at specific points of time, modify such graphs and implement the dynamic behavior of

∗ This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303 1 to Lero – the Irish Software
Engineering Research Centre, http://www.lero.ie/

1 / 13 Volume 32 (2010)

mailto:[Torsten.Strobl,Mark.Minas]@unibw.de
mailto:Andreas.Pleuss@lero.ie
mailto:Vitzthum@informatik.tu-freiberg.de
http://www.lero.ie/


From the Behavior Model of an Animated VL to its Editing Environment

the system. As a consequence, GTs can start, change, or stop animations, for example. GTs can
easily describe interactions within the model or between user and model as well. This approach
allows specifying dynamic VLs including rather complicated animations and interactions, e.g.,
several concurrent animations may simultaneously take place in a model. However, GTs without
further abstraction mechanisms do not provide sufficient support for the easy specification of
complex animations. This paper addresses this problem and proposes the Animation Modeling
Language (AML), which is based on previous work with the Multimedia Modeling Language
(MML) [11] and the Scene Structure and Integration Modeling Language (SSIML) [15]. Its pur-
pose is the modeling of behavior and animations on a higher level of abstraction. It allows to
decompose a dynamic system into its basic constituents and to describe behavior by hierarchical
automata. AML models can then be refined and transformed into a specification for DiaMeta
following the approach presented in [13].

The rest of the paper is structured as follows: The next section introduces a traffic simulation
as the running example. Section 3 then briefly outlines the specification approach for animated
interactive VLs presented in [13]. AML and the translation of AML models into a specification
for DiaMeta based on GT are described in Sections 4 and 5. Section 6 reports on related work,
and Section 7 concludes the paper.

2 Running Example: Traffic

Traffic simulations can be considered as complex dynamic systems. The modeling of the behav-
ior for each traffic participant in such simulations is non-trivial because participants have to take
care of many different situations. For this running example, simplified but still complex aspects
of a traffic simulation have been chosen and realized in a system called Traffic. Fig. 1 shows two
screenshots of a Traffic editor whose code has been generated based on a DiaMeta specification.
A video of the resulting editor can be found online1.

The road network in this system contains the following components: Roads, Intersections and
EntryExit points. Thereby, a Road always connects two of the other components. It is not neces-
sarily straight, i.e., it can also be curved. An Intersection always has a predefined size and one
connection point for each cardinal direction. Finally, there are EntryExit points which are special
elements where cars can enter or exit the simulation.

Each Intersection has one 4-state TrafficLight (states Go, Caution, Stop, and Ready) for each di-
rection. The duration of states Go and Stop is configurable by a property interval available for
each Intersection, and as a special feature for interactivity, the user is also allowed to click on an
Intersection in order to trigger an immediate switch. Each EntryExit “produces” cars randomly. A
parameter randomNext specifies the maximal amount of time between two cars. Cars that arrive
at an EntryExit are “consumed” by the EntryExit and disappear.

Cars can accelerate and brake, but they have a fixed maximum speed. Cars must stop at a traffic
light if it is in states Stop or Caution as long as there is enough time for stopping. At a predefined
distance in front of each Intersection, each Car decides (randomly) whether to turn left or right or
to move straight on and indicates its aim by turn signals. Cars have to obey apparent rules before
and while turning, e.g., left-turning drivers have to wait when oncoming traffic blocks the road.

1 http://www.unibw.de/inf2/DiaGen/animated

Proc. GraBaTs 2010 2 / 13

http://www.unibw.de/inf2/DiaGen/animated


ECEASST

Figure 1: Screenshots: (a) editor during animated simulation, (b) zoomed

In addition, cars also have to watch cars in front of them and must start braking if the car in front
is stopping and if the safety distance is violated otherwise. If the front car is starting again, a
minor delay time for restarting the car behind is applied in order to imitate real world flow of
traffic. Finally, Cars also have to watch traffic jams, i.e., they must stop in front of an Intersection
if the destination street is jammed.

The remainder of the paper describes how the Traffic editing environment can be specified,
focusing on the dynamic aspects.

3 Animation by Graph Transformation with DiaMeta

The GT-based approach for specifying animated interactive VLs described in [13] uses hyper-
graphs for internally representing animated visual models. Each model component (e.g., a Car, a
Road, or an Intersection in the Traffic example) is represented by a component hyperedge that vis-
its the nodes representing the component’s attachment points. These hyperedges carry attributes
representing properties of their component, e.g., its position. Model hypergraphs also contain
relation edges (binary hyperedges), that stand for relationships between components, and further
link hyperedges which have multiple purposes as shown later. The visual model is just a view
of the hypergraph and depends on the hypergraph’s attributes, but also on the continuously pro-
ceeding time. This means that a hypergraph without changing its structure or its attributes may
still represent a visual model that is currently animated, i.e., the hypergraph represents both the
current structure of a visual model and its current animation state. Changes of the structure and
animation state are the result of events, which may be triggered externally, e.g., by the user, or
internally, e.g., when a running car must start breaking because of a red light. With regard to
such events, our approach is closely related to DEVS (cf. [14]).

External as well as internal events are GT programs (GTPs) consisting of GT rules together
with a control program that modify the hypergraph of the animated visual model together with
its attributes. However, GTPs representing external events are handled differently from GTPs
representing internal events: A GTP that represents an external event is performed immediately
as soon as the external event is triggered, e.g., when the user pushes a button. An internal event,

3 / 13 Volume 32 (2010)



From the Behavior Model of an Animated VL to its Editing Environment

in contrast, occurs after a certain amount of time depending on the current structure of the visual
model and its animation state. Therefore, the specification of an internal event consists of a GTP
and a time calculation rule. This special rule is used for determining the point of time when
such an internal event occurs: Whenever the hypergraph of a visual model is changed due to an
event, the runtime system has to check which internal events may happen next. This is done by
examining the GTPs of all internal events and checking whether they are enabled. However, the
enabled transformations are not yet actually performed. Instead, the time calculation rules are
used to compute the points of time when the events will occur. The GTP of the earliest internal
event is actually performed at the computed point of time if no external event has been triggered
meanwhile, changing the model’s hypergraph and possibly removing other scheduled internal
events. This procedure of computing the next internal event is repeated after each modification
of the model’s hypergraph.

This specification approach has been realized within the DiaMeta tool and has been used for
several animated VLs as described in [13]. However, this specification approach can hardly
be applied to more complex animated VLs without analyzing required structures and events
first. The large amount of required events (i.e. GTPs), which appear confusing, is a inhibition
threshold for realizing the VL specification. The following section introduces the more abstract
modeling language AML, which addresses this problem.

4 Animation Modeling Language

Because of the complexity of an animated VL like Traffic, we propose to use an appropriate
modeling language to specify animated VLs and their behavior for DiaMeta. This section in-
troduces the Animation Modeling Language AML, which is based on previous work with two
other modeling languages MML [11] and SSIML [15]. The long-term goal of AML is to define
general concepts for modeling interactive animations which can be applied in other modeling
languages, e.g., for multimedia or augmented reality. In the context of this paper, AML is used
for a high-level specification of animated VLs from which the GT-based implementation can be
derived. A simplified metamodel of AML is shown in Fig. 2 which presents AML as extension of
UML elements.

The main structural elements in AML are visual elements. We adopt the concept of media
components [11] to model them. A media component encapsulates some media content together
with basic functionality, e.g., methods that render or play the media content, such as audio, video,
3D graphics. However, we will focus on 2D graphics in the following. Each media component
provides some standard properties and operations depending on its media type, e.g., size and po-
sition for graphics. In addition, custom properties, operations, and associations can be specified
in the same way as for UML components. For instance, Fig. 3 shows the graphics component for
Intersection and its custom property interval, but without custom operations. Standard properties
and operations need not be specified explicitly in the model.

A media component usually consists of several parts, e.g., a video is composed of multiple
images or a graphic consists of different shapes. These inner parts can be important for the
application’s behavior: Complex animations often consist of multiple parts, such as a moving car
whose turn signals should blink when it aims to turn. This requires that the graphics of the car’s

Proc. GraBaTs 2010 4 / 13



ECEASST

Figure 2: AML metamodel (simplified)

Figure 3: AML model: media components, associations, inner properties and sensors

turn signals are not part of the car’s graphic itself, but attached graphics which can be accessed at
runtime. Moreover, distinction between different parts is also important for event handling: For
instance, the user might trigger different functionality when clicking on the intersection itself or
when clicking on one of its traffic lights. Therefore, the inner structure of media components
needs to be defined in AML.

5 / 13 Volume 32 (2010)



From the Behavior Model of an Animated VL to its Editing Environment

A media component’s inner structure is defined in terms of inner properties which are orga-
nized in a hierarchical manner. Manipulations of parent properties also affect their children; e.g.,
moving a car also means moving all its inner properties (e.g., the turn signals). An inner property
has a name, an optional type, and an optional multiplicity. A type needs only to be specified to
indicate that this inner part is an instance of another media component. If no type is specified,
the media part is just an instance of an anonymous media component. A multiplicity can be
specified to indicate multiple instances. For instance, the Intersection graphics in Fig. 3 consists
of a roadsCrossing which contains four trafficLights. The latter ones are instances of another media
component TrafficLight while for roadsCrossing no further type is specified.

Dynamic behavior of animations is modeled using specific kinds of events. In conventional
interactive applications, events are mainly triggered by user actions, such as pressing a button.
However, applications with complex animations require additional kinds of events resulting from
the dynamic behavior of media components. For instance, behavior should be triggered if a
moving object reaches a specific position or touches another object on the screen (e.g., a car
reaches a traffic light) or if a certain point of time is reached.

In AML, this is modeled by different kinds of sensors. Four kinds are presented in this paper.
Fig. 3 shows several sensors which are denoted similarly to an accept event action in UML. Fun-
damentally, a sensor is owned by a media component or by a media component’s inner property.
A user sensor listens for user events, such as clicks on a specific component. For instance, Click-
Intersection listens for a user click on roadsCrossing which is a part of an Intersection. A signal
sensor such as NextLightSignal is similar, but is used for passing events internally, so media com-
ponents can pass messages to each other. A collision sensor has a relationship to one or more
other graphic components (called opponents) and triggers an event when its owner collides with
its opponent(s), i.e., when they overlap on the screen. The collision sensor DecideDirection owned
by the graphic component Car triggers an event as soon as the car reaches a specific area on its
street. As a consequence, the driver decides upon a direction and starts indicating if necessary.

A sensor can also be associated with OCL constraints to specify that the sensor is active only
under certain conditions. Most sensors in Fig. 3 contain constraints, but details are not illustrated
there. Several additional keywords such as owner, opponent (sensor) or parent (inner property)
are available in constraint expressions allowing to refer to involved components or to navigate
through their structures. A special kind of sensors, the constraint sensor, is always modeled
with OCL expression. The purpose of this sensor type is to observe connected components for
satisfying the OCL constraint. An example is sensor AssociateFrontCar which checks whether a
car is driving behind another one on the same RoadSide and, in this case, associates them in the
model by the association frontCar.

The behavior and animations of a media component or an inner property is modeled by a
special kind of state machine (see Fig. 4). As different aspects of one component can have
their own behavior, multiple state machines (or regions) can be executed in parallel. The state
machines basically support the same concepts as state machines in UML, i.e., states, pseudo
states, parallel states, state transitions, guards, and activities associated with states or transitions.
Expressions in the state machines can refer to all properties and operations of its owner.

The most important triggers for transitions are the sensors (see above). The sensor’s name can
be denoted at the transition which means that the transition is performed when the sensor triggers
an event. In addition to events effected by sensors, it is also possible to use elapsed time events

Proc. GraBaTs 2010 6 / 13



ECEASST

Figure 4: AML model: state machines and animation behavior (excerpt)

or change events as trigger for transitions. The former is indicated by keyword after and occurs
automatically after a period of time in the state, the latter is indicated by when and occurs as soon
as annotated constraints are satisfied.

Finally, transitions can also send signals to other components. In AML, this is denoted ex-
plicitly by a special kind of send signal action where one or more receivers of the signal can
be specified explicitly (using the keyword receiver). Such signals are designed for correspond-
ing signal sensors of the receiver. After receiving a signal, these sensors trigger other events, if
possible. An example in Fig. 4 is NextLightSignal which is sent by an Intersection to each of its
TrafficLights at the same time one of the attached state transitions is performed.

The most important AML-specific concepts are animation states which are a special kind of
state. They define the change of properties over time while the owner of the state machine is
in this state (i.e., the animation of the graphic component or a part of it). Animation states
have a small symbol in the top right corner and animation instructions at the bottom. Within
these instructions, properties of media components, e.g., position or angle, can be bound to
expressions. Fig. 4 shows two examples of animation states. For instance, state DecisionLeft
describes the blinking of the car’s left turn signal by switching the visibility attribute of graphic
component SignalLeft on and off depending on the elapsed time (denoted by <t>) and a constant
for the interval.

5 Translating AML Models to DiaMeta Specifications

AML models describe all dynamic aspects of an animated VL. This section describes how a
DiaMeta specification (called “specification” in the following) can be derived from an AML
model. So far, there is no automatic translation process from model to specification. Instead, a
model is manually translated into a specification using the following five steps (see Fig. 8).

7 / 13 Volume 32 (2010)



From the Behavior Model of an Animated VL to its Editing Environment

Figure 5: Intersection and TrafficLight Figure 6: Car associated with TrafficLights

(1) Specifications of static components and dynamic components of the VL represented by
AML media components must be derived. (2) The resulting specification must be extended by
constructs which allow the representation of all states within the AML model. (3) GT rules must
be derived from the model in order to map each state transition. (4) Resulting GT rules must
be specified as DiaMeta events. (5) Animation visualizations during animation states must be
considered.

Each of the following subsections describes one step for Traffic. Please note, that only a rough
picture of these steps can be presented due to the space limitations of this paper. The translation
starts with the specification of static VL components (1.1) and dynamic VL components (1.2).

(1.1) As a first step, the AML media component model (see Fig. 3) must be investigated for
static language elements. While independent media components are declared as regular VL com-
ponents, media elements that are used as inner properties must be specified as sub-components,
i.e., they are represented by so-called sub-component (hyper-)edges being connected to the com-
ponent hyperedge of its parent component through appropriate nodes. Fig. 5 shows an Intersection
as a component hyperedge and its trafficLights as sub-component edges.

(1.2) The AML model usually contains further media components (e.g., Car) and associations
that are used during animation only. Such elements are maintained by state transitions of the
behavioral model. For example, AML associations belonging to dynamic aspects require the
specification of so-called animation (hyper-)edges which can link components in order to repre-
sent associations. Fig. 6 shows animation edge LDriveDecision which corresponds to both AML
associations DriveDecisionFrom and DriveDecisionTo. The shown graph represents a car whose
driver has decided to drive from the first traffic light attached to LDriveDecision to the second one.

(2) The next step is to translate all state machine states (see Fig. 4). Thereby, the state of
the dynamic system must be expressible by the graph representing the model (cf. Sec. 3), i.e.,
specifications which allow the characterization of each component’s state are required. In some
cases, no additional specification is necessary because a state can already be determined implic-
itly (e.g., by attached animation edges). The state of a Car’s state machine DrivingDecision, for
instance, is already characterized by edge LDriveDecision (see Fig. 6). Depending on its con-
nections to trafficLight edges, it is determined whether the driver wants to drive straight, left, right,
or has not decided yet if there is no such edge.

A specification option, which is always available for embedding state information, is to create
an explicit attribute for a (sub-)component edge. This attribute has to store the active state.

(3) Next, state transitions modeled in AML are analyzed in order to derive GT rules that, when
executed, realize the behavior of the AML state machines. As described above, states are encoded
in the hypergraph of an animated model. A GT rule simulating a transition from state A to state B,

Proc. GraBaTs 2010 8 / 13



ECEASST

hence, must be enabled if the state machine is in state A and all guard conditions of the transition
are satisfied (which includes guards of triggers such as sensors). As a result, the rule has to
modify the hypergraph model such that it contains the encoding of state B. In the simplest case,
switching from state A to B means changing the state attribute of a component. In addition, the
established GT rule also has to perform actions described by the AML state transition.

(4) Each state transition shown in the last section is triggered by events. As explained in Sec. 3,
two kinds of events can be distinguished and specified for DiaMeta, so the following subsections
address the specification of external events (4.1) and internal events (4.2).

(4.1) In AML, events are observed by sensors, i.e., user sensors such as ClickIntersection in
case of external events. In terms of DiaMeta, the specification of an external event means the
specification of a GTP which is executed directly if the user selects a component and pushes a
defined key or button. This event-related GTP, and the following is also true for internal events,
must choose the applicable state transition depending on the recipient’s current state and execute
the corresponding GT rule specified in step (3).

In a sense, but not correct in terms of definition, receiving signals (e.g., NextLightSignal) can
also be considered as external events from the recipient’s point of view. Therefore, signal sensors
can be translated into external event specifications in the same way. However, the specified GTPs
may not be accessible from outside of the system, e.g. for the user.

(4.2) The DiaMeta specification of internal events, which are also based on GTPs, initially
follows the guidelines described in the previous step, except that internal events can never be
accessed by an external system or the user. In addition, a time calculation rule is required for
internal events and must be specified. In order to derive meaningful time calculation rules,
different AML elements indicating internal events are described in the rest of this step:

The simplest internal events found in the AML models are elapsed time events indicated by
keyword after. In this case, the GTP is already complete, and the required time calculation
rule can be deduced directly by adding the argument of the elapsed time event, e.g., “3 sec”,
to the time the state has been entered. This implies that a state entry time must be tracked at
corresponding state transitions, e.g., by maintaining an appropriate component attribute. Another
kind of internal events are change events indicated by keyword when. They can also result in a
simple time calculation rule, i.e., the rule that always returns the time when the internal event
is calculated. This means that the state transition is performed immediately if the graph pattern
and additional conditions match, which is possible if arguments of the change event are part of
the GT rule’s graph pattern and conditions. However, if a condition depends on a value which
changes during an animation state, the time calculation rule, which has to calculate the first point
of time when the condition is true, gets more complicated.

Finally, constraint and collision sensors trigger internal events as well. Both are similar to
change events, but they provide a more convenient notion for observing the relationships of mul-
tiple components. The GTP of the derived event specification is usually based on the involved
(sub-)components’ hyperedges, observed constraints and relationships determined by the sensor.
Thereby, a collision sensor is a special kind of constraint sensor, which implies colliding compo-
nents as additional constraint. This constraint is usually related to movement animations, which
are visualized during animation states (i.e., between state changes). In such cases, a time calcu-
lation rule, which calculates the point of time when the first collision happens, is required. An
exemplary collision sensor is DecideDirection, which must be translated into three internal event

9 / 13 Volume 32 (2010)



From the Behavior Model of an Animated VL to its Editing Environment

Figure 7: Event specification for DecideDirectionLeft and according state transition

specifications. Depending on the Car’s attribute nextDecision only one of them may be applicable.
Fig. 7 shows the rule DecideDirectionLeft2 which is applied if this attribute indicates the decision
to drive left. The figure also outlines the AML elements used to derive the rule.

(5) The remaining part is the interpretation of the animation states within the AML model, e.g.,
a Car which is moving along a Road or a Car with an activated turn signal signalLeft (see Fig. 4).
The animation instructions stated in animation states indicate which and how the attributes of
the component must be changed while an animation state is active (cf. Sec. 4). These instruc-
tions must be transferred into the DiaMeta specification. In terms of AML, property changes
are performed while in a state without any transition necessary. For DiaMeta this means that
graphical primitives are not drawn using static attributes, but drawn using temporarily calculated
values derived from such attributes and modified by referring to the current animation time and
the associated animation instruction. Finally, when leaving or entering an animation state, it is
often necessary to update static attributes which have been the basis for animation visualization
before. Within the DiaMeta specification, this must be done by the GT rule which realizes the
corresponding state transition. For instance, a Car is moved during an animation state called
Drive. The Car’s position (static attributes) must be updated when leaving this state. Otherwise,
information about the new position would not be available after the movement animation.

6 Related Work

AML integrates concepts from two existing modeling languages: the Scene Structure and Integra-
tion Modeling Language (SSIML) for 3D development and the Multimedia Modeling Language
(MML) for interactive multimedia applications. SSIML/Behaviour [15] is a modeling language
based on UML2 state machines which also introduced animation states for modeling animation
details but focused on 3D applications.

MML [11] is a platform-independent language for model-driven development of multimedia
applications. It provides concepts such as complex media components with inner structure, user
interface elements, and sensors, which have been reused here. However, it does not support

2 It shows the GT rule within one segment: parts which are added by the rule are drawn in green with “+++”. Attribute
conditions and modifications are illustrated by expressions within the two extra boxes Conditions and Actions. The
time calculation rule is shown in box Time.

Proc. GraBaTs 2010 10 / 13



ECEASST

modeling animations yet and will be extended with concepts from AML in the future.
In the area of interactive multimedia, there are only few other modeling approaches so far.

OMMMA [12] allows modeling multimedia applications including media objects. Dynamic be-
havior is specified by statecharts while static animations are modeled by extended UML sequence
diagrams. However, the models are more abstract than in MML and do not directly support code
generation. [5] presents a modeling approach for computer games illustrated by a tank game. It
uses statecharts on multiple abstraction layers for different aspects which are specially suited for
game design: sensors, memorizers, strategical deciders, tactical deciders, and actuators.

AML supports separated behavior specifications of different components interacting in a com-
mon environment. This possibility makes AML also attractive for the specification of domain-
specific visual languages for agent-based modeling and simulation. In this field of research other
tools are already available, e.g., in [10] a toolkit for specifying the behavior of agents and their
visual appearance within a modeling environment is demonstrated.

There are also other concepts for the animation of VLs based on GT. An example is the
approach described in [1] which basically allows specifying animations for discrete event sim-
ulations. However, animations are visualized for state transitions (GTs) which restricts the VLs
especially in terms of interactivity and parallelism of independent animations. The resulting
animations are self-running movies, and amalgamated GT rules are already required for the
specification of less complex examples such as animated Petri nets.

In [8] a set of visual languages is introduced in order to describe the behavior of diagrams of
metamodeled languages. The concepts are also based on events and state machines, but most lan-
guages are less close to UML. In addition, the concepts include the modeling of user interfaces,
whereas aspects of smooth graphical animations are not covered. Concerning the flexibility, the
approach is less adequate for a language with many independently animated actors (agents) such
as in Traffic as the behavior is represented by a single state machine.

Another approach for the application of models in order to implement graph-based simulations
is shown in [14]. The authors describe how DEVS models can be used as a semantic domain for
programmed GTs which allows simulation-based design. However, the concepts describe GTs
consuming time and because of possible needs for parallel executions or interruptions, additional
control structures are required.

7 Conclusions

In this paper we introduced the Animation Modeling Language (AML) to model complex anima-
tions at an appropriate abstraction level. It has been used here to systematically derive DiaMeta
specifications to generate interactive editors for animated VLs.

Different levels of details can be chosen, so AML can illustrate rough ideas as a starting point
for DiaMeta specifications, but also models which are very close to the resulting specifications.
On the other hand, fully featured AML diagrams even document DiaMeta specifications which
are usually less explanatory. Using AML and DiaMeta is a promising approach for simplifying
the specification effort for complex VLs.

We now aim at an automated transformation of customized AML diagrams into DiaMeta spec-
ifications, so further research objectives include platform-specific extensions of AML allowing

11 / 13 Volume 32 (2010)



From the Behavior Model of an Animated VL to its Editing Environment

for the automated generation of graph-based VL specifications. In this context, a reasonable set
of predefined animation instructions must also be found and offered by our framework in order
to avoid self-programmed routines realizing animations or collision detection.

Bibliography

[1] C. Ermel. Simulation and Animation of Visual Languages based on Typed Algebraic Graph
Transformation. PhD thesis, Tech. Univ. Berlin, Books on Demand, Norderstedt, 2006.

[2] S. Gyapay, R. Heckel, D. Varró. Graph Transformation with Time: Causality and Logical
Clocks. In ICGT ’02, LNCS 2505, Springer, 2002, pp. 120–134.

[3] D. Harel, H. Kugler. The Rhapsody Semantics of Statecharts (or, on the executable core of
the UML). In Integrations of Software Specification Techniques for Applications in Engi-
neering, LNCS 3147, Springer, 2004, pp. 325–354.

[4] K. Kahn, V. Saraswat. Complete Visualizations of Concurrent Programs and their Execu-
tions. In 1990 IEEE Workshop on Visual Languages. 1990, pp. 7–15.

[5] J. Kienzle, A. Denault, H. Vangheluwe. Model-based Design of Computer-Controlled
Game Character Behavior. In Models 2007, LNCS 4735, Springer, 2007, pp. 650–665.

[6] J. de Lara, H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-modeling. In
FASE ’02, LNCS 2306, Springer, 2002, pp. 174–188.

[7] M. Minas. Generating Meta-Model-Based Freehand Editors. In GraBaTs’06. ECEASST 1.
2006.

[8] T. Mészáros, G. Mezei, H. Charaf. Engineering the Dynamic Behavior of Metamodeled
Languages. In Simulation 85(11):793–810, 2009.

[9] L. Morgado, K. Kahn. Towards a specification of the ToonTalk language. In J. of Visual
Languages and Computing 19:574–597, 2008.

[10] M.J. North, E. Tatara, N.T. Collier, J. Ozik. Visual Agent-based Model Development with
Repast Simphony. In Agent 2007 Conf.. 2007.

[11] A. Pleuß. MML: A Language for Modeling Interactive Multimedia Applications. In 7th
IEEE Int. Symp. on Multimedia (ISM’05). IEEE, 2005, pp. 465–473.

[12] S. Sauer and G. Engels. UML-based Behavior Specification of Interactive Multimedia Ap-
plications. In IEEE Symp. on Human-Centric Computing Languages and Environments
(HCC 2001). IEEE, 2001, pp. 248–255.

[13] T. Strobl, M. Minas. Specifying and Generating Editing Environments for Interactive Ani-
mated Visual Models. In GT-VMT’10, ECEASST 29. 2010.

[14] E. Syriani, H. Vangheluwe. DEVS as a Semantic Domain for Programmed Graph Transfor-
mation. In Discrete-Event Modeling and Simulation: Theory and Applications. CRC Press,
2009.

[15] A. Vitzthum. SSIML/Behaviour: Designing Behaviour and Animation of Graphical Ob-
jects in Virtual Reality and Multimedia Applications. In 7th IEEE Int. Symp. on Multimedia
(ISM’05). IEEE, 2005, pp. 159–167.

Proc. GraBaTs 2010 12 / 13



ECEASST

A Appendix

Figure 8: Overview of the translation steps

13 / 13 Volume 32 (2010)


	Introduction
	Running Example: Traffic
	Animation by Graph Transformation with DiaMeta
	Animation Modeling Language
	Translating AML Models to DiaMeta Specifications
	Related Work
	Conclusions
	Appendix

