
Electronic Communications of the EASST
Volume 29 (2010)

Proceedings of the
Ninth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GT-VMT 2010)

De-/Re-constructing Model Transformation Languages

Eugene Syriani and Hans Vangheluwe

14 pages

Guest Editors: Jochen Küster, Emilio Tuosto
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

De-/Re-constructing Model Transformation Languages

Eugene Syriani and Hans Vangheluwe

McGill University, School of Computer Science, Montréal, Canada
{esyria,hv}@cs.mcgill.ca

Abstract: The diversity of today’s model transformation languages makes it hard
to compare their expressiveness and provide a framework forinteroperability. De-
constructing and then re-constructing model transformation languages by means of
a unique set of most primitive constructs facilitates both.We thus introduceT-Core,
a collection of primitives for model transformation. Combining T-Core with a (pro-
gramming or modelling) language enables the design of modeltransformation for-
malisms. We show how basic and more advanced features from existing model
transformation languages can be re-constructed usingT-Core primitives.

Keywords: Transformation primitives, multi-paradigm model transformation

1 Introduction

A plethora of different rule-based model transformation languages and supporting tools exist
today. They cover all (or a subset of) the well-known essential features of model transforma-
tion [SV09c]: atomicity, sequencing, branching, looping, non-determinism, recursion, paral-
lelism, back-tracking, hierarchy, andtime. For such languages, the semantics (and hence imple-
mentation) of a transformation rule consists of the appropriate combination of building blocks
implementing primitive operations such as matching, rewriting, and often a validation of con-
sistent application of the rule. The abovementioned essential features of transformation lan-
guages are achieved by implicitly or explicitly specifying“rule scheduling”. Languages such
asATL [JK06], FUJABA [FNTZ00], GReAT [AKK +06], MoTif [SV09b], VIATRA [VB07], and
VMTS [LLMC06] include constructs to specify the order in which rules are applied. This often
takes the form of a control flow language. Without loss of generality, we consider transformation
languages where models are encoded as typed, attributed graphs.

The diversity of transformation languages makes it hard, onthe one hand, to compare their
expressiveness and, on the other hand, to provide a framework for interoperability (i.e., mean-
ingfully combining transformation units specified in different transformation languages). One
approach is to express model transformation at the level of primitive building blocks. De-
constructing and then re-constructing model transformation languages by means of a small set
of most primitive constructs offers a common basis to compare the expressiveness of transfor-
mation languages. It may also help in the discovery of novel,possibly in domain-specific, model
transformation constructs by combining the building blocks in new ways. Furthermore, it allows
implementers to focus on maximizing the efficiency of the primitives in isolation, leading to
more efficient transformations overall. Lastly, once re-constructed, different transformation lan-
guages can seamlessly interoperate as they are built on the same primitives. This use of common
primitives in turn allows for global as well as inter-rule optimization.

1 / 14 Volume 29 (2010)

mailto:\protect \T1\textbraceleft esyria,hv\protect \T1\textbraceright @cs.mcgill.ca

De-/Re-constructing Model Transformation

Figure 1: TheT-Core module

We introduceT-Core, a collection of transformation language primitives for model transfor-
mation in Section2. Section3 motivates the choice of its primitives. Section4 shows how
transformation entities, common as well as more esoteric, can be re-constructed. Section5 de-
scribes related work and Section6 draws conclusions and presents directions for future work.

2 De-constructing Transformation Languages

We propose here a collection of model transformation primitives. The class diagram in Figure1
presents the moduleT-Core encapsulating model transformation primitives.T-Core consists of
eight primitive constructs (Primitive objects): aMatcher, Iterator, Rewriter, Resolver, Rollbacker,
Composer, Selector, andSynchronizer. The first five areRulePrimitive elements and represent
the building blocks of a single transformation unit.T-Core is not restricted to any form of speci-
fication of a transformation unit. In fact, we consider onlyPreConditionPatterns andPostCondi-

Proc. GT-VMT 2010 2 / 14

ECEASST

tionPatterns. For example, in rule-based model transformation, the transformation unit is arule.
ThePreConditionPattern determines its applicability: it is usually described witha left-hand side
(LHS) and optional negative application conditions (NACs). It also consists of aPostCondition-
Pattern which imposes a pattern to be found after the rule was applied: it is usually described
with a right-hand side (RHS).RulePrimitives are to be distinguished from theControlPrimitives,
which are used in the design of the rule scheduling part of thetransformation language. A
meaningful composition of all these different constructs in a Composer object allows modular
encapsulation of and communication betweenPrimitive objects.

Primitives exchange three different types of messages:Packet, Cancel, and Exception. A
packetπ represents the host model together with sufficient information for inter- and intra-rule
processing of the matches.π thus holds the current model (graph in our case)graph, thematch-
Set, and a reference to thecurrent PreConditionPattern identifying a MatchSet. A MatchSet
refers to acondition pattern and contains the actual matches as well as a reference to thematch-
ToRewrite. Note that eachMatchSet of a packet has a unique condition, used for identifying
the set ofmatches. A Match consists of a sub-graph of thegraph in π where each element is
bound to an element ingraph. Some elements (Nodes) of the match may be labelled aspivots,
which allows certain elements of the model to be identified and passed between rules. A cancel
messageϕ is meant to cancel the activity of an active primitive element (especially used in the
presence of aSelector). Finally, specific exceptionsχ can be explicitly raised, carrying along the
currently processed packetπ (πφ is used to represent the empty packet).

All the primitive constructs can receive packets by invoking either theirpacketIn, nextIn, suc-
cessIn, or failIn methods. The result of calling one of these methods sets the primitive in success
or failure mode as recorded by theisSuccess attribute. Cancel messages are received from the
cancelIn method. Next, we describe in detail the behaviour of the different methods supported
by the primitive elements. A complete description can be found in [SV09a].

2.1 Matcher Algorithm 1 Matcher.packetIn(π)
M← (all) matches ofcondition found inπ.graph
if ∃〈condition,M′〉 ∈ π.matchSets then

M′←M′ ∪M
else

add〈condition,M〉 to π.matchSets
end if
π.current← condition
isSuccess←M 6= /0
return π

TheMatcher finds all possible matches of thecondition
pattern on the graph embedded in the packet it receives
from its packetIn method. The transformation mod-
eller may optimize the matching by setting thefindAll
attribute tofalse when he a priori knows that at most
one match of this matcher will be processed in the over-
all transformation. The matching also considers the pivot mapping (if present) of the current
match ofπ. After matching the graph, theMatcher stores the different matches in the packet as
described in Algorithm1. Some implementations may, for example, parametrize theMatcher by
the condition pattern or embed it directly in theMatcher. The transformation units (e.g.,rules)
may be compiled in pre/post-condition patterns or interpreted, but this is a tool implementation
issue which we do not discuss here.

2.2 Rewriter

As described in Algorithm2, the Rewriter applies the required transformation for itscondition
on the match specified in the packet it receives from itspacketIn method. That match is consumed

3 / 14 Volume 29 (2010)

De-/Re-constructing Model Transformation

Algorithm 2 Rewriter.packetIn(π)
if π is invalid then

isSuccess← false
exception← χ(π)
return π

end if
M← 〈condition.pre,M〉 ∈ π.matchSets
apply transformation onM.matchToRewrite
if transformation failedthen

isSuccess← false
exception← χ(π)
return π

end if
set all modified nodes inM to dirty
remove〈condition,M〉 from π.matchSets
isSuccess← true
return π

by theRewriter: no other operation can be further applied
on it. Some validations are made in theRewriter to verify,
for example, thatπ.current.condition = condition.pre or
that no error occurred during the transformation. In our ap-
proach, a modification (update or delete) of an element in
{M| 〈condition.pre,M〉 ∈ π.matchSets} is automatically
propagated to the other matches, if applicable.

2.3 Iterator

The Iterator chooses a match among the set of matches of
thecurrent condition of the packet it receives from itspack-
etIn method, as described in Algorithm3. The match is
chosen randomly in a Monte-Carlo sense, repeatable using
sampling from a uniform distribution to provide a reproducible, fair sampling. When itsnextIn
method is called, theIterator chooses another match as long as the maximum number of iterations
maxIterations (possibly infinite) is not yet reached, as described in Algorithm 4. In the case of
multiple occurrences of aMatchSet identified byπ.current, theIterator selects the lastMatchSet.

Algorithm 3 Iterator.packetIn(π)
if 〈π.current,M〉 ∈ π.matchSets then

choosem∈M
M.matchToRewrite←m
remIterations←maxIterations−1
isSuccess← true
return π

else
isSuccess← false
return π

end if

Algorithm 4 Iterator.nextIn(π)
if 〈π.current,M〉 ∈ π.matchSets and remIterations > 0 then

choosem∈M
M.matchToRewrite←m
remIterations← remIterations−1
isSuccess← true
return π

else
isSuccess← false
return π

end if

2.4 Resolver
Algorithm 5 Resolver.packetIn(π)

for all conditionc∈ {c|〈c,M〉 ∈ π.matchSets} do
if externalMatchesOnly and c= π.current then

continue
end if
for all matchm∈M do

if mhas adirty nodethen
if customResolution(π) then

isSuccess← true
return π

else if defaultResolution(π) then
isSuccess← true
return π

else
isSuccess← false
exception← χ(π)
return π

end if
end if

end for
end for
isSuccess← false
exception← χ(π)
return π

The Resolver resolves a potential conflict between
matches and rewritings as described in Algorithm5.
For the moment, theResolver detects conflicts in a
simple conservative way: it prohibits any change to
other matches in the packet (check fordirty nodes).
However, it does not verify if a modified match is still
valid with respect to its pre-condition pattern. The
externalMatchesOnly attribute specifies whether the
conflict detection should also consider matches from
its match set identified byπ.current or not. In the case
of conflict, a default resolution function is provided
but the user may also override it.

2.5 Rollbacker

TheRollbacker is only used to provide back-tracking
capabilities to its transformationrule. Consequently,

Proc. GT-VMT 2010 4 / 14

ECEASST

it is used as a recovery point that allows backward recovery of packets,e.g.,by means of check-
pointing. ThepacketIn method establishes a checkpoint of the received packet and the nextIn
method restores the last checkpoint to roll-back the packetto its previous state. Again, a maxi-
mum number of iterations can be specified.

Algorithm 6 Rollbacker.packetIn(π)
establish(π)
remIterations←maxIterations−1
isSuccess← true
return π

Algorithm 7 Rollbacker.nextIn(π)
if 〈π.current,M〉 ∈ π.matchSets and remIterations > 0 then

remIterations← remIterations−1
isSuccess← true
return π

else if remIterations > 0 then
π̂← restore()
remIterations← remIterations−1
isSuccess← true
return π̂

else
isSuccess← false
return π

end if

2.6 Selector

TheSelector is used when a choice needs to be made between multiple packets processed con-
currently by different constructs. It allows exactly one ofthem to be processed further. When its
successIn (or failIn) method is called, the received packet is stored in itssuccess (or fail) collec-
tion, respectively. Note that, unlike the previous described methods, it is only when theselect
method in Algorithm8 is called that a packet is returned, chosen fromsuccess. The selection
is random in the same way as in theIterator. When thecancel method is invoked, the two col-
lections are cleared and a cancel messageϕ is returned where theexclusions set consists of the
singletonπ.current (meaning that operations of the chosencondition should not be cancelled).

2.7 Synchronizer

TheSynchronizer is used when multiple packets processed in parallel need to be synchronized. It
is parametrized by the number ofthreads to synchronize. This number is known at design-time.
Its successIn and failIn methods behave exactly like those of theSelector. TheSynchronizer is
in success mode only if all threads have terminated by never invoking failIn. Themerge method
“merges” the packets insuccess, as described in Algorithm9. A trivial default merge function
is provided by unifying and “gluing” the set of packets. Nevertheless, it first conservatively
verifies the validity of the received packets by prohibitingoverlapping matches between them.
If it fails, the user can specify a custom merge function. This avoids the need for static parallel
independence detection. Instead it is done at run-time and the transformation modeller must
explicitly describe the handler. One pragmatic use of that solution is, for instance, to let the
transformation run once to detect the possible conflicts andthen the modeller may handle these
cases by modifying the transformation model.

5 / 14 Volume 29 (2010)

De-/Re-constructing Model Transformation

Algorithm 8 Selector.select()

if success 6= /0 then
π̂ ← choose fromsuccess
isSuccess← true

else if fail 6= /0 then
π̂ ← choose fromfail
isSuccess← false

else
π̂ ← πφ
isSuccess← false
exception← χ(πφ)

end if
success← /0
fail← /0
return π̂

Algorithm 9 Synchronizer.merge()

if |success|= threads then
if customMerge() then

π̂ ← the merged packet insuccess
isSuccess← true
success← /0
fail← /0
return π̂

else if defaultMerge() then
π̂ ← the merged packet insuccess
isSuccess← true
success← /0
fail← /0
return π̂

else
isSuccess← false
exception← χ(πφ)
return πφ

end if
else if |success|+ |fail|= threads then

π̂ ← choose fromfail
isSuccess← false
return π̂

else
isSuccess← false
exception← χ(πφ)
return πφ

end if

2.8 Composer

TheComposer serves as a modular encapsulation interface of the elementsin its primitives list.
When one of itspacketIn or nextIn methods is invoked, it is up to the user to manage subsequent
method invocations to its primitives. Nevertheless, when the cancelIn method is called, the
Composer invokes thecancelIn method of all its sub-primitives. This cancels the current action
of the primitive object by resetting its state to its initialstate. Cancelling happens only if it is
actively processing a packetπ such that the current condition ofπ is not inϕ .exclusions, whereϕ
is the received cancel message. In the case of aMatcher, since the current condition of the packet
may not already be set, thecancelIn also verifies that the condition of theMatcher is not in the
exclusions list. The interruption of activity can, for instance, be implemented as a pre-emptive
asynchronous method call ofcancelIn.

Proc. GT-VMT 2010 6 / 14

ECEASST

3 T-Core: a minimal collection of transformation primitives

In the de-construction process of transformation languages into a collection of primitives, ques-
tions like “up to what level?” or “what to include and what to exclude?” arise. The proposed
T-Core module answers these questions in the following way.

In a model transformation language, the smallest transformation unit is traditionally therule.
A rule is a complex structure with a declarative part and an operational part. The declarative
part of a rule consists of the specification of the rule (e.g.,LHS/RHS and optionally NAC in
graph transformation rules). However,T-Core is not restricted to any form of specification let
it be rule-based, constraint-based, or function-based. Infact, some languages require units with
only a pre-condition to satisfy, while other with a pre- and apost-condition. Some even allow
arbitrary permutations of repetitions of the two. InT-Core, either aPreConditionPattern or both
a Pre- and aPostConditionPattern must be specified. For example, a graph transformation rule
can be represented inT-Core as a couple of a pre- and a post-condition pattern, where the latter
has a reference to the former to satisfy the semantics of the interfaceK (in the L ← K → R
algebraic graph transformation rules) and be able to perform the transformation. Transformation
languages where rules are expressed bidirectionally or as functions are supported inT-Core as
long as they can be represented as pre- and post-condition patterns.

The operational part of a rule describes how it executes. This operation is often encapsu-
lated in the form of an algorithm (with possibly local optimizations). Nevertheless, it always
consists of amatching phase, i.e., finding instances of the model that satisfy the pre-condition
and of atransformation phase, i.e., applying the rule such that the resulting model satisfies the
post-condition.T-Core distinguishes these two phases by offering aMatcher and aRewriter as
primitives. Consequently, theMatcher’s condition only consists of a pre-condition pattern and the
Rewriter then needs a post-condition pattern that can access the pre-condition pattern to perform
the rewrite. Combinations ofMatchers andRewriters in sequence can then represent a sequence
of simple graph transformation rules:match-rewrite-match-rewrite. Moreover, because of the
separation of these two phases, more general and complex transformation units may be built,
such as:match-match-matchor match-match-rewrite-rewrite. The former is a query where each
Matcher filters the conditions of the query. The latter is a nesting oftransformation rules. In
this case, however, overlapping matches between differentMatchers and then rewrites on the
overlapping elements may lead to inconsistent transformations or even non-sense. This is why a
Resolver can be used fromT-Core to safely allowmatch-rewritecombinations.

The data structure exchanged betweenT-Core RulePrimitives in the form of packets contains
sufficient information for each primitive to process it as described in the various algorithms in
Section2. TheMatch allows to refer to all model elements that satisfy a pre-condition pattern.
The pivot mappings allow elements of certain matches to be bound to elements of previously
matched elements. The pivot mapping is equivalent to passing parameters between rules as will
be shown in the example in Section4.1. TheMatchSet allows to delay the rewriting phase instead
of having to rewrite directly after matching.

Packets conceptually carry the complete model (optimized implementation may relax this)
which allows concurrent execution of transformations. TheSelector and theSynchronizer both
permit to join branches or threads of concurrent transformations. Also, having separated the
matching from the rewriting enables to manage the matches and the results of a rewrite by fur-

7 / 14 Volume 29 (2010)

De-/Re-constructing Model Transformation

ther operators. Advanced features such as iteration over multiple matches or back-tracking to a
previous state in the transformation are also supported inT-Core.

SinceT-Core is a low-level collection of model transformation primitives, combining its prim-
itives to achieve relevant and useful transformations may involve a large number of these prim-
itive operators. Therefore, it is necessary to provide a “grouping” mechanism. TheComposer
allows to modularly organizeT-Core primitives. It serves as an interface to the primitives it en-
capsulates. This then enables scaling of transformations built on T-Core to large and complex
model transformations designs.

T-Core is presented here as an open module which can be extended, through inheritance for
example. One could add other primitive model transformation building blocks. For instance,
a conformance check operator may be useful to verify if the resulting transformed model still
conforms to its meta-model. It can be interleaved between sequences of rewrites or used at the
end of the overall transformation as suggested in [KMS+09]. We believe however that such new
constructs should either be part of the (programming or modelling) language or the tool in which
T-Core is integrated, to keepT-Core as primitive as possible.

4 Re-constructing Transformation Languages

(a) (b)

(c) (d)

Figure 2: CombiningT-Core with other languages allows to re-construct existing and new lan-
guages

Having de-constructed model transformation languages in acollection of model transforma-

Proc. GT-VMT 2010 8 / 14

ECEASST

tion primitives makes it easier to reason about transformation languages. In fact, properly com-
bining T-Core primitives with an existing well-formed programming or modelling language al-
lows us to re-construct some already existing transformation languages and even construct new
ones [SV09a]. Figure2 shows some examples of combinations ofT-Core with other languages.
Figure2(a)and Figure2(b) combine a subset ofT-Core with a simple (programming) language
which offerssequencing, branching, andloopingmechanisms (as proposed in Böhm-Jocapini’s
structured program theorem[BJ66]). We will refer to such a language as anSBL language.
The first combination only involves theMatcher and itsPreConditionPattern, Packet messages
to exchange, and theComposer to organize the primitives. TheseT-Core primitives integrated
in an SBL language lead to aquery language. Since only matching operations can be performed
on the model, they represent queries where the resulting packet holds the set of all elements
(sub-graph) of the model (graph) that satisfy the desired pre-conditions. Including otherT-Core
primitives such as theRewriter promotes the query language to a transformation language. Fig-
ure2(b) enumerates the necessaryT-Core primitives combined with an SBL language to design
a complete sequential model transformation language. Replacing the SBL language by another
one, such as UML Activity Diagrams in Figure2(c), allows us to re-construct Story Diagrams
[FNTZ00], for example, since they are defined as a combination of UML Activity and Collab-
oration Diagrams with graph transformation features. Other combinations involving the whole
T-Core module may lead to novel transformation language with exception handling and the no-
tion of timed model transformations when combined with a discrete-event modelling language
[SV09a].

We now present the re-construction of two transformation features using the combination of
an SBL language withT-Core as in Figure2(b).

4.1 Re-constructing Story Diagrams

In the context of object-oriented reverse-engineering, the FUJABA tool allows the user to spec-
ify the content of a class method by means of Story Diagrams. AStory Diagram organizes

Figure 3: TheFUJABA doSubDemo transformation showing afor-
all Pattern and twostatement activities

the behaviour of a method
with activities and transi-
tions. An activity can be
a Story Pattern or a state-
ment activity. The former
consists of a graph trans-
formation rule and the lat-
ter is Java code. Figure3
shows such a story dia-
gram taken from thedo-
Demo method example in [FNTZ00]. This snippet represents an elevator loading people on a
given floor of a house who wish to go to another level. The rule in the pattern is specified in a
UML Collaboration Diagram-like notation with objects and associations. Objects with implicit
types (e.g.,this, l2, ande1) areboundobjects from previous patterns or variables in the context
of the current method. TheStory Pattern 6 is afor-all Pattern. Its rule is applied on all matches
found looping over the unbound objects (e.g.,p4, andl4). The outgoing transition labelledeach

9 / 14 Volume 29 (2010)

De-/Re-constructing Model Transformation

time applies statement 7 after each iteration of thefor-all Pattern. This activity allows the pattern
to simulate random choices of levels for different people inthe elevator. When all iterations have
been completed, the flow proceeds with statement 8 reached bythe transition labelledend. The
latter activity simulates the elevator going one level up.

Figure 4: The threeMoTif rules for thedoSubDemo transformation

Algorithm 10 makeChoiceC.packetIn(π)
π← makeChoiceM.packetIn(π)
if not makeChoiceM.isSuccess then

isSuccess← false
return π

end if
π← makeChoiceI.packetIn(π)
if not makeChoiceI.isSuccess then

isSuccess← true
return π

end if
π← makeChoiceW.packetIn(π)
if not makeChoiceW.isSuccess then

isSuccess← false
return π

end if
π← makeChoiceR.packetIn(π)
if not makeChoiceR.isSuccess then

isSuccess← false
return π

end if
isSuccess← true
return π

We now show how to re-construct this non-trivial
story diagram transformation from an SLB language
combined withT-Core. An instance of that combi-
nation is called aT-Core model. First, we design
the rules needed for the conditions of rule primi-
tives. Figure4 describes the three necessary rules
corresponding to the three Story Diagram activi-
ties. We use the syntax ofMoTif [SV09b] where
the central compartment is the LHS, the compart-
ment on the right of the arrow head is the RHS
and the compartment(s) on the left of dashed lines
are the NAC(s). The concrete syntax for represent-
ing the pattern elements was chosen to be intuitively
close enough to theFUJABA graphical representa-
tion. Numeric labels are used to uniquely identify
different elements across compartments. Elements
with an alpha-numeric label between parentheses de-
note pivots. A right-directed arrow on top of such a
label depicts that the model element matched for this pattern element is assigned to a pivot
(e.g.,p4 and l4). If the arrow is directed to the left, then the model elementmatched for this
pattern element is bound to the specified pivot (e.g.,this ande1).

The T-Core model equivalent to the originaldoSubDemo transformation consists of aCom-
poser doSubDemoC. It is composed of twoComposers loadC andnextStepC each containing a
Matcher, an Iterator, a Rewriter, and aResolver. The packetIn method ofdoSubDemoC first
calls the corresponding method ofloadC and then feeds the returned packet to thepacketIn
method ofnextStepC. This ensures that the output packet of the overall transformation is the
result of first loading all thePerson objects and then moving the elevator by onestep. make-
ChoiceC andnextStepC behave as simple transformation rules. TheirpacketIn method behaves
as specified in Algorithm10. First, the matcher is tried on the input packet. Note that the con-
ditions of the matchersmakeChoiceM andnextStepM are the LHSs of rulesmakeChoice and
nextStep, respectively. If it fails, the composer goes into failure mode and the packet is returned.
Then, the iterator chooses a match. Subsequently, the rewriter attempts to transform this match.

Proc. GT-VMT 2010 10 / 14

ECEASST

Algorithm 11 loadC.packetIn(π)
π← loadM.packetIn(π)
if not loadM.isSuccess then

isSuccess← false
return π

end if
π← loadI.packetIn(π)
while true do

if not loadI.isSuccess then
isSuccess← true
return π

end if
π ← loadW.packetIn(π)
if not loadW.isSuccess then

isSuccess← false
return π

end if
π ← loadR.packetIn(π)
if not loadR.isSuccess then

isSuccess← false
return π

end if
π ← makeChoiceC.packetIn(π)
π ← loadI.nextIn(π)

end while
isSuccess← true
return π

Note that the conditions of the rewritersmakeChoiceW
and nextStepW are the RHSs of rulesmakeChoice and
nextStep, respectively. If it fails, an exception is thrown and
the transformation stops. Otherwise, the resolver verifies
the application of this pattern with respect to other matches
in the transformed packet. The behaviour of the resolution
function will be elaborated on later. Finally, on a successful
resolution, the resulting packet is output and the composer
is put in success mode.loadC is the composer that emu-
lates thefor-all Pattern of the example. Algorithm11 spec-
ifies that behaviour. After finding all matches withloadM
(whose condition is the LHS and the NAC of ruleload), the
packet is forwarded to the iteratorloadI to choose a match.
The iteration is emulated by a loop with the failure mode
of loadI as the breaking condition. Inside the loop,loadW
rewrites the chosen match andloadR resolves possible con-
flicts. Then, the resulting packet is sent tomakeChoiceC to
fulfil the each time transition of the story digram. After that,
thenextIn method ofloadI is invoked with the new packet to
choose a new match and proceed in the loop.

Having seen the overallT-Core transformation model, let
us inspect how the differentResolvers should behave in order to provide a correct and complete
transformation. The first rewriter called isloadR and the first time it receives a packet is when
a transformation is applied on one of the matches ofloadM. Therefore each match consists of
the sameHouse (since it is a bound node), twoLevels, anElevator, and the associations between
them. On the other hand,loadW only adds aPerson and links it to aLevel. Therefore the default
resolution function ofloadR applies successfully, since no matched element is modified nor is
the NAC violated in any other match. The next resolver ismakeChoiceR which is in the same
loop asloadR. There, theHouse is conflicting with all the matches in the packet according tothe
conservative default resolution function. Note thatmakeChoiceM finds at most one match (the
boundHouse element). However,makeChoiceW does not really conflict with matches found in
loadM. We therefore specify a custom resolution function formakeChoiceR that always succeeds.
The same applies fornextStepR.

4.2 Re-constructing amalgamated rules

Figure 5: The transformation
rules for theRepotting Gera-
niumsexample

In a recent paper, Rensink et al. claim that theRepotting the
Geraniumsexample is inexpressible in most transformation for-
malisms [RK09]. The authors propose a transformation language
that uses an amalgamation scheme for nested graph transforma-
tion rules. As we have seen in the previous example, nesting
transformation rules is possible inT-Core and will be used to
solve the problem. It consists ofrepotting all flowering gerani-
ums whose pots have cracked. Figure5 illustrates the two nested

11 / 14 Volume 29 (2010)

De-/Re-constructing Model Transformation

Algorithm 12 baseC.packetIn(π)
π← baseM.packetIn(π)
if not baseM.isSuccess then

isSuccess← false
return π

end if
while true do

π ← baseI.packetIn(π)
if not baseI.isSuccess then

isSuccess← true
return π

end if
π ← baseW.packetIn(π)
if not baseW.isSuccess then

isSuccess← false
return π

end if
π ← baseR.packetIn(π)
if not baseR.isSuccess then

isSuccess← false
return π

end if
π ← innerC.packetIn(π)
π ← baseM.packetIn(π)
if not baseM.isSuccess then

isSuccess← true
return π

end if
end while

graph transformation rules involved and Algorithm12
demonstrates the composition of primitiveT-Core elements
encoding these rules.baseM (with, as condition, the LHS
of rule base) finds all broken pots containing a flowering
geranium, given the input packet containing the input graph.
The set of matches resulting in the packet are the combina-
tion of all flowering geraniums and their pot container. From
then on starts the loop. First,baseI chooses a match. If one
is chosen,baseW transforms this match andbaseR resolves
any conflicts. In this case,baseW only creates a new unbro-
ken pot and assigns pivots. Therefore,baseR’s resolution
function always succeeds. In fact, the resolver is not needed
here, but we include it for consistency. TheinnerC composer
encodes theinner rule which finds the two bound pots and
moves a flourishing flower in the broken pot to the unbroken
one. In order to iterate over all the flowers in the broken pot,
the innerC.packetIn method has the exact same behaviour as
loadC.packetIn in Algorithm 11, with the exception of not
calling a sub-composer (likemakeChoiceC). Note that an
always successful custom resolution function forinnerR is
required. After theResolver successfully outputs the packet,
the inner rule is applied. Then (and also ifbaseI had failed)
baseM.packetIn is called again with the resulting packet. The loop ends whenthebaseM.packetIn
method call inside the loop fails, which entailsbaseC to return the final packet in success mode.

5 Related work

The closer work to our knowledge is [VJBB09]. In the context of global model management,
the authors define a type system offering a set of primitives for model transformation. The
advantage of our approach is thatT-Core is a described here as a module and is thus directly
implementable. We have recently incorporatedT-Core with an asynchronous and timed mod-
elling language [SV09a] which allowed us to re-implement the two examples in Section 4 as
well as others. Also, the approach described in [VJBB09], does not deal with exceptions at all.
Nevertheless, their framework is able to achieve higher-order transformations, which we did not
consider in this paper.

The GP graph transformation language [MP08] also offers transformation primitives. They
however focus more on the scheduling of the rules then on the rules themselves. Their scheduling
(control) language is an extension of an SBL language. Our approach is more general since
much more complex scheduling languages (e.g.,allowing concurrent and timed transformation
execution) can be integrated withT-Core. Although it performs very efficiently, the application
area ofGP is more limited, as it can not deal with arbitrary domain-specific models.

Other graph transformation tools, such asVIATRA [VB07] andGReAT [AKK +06], have their
own virtual machine used as an API. In our approach, since theprimitive operations are mod-
elled, they are completely compatible with other existing model transformation frameworks.

Proc. GT-VMT 2010 12 / 14

ECEASST

6 Conclusion

In this paper, we have motivated the need for providing a collection of primitives for model trans-
formation languages. We have definedT-Core which precisely describes each of these primitive
constructs. The de-construction process of model transformation languages enabled us to re-
construct existing model transformation features by combining T-Core with, for example, an
SBL language. This allowed us to compare different model transformation languages using a
common basis.

Now that these primitives are well-defined, efficiently implementing each of them might lead
to more efficient model transformation languages. Also, forfuture work, we would like to in-
vestigate howT-Core combined with appropriate modelling languages can expressfurther trans-
formation constructs. We would also like to investigate further on the notion of exceptions and
error handling in the context of model transformation.

Bibliography

[AKK +06] A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, A. Vizhanyo. The Design of a
Language for Model Transformations.SoSym5(3):261–288, September 2006.

[BJ66] C. Böhm, G. Jacopini. Flow diagrams, turing machinesand languages with only two
formation rules.Communications of the ACM9(5):366–371, May 1966.

[FNTZ00] T. Fischer, J. Niere, L. Turunski, A. Zündorf. Story diagrams: A new graph rewrite
language based on the Unified Modelling Language and Java. InEhrig et al. (eds.),
Theory and Application of Graph Transformations. LNCS 1764, pp. 296–309.
Springer-Verlag, Paderborn (Germany), November 2000.

[JK06] F. Jouault, I. Kurtev. Transforming Models with ATL.In MTiP’05. LNCS 3844,
pp. 128–138. Springer-Verlag, January 2006.

[KMS+09] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, M. Wimmer.Systematic Transfor-
mation Development. In3rd International Workshop on Multi-Paradigm Modeling
(best paper). Volume 21. October 2009.

[LLMC06] L. Lengyel, T. Levendovszky, G. Mezei, H. Charaf. Model Transformation with a
Visual Control Flow Language.IJCS1(1):45–53, 2006.

[MP08] G. Manning, D. Plump. The GP Programming System. InGT-VMT’08. ECEASST,
pp. 235–247. Budapest (Hungary), March 2008.

[RK09] A. Rensink, J.-H. Kuperus. Repotting the Geraniums:On Nested Graph Transfor-
mation Rules. In Margaria et al. (eds.),GT-VMT’09. EASST. York (UK), March
2009.

[SV09a] E. Syriani, H. Vangheluwe. De-/Re-constructing Model Transformation Languages.
Technical report SOCS-TR-2009.8, McGill University, School of Computer Sci-
ence, August 2009.

13 / 14 Volume 29 (2010)

De-/Re-constructing Model Transformation

[SV09b] E. Syriani, H. Vangheluwe.Discrete-Event Modeling and Simulation: Theory and
Applications. Chapter DEVS as a Semantic Domain for Programmed Graph Trans-
formation. CRC Press, Boca Raton (USA), 2009.

[SV09c] E. Syriani, H. Vangheluwe. Matters of model transformation. Technical re-
port SOCS-TR-2009.2, McGill University, School of Computer Science, March
2009.

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming68(3):214–234, 2007.

[VJBB09] A. Vignaga, F. Jouault, M. C. Bastarrica, H. Brunelière. Typing in Model Manage-
ment. In Paige (ed.),Theory and Practice of Model Transformations (ICMT’09).
LNCS 5563, pp. 197–212. Springer-Verlag, Zürich (Switzerland), June 2009.

Proc. GT-VMT 2010 14 / 14

	Introduction
	De-constructing Transformation Languages
	Matcher
	Rewriter
	Iterator
	Resolver
	Rollbacker
	Selector
	Synchronizer
	Composer

	T-Core: a minimal collection of transformation primitives
	Re-constructing Transformation Languages
	Re-constructing Story Diagrams
	Re-constructing amalgamated rules

	Related work
	Conclusion

