
Electronic Communications of the EASST
Volume 26 (2010)

Manipulation of Graphs, Algebras and Pictures

Essays Dedicated to Hans-Jörg Kreowski
on the Occasion of His 60th Birthday

Algebraic Model Checking

Peter Padawitz

22 pages

Guest Editors: Frank Drewes, Annegret Habel, Berthold Hoffmann, Detlef Plump
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Algebraic Model Checking

Peter Padawitz

TU Dortmund, Germany

Abstract: Three algebraic approaches to model checking are presented and com-
pared with each other with respect to their range of applications and their degree of
automation. They have been implemented and tested in our Haskell-based formal-
reasoning and -presentation system Expander2. Besides realizing and integrating
state-of-the-art proof and computation rules the system admits the co/algebraic spec-
ification of the models to be checked in terms of rewrite rules and functional-logic
programs. It also offers flexible features for visualizing and even animating mod-
els and computations. This paper does not present purely theoretical work. Due to
the increasing abstraction potential of programming languages like Haskell, tradi-
tional gaps between specification formalisms and their executable implementations
as well as between systems developed in different communities are going to vanish.
The topics discussed in this article and the way of their presentation reflect this fact.

Keywords: model checking, algebra, coalgebra, functional programming, induc-
tion, coinduction, fixpoint theorems

1 Introduction

Model checking means proving properties of labelled or unlabelled transition systems (TRS).
Modal, temporal or dynamic logics have been developed to formalize the properties and pro-
vide methods for proving them (see, e.g., [4, 14, 29]). In contrast to classical predicate logic,
modal logics hide the relations (here: the transition systems) they are talking about. Transla-
tions of the latter into the former are well-known (see, e.g., [1, 20]), but did not affect very
much the direction of research in model checking. With the invention of coalgebraic logics
(see, e.g., [15, 28, 16, 11, 2]) the direction of translation is reversed: these logics generalize the
‘relation-hiding’ concept of modal logics from merely unstructured states and transitions to arbi-
trary destructor-based types and thus open up alternatives to classical predicate-logic-based data
type verification. Moreover, the use of coalgebraic concepts reveals the intrinsic algebraic flavor
of modal logics: their formulas denote (unary) relations; the logical operators (including fixpoint
operators!) are functions building relations from relations. This approach is sometimes called
“global” in contrast to the “local” one that starts out from a satisfiability relation between states
and formulas (see, e.g., [18]). Mathematically, both views on the semantics of modal logics are
equivalent: the global one just turns the satisfiability relation of the local view into a function
from formulas to sets of states. In both cases the data modal logics deal with states and thus with
elements of a destructor-based type, or with paths, which also form a destructor-based type.

We have investigated and implemented in the prover part of Expander2 [22, 23, 24] four ap-
proaches to model checking. The first one may be called purely algebraic because the proof of a
formula boils down to term evaluation. In the second one, formulas are proved by solving sets of

1 / 22 Volume 26 (2010)

Algebraic Model Checking

regular equations represented by data flow graphs. The third technique uses simplification rules
and must accompany the first one if, for instance, the underlying type has infinitely many ele-
ments (such as the set of paths of a TRS). The fourth method applies co/Horn logic, extends the
others by powerful inference rules (mainly parallel co/resolution and incremental co/induction)
and thus imposes the fewest restrictions on the formulas to be proved. On the other hand, this
technique requires more manual control of the proof process than the others.

For lack of space the present paper skips the data flow approach. The other methods are
illustrated mainly with a couple of axiomatic specifications of small Kripke structures and the
verification of properties given by state or path formulas. More and larger examples can be found
in [25] and the Examples directory of Expander2. This system has also created all graphics and
proof records presented in this paper. To a great extent, Expander2 specifications follow the
syntax of the functional programming language Haskell (see haskell.org) with which we assume
a little familiarity. We also use Haskell for some definitions that involve data structures like
lists or trees. Neither a purely set-theoretical notation nor an—unfortunately still prevailing—
imperative syntax can cope with the elegance and adequacy of Haskell.

Although it is long ago, the extremely inspiring work with Hans-Jörg Kreowski (and my su-
pervisors Hartmut Ehrig and Dirk Siefkes) at the computer science department of the Technical
University of Berlin, lasting from 1974 to 1983, have influenced the direction of my research over
the entire subsequent 25 years. We worked in three areas: automata theory, graph grammars and
algebraic software specification. In all of them, constructions and methods from universal alge-
bra played the key rôle. My additional work on Horn logic and rewrite systems was also led by
the algebraic viewpoint. Last not least, graph grammar concepts left their mark on the treatment
of term graphs in Expander2.

2 Kripke structures in Expander2

Since we want to use the same techniques for several variants of transition systems and modal
logics, the following definitions take into account deterministic and nondeterministic, labelled
and unlabelled systems as well as state and path formulas:

A Kripke structure K = (Q,At,Lab, trans, transL,value,valueL) consists of sets Q,At,Lab
of states, At of atoms and Lab of labels (actions, input, output, etc.), respectively, transition
relations trans : Q→℘(Q) and transL : Q×Lab→℘(Q) and atom valuations value : At →
℘(Q) and valueL : At×Lab→℘(Q). Usually, either trans or transL and either value or valueL
are empty. For an empty transL, the set of paths of K is given by

path(K) = {p∈QN | ∀ i∈N : pi+1 ∈ trans(pi)}∪
⋃

n∈N
{p∈Qn | ∀ 1≤ i < n : pi+1 ∈ trans(pi)}

and analogously for an empty trans. Given a function f : Q→P(Q),

imgsShares(qs)(f)(qs′) = {q ∈ qs | f (s)∩qs′ 6= /0},
imgsSubset(qs)(f)(qs′) = {q ∈ qs | f (s)⊆ qs′}

denote the sets of states q∈ qs such that at least one resp. all f -images of q are in qs′. Expander2
admits the specification of Kripke structures in terms of rewrite rules as in the following example.

Festschrift H.-J. Kreowski 2 / 22

ECEASST

-- TRANS
defuncts: drawFT defined functions
fovars: x y first-order variables
axioms: states == [0] & initial states

(x < 6 & x ‘mod‘ 2 = 0 ==> x -> branch$[x,x+1]) &
(x < 6 & x ‘mod‘ 2 =/= 0 ==> x -> x+1) &
6 -> branch$[1..5]++[7..10] &
7 -> 14 &
drawFT == wtree$fun(sat$x,frame$text$x,x,x)

After TRANS has been parsed, the simplifier of Expander2 constructs a Kripke model from a list
of initial states (here: [0]) and (Horn clause) axioms for the built-in binary predicate →. The
set of states that are reachable w.r.t. → from the initial ones is assigned to the constant states.
The resulting transition relation is presented in Fig. 1. TRANS has no atoms. Since we perform
modal-logic reasoning within predicate logic, atom valuations are usually represented in terms
of predicates on states (like (< 4) in Fig. 3) and not in terms of functions as in the definition
of a Kripke structure. However, if an atom valuation shall be displayed or manipulated, we also
need a functional representation of the predicates—as, for instance, in the specification MUTEX
of Section 3.

Fig. 1. The term graph representing the transition relation derived from TRANS and its
interpretation by the matrix interpreter of Expander2

branch, wtree, sat, frame and text are built-in constructors. An implicational axiom of the
form ϕ⇒ t→ branch[t1, . . . , tn] means that for all ground instances q of the term (= state pattern)
t that satisfy ϕ , the corresponding instances of t1, . . . , tn are direct successors of q. sat is attached
to all nodes of the transition graph that represent states satisfying a given formula (see Figs. 3
and 6). A term of the form wtree(f)(t) is simplified into a term with graphical attributes (here:
frame and text) at some nodes of t by applying the function f to each node. For instance, in
the axiom for drawFT, f is given by the term fun(sat$x,frame$text$x,x,x), which represents the
λ -abstraction

λn. case n of sat(x) → frame(text(x))
n → x.

The attributes are interpreted by the painter module: if a node (term) n has the form sat(t), the
subterm t is turned into its text representation and framed by a rectangle, while other nodes do

3 / 22 Volume 26 (2010)

Algebraic Model Checking

not obtain a graphical attribute and thus will be displayed by default. Fig. 3 provides an example
of a term t and the result of interpreting the simplication of drawFT(t).

& and | denote conjunction resp. disjunction. Equational axioms involving == are used as
simplification rules (see below). The apply-operator $ and list functions like concatenation (++),
map and filter are defined as usually.

The solver module of Expander2 always produces resp. transforms term graphs like the one in
Fig. 1. Basically, term graphs are trees, but they may involve additional edges (those with tips).
The solver module may display further term representations of a binary or ternary relation: a list
of pairs resp. triples and a conjunction of regular equations (equations with a variable on one
side).

3 Modal logic and algebra

We present well-known modal and temporal operators (see, e.g., [14, 29]) in a rigorously al-
gebraic fashion that allows us to model-check finite Kripke structures by pure term evaluation.
The corresponding implementation in Expander2 is illustrated at the specification TRANS of the
previous section and a further one (MUTEX) based upon [14], Example 3.1.1.

Let Var be a set of variables denoting sets of states or paths (sequences of states). The words
generated from sf resp. pf by the following context-free rules are called state formulas resp.
path formulas: Let at ∈ At, lab ∈ Lab and x ∈ Var.

sf → at | true | false | ¬sf | sf ∨ sf | sf ∧ sf | sf ⇒ sf
(1) sf → EX sf | AX sf | 〈lab〉sf | [lab]sf
(2) sf → x | µx.sf | νx.sf

sf → EF sf | AF sf | EG sf | AG sf | sf EU sf | sf AU sf
pf → at | true | false | ¬pf | pf ∨pf | pf ∧pf | pf ⇒ pf

(3) pf → next pf | 〈lab〉pf | [lab]pf
(4) pf → x | µx pf | νx pf

pf → F pf | G pf | pf U pf

Some of the above operators are subsumed by others. This is intended because the user shall be
allowed to formalize conjectures as adequately as possible. The reduction to a minimal set of
operators should be left to the model checker. Ours will turn all formulas into equivalent ones
that consist of propositional, next-step ((1) resp. (3)) and fixpoint operators ((2) resp. (4)).

Like every context-free grammar the one above defines an algebraic signature Σ = (PS,S,OP)
with a set PS of primitive sorts (here: at, lab and x), a set S of further sorts, one for each
nonterminal of the grammar, and a set OP of operators, one for each rule of the grammar: a rule
A→w becomes an operator of type v→A where v is the word consisting of the nonterminals of w
(ε→ A is the type of a constant). In the above case, Σ-terms represent formulas, and proving the
latter means evaluating the former with respect to a suitable interpretation of Σ, i.e. a Σ-algebra,
say A.

Each sort s ∈ PS∪ S is interpreted by a ‘carrier’ set sA and each operator f by a function f A

whose domain and range comply with the interpretation of the sorts involved in the type of f .
The nature of primitive sorts is to have the same interpretation in every Σ-algebra A. Hence at,

Festschrift H.-J. Kreowski 4 / 22

ECEASST

lab and x are always interpreted as the given sets At, Lab and Var of atoms, labels and variables,
respectively. The interpretation of sf and pf in A leads to functional domains:

sf A = (Var→P(Q))→P(Q),
pf A = (Var→P(path(K)))→P(path(K)).

In Σ, each atom at becomes a constant of sort sf and also a constant of sort pf . Both fixpoint
operators (µ and ν) have the types Var× sf → sf and Var× pf → pf . Analoguous binding
operators occur in other term languages as well, e.g., the abstraction and least-fixpoint operators
λ resp. µ for building higher-order functions or the quantification operators ∀ and ∃ that come
with an algebraic view on predicate logic.

Fixpoint operators are the main model builders. Be it single objects (including functions
of arbitrary order), types (sets of objects) or relations (predicates) of arbitrary arity, whatever
cannot be constructed by simply combining given objects (resp. sets) conjunctive- or disjunc-
tively, is defined as a solution of a system of regular equations between variables on the left-
and terms/formulas on the right-hand side, i.e. as a fixpoint of the function induced by the equa-
tions. From the classical theory of recursive functions via the semantics of logic programming
languages up to domain theory and universal co/algebra, fixpoints provide the link between de-
scription, computation and proof in all these approaches.

The existence of a fixpoint requires the monotonicity of the functions used in the equations to
be solved. Its stepwise constructability requires the stronger property of (upward or downward)
continuity. In the case of a modal formula ϕ , monotonicity is ensured if each free occurrence of
x ∈ Var in ϕ has positive polarity, i.e. the number of negations on the path from the binder of x
(µ or ν) to the occurrence is even. Continuity is guaranteed if, in addition to the monotonicity
requirement, the transition relation is image finite, i.e. for all q ∈Q and lab ∈ Lab, trans(q) resp.
transL(lab)(q) is finite. Hence we assume that Q is finite and all free variable occurrences in ϕ

have positive polarity so that ϕ can be evaluated in the following extension of A to a Σ-algebra,
called the modal algebra over K. We omit the interpretation of temporal, i.e. path formula
operators because—due to the infinity of path(K)—it cannot be implemented as directly as the
interpretation of state formula operators.

Let s ∈ Q, lab ∈ Lab, ϕ,ψ ∈ pf A and b : Var→P(Q).

atA(b) =def value(at)
trueA(b) =def Q
falseA(b) =def /0
¬A(ϕ)(b) =def Q\ϕ(b)
(ϕ ∨A ψ)(b) =def ϕ(b)∪ψ(b)
(ϕ ∧A ψ)(b) =def ϕ(b)∩ψ(b)
ϕ ⇒A ψ =def ¬A(ϕ)∨A ψ

EXA(ϕ) =def imgsShares(Q)(sucs)◦ϕ “exists next ′′

AXA(ϕ) =def imgsSubset(Q)(sucs)◦ϕ “always next ′′

〈lab〉A(ϕ) =def imgsShares(Q)(sucsL(lab))◦ϕ

[lab]A(ϕ) =def imgsSubset(Q)(sucsL(lab))◦ϕ

xA(b) =def b(x)

5 / 22 Volume 26 (2010)

Algebraic Model Checking

(µx)A(ϕ)(b) =def lfp(ϕ(λy.b[y/x]))(/0)
(νx)A(ϕ)(b) =def gfp(ϕ(λy.b[y/x]))(Q)

f [a/x] denotes an update of (the valuation or substitution) f : f [a/x](x) = a and for all y 6= a,
f [a/x](y) = f (y). The functions lfp (least fixpoint) and gfp (greatest fixpoint) are defined (in
Haskell) as follows:

lfp, gfp :: Eq a => [a] -> ([a] -> [a]) -> [a]
lfp f s = if fs ‘subset‘ s then s else lfp f fs where fs = f s
gfp f s = if s ‘subset‘ fs then s else gfp f fs where fs = f s

They transform a finite set by repeatedly applying f until it does not change any more. If lfp(f) is
applied to /0 or gfp(f) to Q, the iteration terminates and—by Kleene’s fixpoint theorem—returns
the least resp. greatest solution of the equation x = ϕ in P(Q). All further operators of Σ can be
reduced to fixpoints, as one knows from the µ-calculus of modal logic (see, e.g., [29, 20]):

EF(ϕ) = µx(ϕ ∨EX(x)) “exists f inally′′

AF(ϕ) = µx(ϕ ∨ (EX(true)∧AX(x))) “always f inally′′

EG(ϕ) = νx(ϕ ∧ (AX(false)∨EX(x))) “exists generally′′

AG(ϕ) = νx(ϕ ∧AX(x)) “always generally′′

ϕ EU ψ = µx(ψ ∨ (ϕ ∧EX(x))) “exists until′′

ϕ AU ψ = µx(ψ ∨ (ϕ ∧AX(x))) “always until′′

As demonstrated in Section 2, the simplifier of Expander2 derives K from a specification like
TRANS. Any modal formula ϕ can then be evaluated in the modal algebra over K by applying
rule (1) below to the expression sols(ϕ) or rule (2) to the expression solsG(ϕ):

(1)
sols(ϕ)

ϕA (2)
solsG(qs)

transition graph of K with each state q ∈ qs replaced by sat(q)

Fig. 3. Results of simplifying solsG$EF(< 4) (left) and graphically interpreting the
simplification of drawFT $solsG$EF(< 4) (right) w.r.t. the specification TRANS of Section 2:

0, . . . ,6 are all states from which a state less than 4 is reachable.

Festschrift H.-J. Kreowski 6 / 22

ECEASST

The Kripke structure derived from the following specification MUTEX models a system of n
processes accessing a critical region. The model is specified along the lines of [14], Example
3.3.1, where the system is described for two processes. In MUTEX, procs denotes the actual
list of all processes. States are pairs (xs,ys) consisting of the list xs of waiting processes and
the list ys of processes in the critical region. Given two lists s and s′, s− s′ returns all ele-
ments of s that are not in s′. MUTEX has atoms idle(x), wait(x) and crit(x) for each process x.
Like transition relations, atom valuations are specified in terms of the built-in binary predicate
→: t → branch[t1, . . . , tn] means that for all ground instances at of the term (= atom pattern) t,
the corresponding instances of the terms (= state patterns) t1, . . . , tn satisfy at. The higher-order
predicate Atom turns Kripke structure atoms into atomic formulas. Logical operators are intro-
duced as higher-order predicates and thus applied and composed like and in combination with
higher-order functions. For instance, and$map(not.Crit)[x,y,z] denotes a ternary predicate that
is satisfied by all triples of processes outside the critical region.

-- MUTEX
constructs: idle wait crit
preds: Idle Wait Crit Crit’ Atom live nonBlock noSeq

/\ \/ ‘then‘ not and or EX EF AF AG ‘EU‘
defuncts: procs drawK
fovars: xs ys at ats

axioms:
states == [([],[])] & initial states
atoms == map($) $ prodL[[idle,wait,crit],procs] &

(xs,ys) -> branch $ map(fun(x,(x:xs,ys))) $ procs-xs-ys & x waits
(xs =/= [] ==> (xs,[]) -> (init(xs),[last(xs)])) & last(xs) enters
(xs,[x]) -> (xs,[]) & x leaves

(Idle(x)(xs,ys) <==> x ‘in‘ procs-xs-ys) &
(Wait(x)(xs,ys) <==> x ‘in‘ xs) &
(Crit(x)(xs,ys) <==> x ‘in‘ ys) &

(Atom$idle$x <==> Idle$x) &
(Atom$wait$x <==> Wait$x) &
(Atom$crit$x <==> Crit$x) &

(at ‘in‘ atoms
==> at -> branch $ filter(Atom$at) $ states) & atom valuation

(live$x <==> AG $ Wait(x) ‘then‘ AF$Crit$x) & no infinite waiting
(nonBlock$x <==> AG $ Idle(x) ‘then‘ EX$Wait$x) & no blocking
(noSeq$x <==> AG $ EF $ Crit(x) /\

(Crit(x) ‘EU‘ (not(Crit$x) /\
(Crit’(x) ‘EU‘ crit$x)))) &

no sequencing: a process may leave the critical region and enter it again
before another process does so.

(Crit’$x <==> and(map(not.Crit) $ procs-[x])) &

7 / 22 Volume 26 (2010)

Algebraic Model Checking

drawK == wtree $ fun((xs,ys),frame$matrix[wait$xs,crit$ys],
sat((xs,ys),ats),

frame$matrix[wait$xs,crit$ys,satisfies$ats]) &

The graphical attribute matrix causes the elements of its argument list to be displayed as a matrix.
drawK works analogously to drawFT defined in TRANS0 (see Section 2).

Fig. 4. The Kripke model derived from MUTEX for two processes after its transformation
performed by drawK

Fig. 5. The result of simplifying solsGandmap(live)[0,1]:
all states satisfy live(0) and live(1).

4 Model checking by simplification

A path formula like ∀ pa : ϕ(pa) quantifies over the infinite set of paths of the underlying Kripke
structure K and thus cannot be proved by simply evaluating it in the modal algebra over K: the

Festschrift H.-J. Kreowski 8 / 22

ECEASST

implementation of the fixpoint operators µ and ν with the functions lfp and gfp of Section 3 will
not terminate. However, as fixpoint operators are ubiquitous in model design, so are the key proof
rules expansion, induction and coinduction for properties of a—sometimes more-dimensional—
fixpoint, say a = (a1, . . . ,an). If a solves the equation (x1, . . . ,xn) = t(x1, . . . ,xn), expanding a
term or formula ϕ means replacing occurrences of a in ϕ by (projections of the value of) t(a).
Expansion is sound for all solutions of the equation, but induction and coinduction only for the
least resp. greatest one.

Expansion Let op be a fixpoint operator, u = (t1, . . . , tn) and 1≤ i≤ n.

op x1 . . .xn.t
t[πi(op x1 . . .xn.t)/xi | 1≤ i≤ n]

πi(op x1 . . .xn.u)
ti[π j(op x1 . . .xn.u)/x j | 1≤ j ≤ n]

πi, 1 ≤ i ≤ n, denotes the projection of an n-tuple on its i-th component. In the case of unary
fixpoints (like the modal operators µ and ν), projections do not occur and we only need the
first rule. In general, non-unary fixpoints arise from mutually recursive definitions of several
functions or relations.

For reducing the danger of non-termination Expander2 applies expansion rules only to for-
mulas that lack redices for other simplification rules. The simplifier traverses a formula tree
depthfirst (leftmost-outermost) or breadthfirst (parallel-outermost) when searching for the next
rule redex. The strategy of parallel-outermost simplification that postpones expansion steps as
far as possible is a fixpoint strategy, i.e. terminates whenever any strategy terminates [17]. This
suggests why the evaluation of path formulas in the modal algebra may not terminate: evaluation
in an algebra always proceeds bottom-up and thus follows an innermost strategy!

Expansion rules are applied to the fixpoint itself. The redices of induction and coinduction,
however, are implications with the fixpoint as its premise resp. conclusion:

Induction and coinduction

µx1 . . .xn.ϕ ⇒ ψ

ϕ[πi(ψ)/xi | 1≤ i≤ n]⇒ ψ
⇑ ψ ⇒ νx1 . . .xn.ϕ

ψ ⇒ ϕ[πi(ψ)/xi | 1≤ i≤ n]
⇑

The arrow ⇑ indicates that induction and coinduction are backward (reasoning) rules whose
succedents imply the antecedents, but not necessarily vice versa. An important design goal of
Expander2 is to emphasize the view on proofs as computation sequences. Hence our rule syntax
reflects the order in which the rules are applied in a proof. Even within a backward proof, Ex-
pander2 may also apply forward rules (whose antecedents imply the succedents)—to subformu-
las with negative polarity (see Section 3). Most rules, however, are equivalence transformations,
i.e., both backward and forward rules, and thus may be applied to any subformula of the current
goal.

The problem with pure backward rules is their narrowing effect: the succedent may never
reduce to True, although the antecedent would do so if other rules where applied to the redex. In
the case of co/induction, this means that the co/induction hypothesis, which is given by ψ , is too
weak resp. too strong. ψ must then be generalized, i.e. extended to some δ by adding a factor
resp. summand. Obviously—and probably accounted for by the incompleteness of second-order
logic—the candidates for δ cannot be enumerated. Just for seeing the boundaries within which

9 / 22 Volume 26 (2010)

Algebraic Model Checking

δ must be searched for one may generalize co/induction as follows:
Second-order induction and coinduction

µx1 . . .xn.ϕ ⇒ ψ

∃δ : ((ϕ[πi(δ)/xi | 1≤ i≤ n]⇒ δ)∧ (δ ⇒ ψ))
m

ψ ⇒ νx1 . . .xn.ϕ

∃δ : ((ψ ⇒ δ)∧ (δ ⇒ ϕ[πi(δ)/xi | 1≤ i≤ n]))
m

The soundness of (first-order) co/induction is easy to show: µx1 . . .xn.ϕ and νx1 . . .xn.ϕ de-
note solutions of the equation (x1, . . . ,xn) = ϕ in the modal algebra A (see Section 3). Since the
operators of ϕA are monotone, the fixpoint theorem of Knaster and Tarski tells us that the least
resp. greatest solution of (x1, . . . ,xn) = ϕ in A is the least resp. greatest tuple B = (B1, . . . ,Bn) of
sets such that (1) ϕ[Bi/xi | 1≤ i≤ n]A ⊆ B or (2) B⊆ ϕ[Bi/xi | 1≤ i≤ n]A, respectively. Since
⇒ is interpreted in A by set inclusion, the conclusion of co/induction is valid iff (1)/(2) with Bi

replaced by πi(ψ)A holds true. Consequently, the rule antecedent follows from the minimality
resp. maximality of B with respect to (1)/(2).

Since co/induction is part of the simplifier of Expander2, the system takes care of not de-
stroying co/induction redices. For instance, the following simplification rules are applied only to
formulas that are not co/induction redices:

Implication splitting Suppose that ϕ and ψ are simplified.

ϕ ⇒ ψ1∧·· ·∧ψn

ϕ ⇒ ψ1 ∧ . . . ∧ ϕ ⇒ ψn
m ϕ1∨·· ·∨ϕn ⇒ ψ

ϕ1⇒ ψ ∧ . . . ∧ ϕn⇒ ψ
m

Since generalizing a co/induction hypothesis ψ means adding a factor resp. summand to ψ , the
co/inductive provability of the antecedent of implication splitting does not imply the co/inductive
provability of the succedent! On the other hand, if implication splitting does not interfere with
co/induction, it should be applied because it brings the redex closer to its disjunctive normal
form. More crucial than such Boolean trasnformations is the handling of quantified variables.
Here the simplifier shifts quantifiers towards existentially quantified conjunctions of equations
and universally quantified disjunctions of inequations. These are then treated separately by term
replacement, atom splitting and atom removal, which often reduces the number of variables or
even deletes all of them.

When simplifying a formula, Expander2 first treats it as a term, i.e., evaluates it in a suitable
algebra, say A, which involves a couple of built-in types including the modal algebra over the
derived Kripke structure (see Section 3)—if there is any. As to the formula’s logical operators,
A is a term algebra consisting of a kind of normal forms. For instance, an existential quantifier
is merged with subsequent ones, distributed over subsequent implications and disjunctions and
restricted to variables with free occurrences in the quantified formula.

After having been evaluated in this way, the simplifier applies rules like the ones presented
here or given by the equational or equivalence axioms of user-defined specifications. In contrast
to the preceding (bottom-up) evaluation these rules are applied only to outermost redices. Hence
this level of simplification provides a possibility to model-check path formulas, which—due to
the infinity of paths—cannot be evaluated in the modal algebra. So the following specification
LTLS introduces the temporal operators F , G, U and .tail (“next”) as higher-order predicates

Festschrift H.-J. Kreowski 10 / 22

ECEASST

on (a coalgebraic specification of) streams, which represent the (infinite) paths of an arbitrary
Kripke structure K. K is derived from an extension of LTLS such as MICROS (see below) via the
built-in predicate → in the way Kripke structures were derived from TRANS and MUTEX (see
Section 2). Later proofs use the axioms of LTLS as simplification rules along with expansion and
co/induction.

-- LTLS
constructs: blink the stream 010101...
preds: true false not /\ \/ ‘then‘ F G ‘U‘ P Q
fovars: at s
hovars: X P Q higher-order variables
axioms: head$blink == 0 coalgebraic specification of blink

& tail$blink == 1:blink dto.
& (true$s <==> True)
& (false$s <==> False)
& (not(P)$s <==> Not(P$s))
& ((P/\Q)$s <==> (P$s & Q$s))
& ((P\/Q)$s <==> (P$s | Q$s))
& ((P‘then‘Q)$s <==> (P$s ==> Q$s))
& (F$P <==> MU X.(P\/X.tail)) ‘‘finally’’
& (G$P <==> NU X.(P/\X.tail)) ‘‘generally’’
& ((P‘U‘Q) <==> MU X.(Q\/(P/\X.tail))) ‘‘until’’

The functions head and tail, which provide the destructors of a coalgebraic specification of
streams, are defined as usually. The formula atom(at)$s checks whether the head of the path s
satisfies at ∈ At (see Section 2). The conjecture

s = blink | s = 1:blink ==> G(F$(=0).head)$s (1)

says that the streams blink and 1 : blink are fair insofar as they contain infinitely many zeros. By
the G-axiom of LTLS, (1) simplifies to:

s = blink | s = 1:blink ==> NU X.(F((=0).head)/\X.tail)$s (2)

(2) is an instance of the antecendent of coinduction (see above). Applying the rule yields:

All s:(s = blink | s = 1:blink ==>
(F((=0).head)/\(rel(s,s=blink|s=1:blink).tail))$s) (3)

rel is the λ -operator for predicates: rel(s,s = blink|s = 1 : blink) denotes the function that assigns
to s the formula s = blink|s = 1 : blink.

47 further simplification steps including three expansion steps turn (3) into True. The entire
proof goes through automatically.

A further sample proof refers to a specification of a microwave controller [4]:

-- MICROS
specs: LTLS imported specification
constructs: start close heat error

11 / 22 Volume 26 (2010)

Algebraic Model Checking

preds: Start Close Heat Error Atom
fovars: ats
axioms: states == [1]

& atoms == [start,close,heat,error]
& 1 -> branch[2,3] & 2 -> 5 & 3 -> branch[1,6]
& 4 -> branch[1,3,4] & 5 -> branch[2,3]
& 6 -> 7 & 7 -> 4

& (Atom$start <==> Start)
& (Atom$close <==> Close)
& (Atom$heat <==> Heat)
& (Atom$error <==> Error)

& (Start$x <==> x ‘in‘ [2,5,6,7])
& (Close$x <==> x ‘in‘ [3,4,5,6,7])
& (Heat$x <==> x ‘in‘ [4,7])
& (Error$x <==> x ‘in‘ [2,5])

& (at ‘in‘ atoms
==> at -> branch$filter(Atom$at)$states) atom valuation

& drawK == wtree$fun(sat(x,ats),
frame$matrix[x,satisfies$ats])

Fig. 6. The Kripke model derived from MICROS for two processes after its transformation
performed by drawK

Festschrift H.-J. Kreowski 12 / 22

ECEASST

The conjecture G(Error.head)$s ⇒ G(not(Heat).head)$s says that paths consisting of error
states do not contain heat states. By the G-axiom of LTLS, it simplifies to:

NU X.((Error.head)/\(X.tail))$s ==>
NU X.((not(Heat).head)/\(X.tail))$s

Applying the coinduction rule yields:

All s:(NU X.((Error.head)/\(X.tail))$s ==>
((not(Heat).head)/\
(rel(s,NU X.((Error.head)/\(X.tail))$s).tail))$s)

41 further simplification steps lead this formula to True. Three expansion steps are needed, and
the entire proof goes through automatically.

5 Model checking within co/Horn logic

Both evaluation (Section 3) and simplification (Section 4) regard modal formulas as representa-
tions of data, namely (tuples of) sets. That’s why we call this kind of model checking algebraic:
the logical operators denote functions that create or transform data. Fixpoint operators are no
exception. They map the left-hand sides of regular equations to the equations’ solutions (see
Section 3). First-order predicate logic as well as logic programming follow a different view.
Their formulas do not denote data, but propositions or statements about data. Set membership
takes us from the sets-as-data view to the propositional one, set comprehension back from the
propositional to the data view. So where is the difference? It comes with the fixpoint property
that cannot be expressed within first-order logic. Instead, we axiomatize co/predicates in terms
of (generalized) co/Horn clauses and fix their interpretation as least resp. greatest relations sat-
isfying the axioms. Details of this approach and its connection with relational and functional
programming can be found in [19, 20, 23, 24]. Here we apply it to modal logics by specifying
modal and temporal operators in terms of co/Horn axioms:

-- CTL
preds: EX EF AF ‘EU‘ ‘AU‘ P Q predicates
copreds: AX EG AG copredicates
fovars: st st’
hovars: P Q
axioms: (EX(P)$st <=== st -> st’ & P(st’))

& (AX(P)$st ===> (st -> st’ ==> P(st’)))
& (EF(P)$st <=== P$st | EX(EF(P))$st)
& (AF(P)$st <=== P$st | AX(AF(P))$st)
& (EG(P)$st ===> P$st & EX(EG(P))$st)
& (AG(P)$st ===> P$st & AX(AG(P))$st)
& ((P‘EU‘Q)$st <=== Q$st | P$st & EX(P‘EU‘Q)$st)
& ((P‘AU‘Q)$st <=== Q$st | P$st & AX(P‘AU‘Q)$st)

-- LTL
preds: F ‘U‘ P Q predicates
copreds: G copredicates

13 / 22 Volume 26 (2010)

Algebraic Model Checking

fovars: s
hovars: P Q
axioms: (F(P)$s <=== P$s | F(P)$tail$s)

& (G(P)$s ===> P$s & G(P)$tail$s)
& ((P‘U‘Q)$s <=== Q$s | P$s & (P‘U‘Q)$tail$s)

The direction of the implication arrow (<=== or ===>) determines whether the axiom is a Horn
or a co-Horn clause and whether the leading relation symbol r is a predicate or a copredicate to
be interpreted as the least resp. greatest relation satisfying all axioms for r. Within a derivation,
a co/Horn clause is always applied from left to right. It may start with a guard γ that confines
redices to formulas that unify with the left-hand side (premise resp. conclusion) and satisfy γ

(see the co/resolution rules given below). Expander2 accepts five types of formulas as axioms:
Let p be a predicate (including ->), q be a copredicate and t1, . . . , tn be terms.

(1) γ ==> (p(t1,...,tn) <==> ϕ) equivalence used for simplification
(2) γ ==> (t1 == t2 <==> ϕ) equation used for simplification
(3) γ ==> (p(t1,...,tn) <=== ϕ) Horn clause used for resolution upon p
(4) γ ==> (f(t1,...,tn) = u <=== ϕ) Horn clause used for narrowing, i.e.,

functional resolution, upon f
(5) γ ==> (q(t1,...,tn) ===> ϕ) Horn clause used for coresolution upon q

In all five cases, the axiom is applicable if the term/formula the axiom shall be applied to unifies
with—in cases (1) and (2): matches—its redex and if the corresponding instance of the guard γ

simplifies to True. Here are (simplified versions of) the main rules for processing co/predicates.
For lack of space we omit those that handle functions specified in terms of Horn clauses (see
above).

Parallel resolution upon the predicate p

p(t)∨k
i=1∃Zi : (ϕiσi∧~x =~xσi)

m

where γ1⇒ (p(t1)⇐= ϕ1), . . . ,γn⇒ (p(tn)⇐= ϕn) are the (Horn) axioms for p.
Parallel coresolution upon the copredicate p

p(t)∧k
i=1∀Zi : (~x =~xσi⇒ ϕiσi)

m

where γ1⇒ (p(t1) =⇒ ϕ1), . . . ,γn⇒ (p(tn) =⇒ ϕn) are the (co-Horn) axioms for p.
~x is a tuple of “new” variables and for all 1 ≤ i ≤ n, Zi = var(ti)∪ var(ϕi), σi is a unifier of t

and ti and γiσi simplifies to True.
Like co/induction as simplication (see Section 4), incremental coinduction can only be ap-

plied to implications with a predicate (the first-order analog of a variable bound by µ) in the
premise or a copredicate (the first-order analog of a variable bound by ν) in the conclusion. In
contrast to co/induction as simplification, we may now start a proof with the original conjecture
and generalize it later—when simplification rules are no longer applicable and generalization

Festschrift H.-J. Kreowski 14 / 22

ECEASST

candidates have emerged from preceding proof steps. Incremental coinduction is also called cir-
cular [7, 12] and has recently been used to prove bisimilarities (behavioral equalities) induced
by non-deterministic transition systems with structured states representing processes [27].

Suppose that the formulas ψ and δ do not contain the co/predicate p. AXp denotes the set of
co/Horn axioms for p.

Incremental induction upon the predicate p

p(x) ⇒ ψ(x)∧
p(t)⇐ϕ∈AXp

(ϕ[p′/p]⇒ ψ(t))
⇑ p′(x) ⇒ δ (x)∧

p(t)⇐ϕ∈AXp
(ϕ[p′/p]⇒ δ (t))

⇑

p′ is a “new” copredicate that starts with the axiom p′(x)⇒ ψ(x). When the second rule is
applied, the co-Horn clause p′(x)⇒ δ (x) becomes a further axiom for p′.

Incremental coinduction upon the copredicate p

ψ(x) ⇒ p(x)∧
p(t)⇒ϕ∈AXp

(ψ(t)⇒ ϕ[p′/p])
⇑ δ (x) ⇒ p′(x)∧

p(t)⇒ϕ∈AXp
(δ (t)⇒ ϕ[p′/p])

⇑

p′ is a “new” predicate that starts with the axioms p′(x)⇐ ψ(x) and—only if p is behavioral
equality—Horn clauses establishing p′ as an equivalence relation. When the second rule is ap-
plied, the Horn clause p′(x)⇐ δ (x) becomes a further axiom for p′.

Co/resolution and co/induction complement each other in the way axioms work together with
conjectures in proof: co/resolution applies axioms to conjectures and the proof proceeds with
the modified conjectures, while co/induction applies conjectures to axioms and establishes the
modified axioms as new conjectures. Generalizations of co/resolution and co/induction for si-
multaneously proving properties of several co/predicates specified by mutual recursion and thus
representing more-dimensional fixpoints are straightforward. For further details an co/Horn logic
and its implementation in Expander2, consult [19, 20, 23, 24, 25].

Incremental coinduction allows us to start a proof that the stream blink is fair (see Section
4) with the original conjecture ψ = G(F$(= 0).head)$blink and derive within the proof of ψ

the additional factor G(F$(= 0).head)$1 : blink of the conjecture (1) in Section 4. Indeed,
incremental coinduction of ψ returns the goal

All P s:(P = F((=0).head) & s = blink ===> P(s) & G0(P)$tail$s) (1)

G0 is the “new” predicate p′ of incremental coinduction (see above). Its first axiom is given by:

G0(z0)$z1 <=== z0 = F((=0).head) & z1 = blink (ax1)

Six simplification steps transform (1) into:

F((=0).head)$blink & G0(F((=0).head))$(1:blink) (2)

Parallel resolution upon F as specified in LTL (see above) and subsequent simplification steps
remove the first factor of (2). The second factor is a redex for the second rule of incremental
coinduction that turns (2) into:

15 / 22 Volume 26 (2010)

Algebraic Model Checking

All P s:(P = F((=0).head) & s = 1:blink ===>
P(s) & G0(P)$tail(s)) (3)

A second axiom for G0 is created:

G0(z2)$z3 <=== z2 = F((=0) . head) & z3 = 1:blink (ax2)

Five simplification steps transform (3) into:

F((=0).head)$(1:blink) & G0(F((=0).head))$blink (4)

Three resolution and subsequent simplification steps turn (4) into True.
The conjecture G(Error.head)$s ==> G(not(Heat).head)$s of the specification MICROS in

Section 4 can also be proved within co/Horn logic. Once the imported specification LTLS of
MICROS has been replaced with LTL above, incremental coinduction turns the conjecture into:

All s P:(G(Error.head)$s & P = (not(Heat).head) ===>
P(s) & G0(P)$tail(s)) (1)

G0 is the “new” predicate p′ of incremental coinduction. Its first axiom is given by:

G0(z0)$s <=== G(Error.head)$s & z0 = (not(Heat).head)

Coresolution upon G and simplification steps turn (1) into:

All s:(G(Error.head)$s ==> G0(not(Heat).head)$tail(s)) (2)

(2) admits both coresolution upon G and resolution upon G0. Coresolution would lead into
a cycle because the only axiom for G (see LTL) is recursive, i.e., G occurs on both sides of the
axiom. The (above) axiom for G0, however, is non-recursive—as axioms for the “new” predicate
p′ always are. Hence we resolve upon G0 and obtain:

All s:(G(Error.head)$s ==> G(Error.head)$tail(s)) (3)

Coresolution upon G and subsequent simplification steps turn (3) into True.

6 Beyond model checking

Model checking can only be applied to individual Kripke structures. Even if built up from
several transition systems communicating with each other, it is always a single structure one
reasons about (see, e.g., [3, 4]). Systems like MUTEX, however, are parameterized by certain
components involved. Indeed, MUTEX specifies many Kripke structures, one for each (finite)
number of processes. Modal proofs must be carried out for each number of processes separately
because Kripke structures for different numbers of processes differ considerably from each other.
Among the three methods presented in this paper, it is only the last one that allows us to perform
a single proof for all instances of a parameterized Kripke structure. Even then the underlying
specification often needs to be revised, in order to capture all instances simultaneously. In the
case of MUTEX, we came up with the following reformulation:

Festschrift H.-J. Kreowski 16 / 22

ECEASST

-- MUTEXco
specs: CTL
preds: Idle Wait Crit enabled safe noSeq >>
copreds: others
constructs: c
defuncts: request enter leave posi maxwait weight
fovars: xs ys xs’ ys’

axioms:
(st >> st’ <==> weight(st) > weight(st’)) &
weight(xs,ys) == (length(xs)-posi(c)(xs++ys),

maxwait-length(xs),length$ys) &
posi(x)$x:s = 0 &
(posi(x)$y:s = suc$posi(x)$s <=== x =/= y) &

(st -> f$st <=== enabled(f)$st) &
(enabled(request$x)(xs,ys)

<=== Idle(x)(xs,ys) & maxwait > length$xs) &
enabled(enter)(x:xs,[]) &
enabled(leave)(xs,[x]) &
request(x)(xs,ys) == (x:xs,ys) &
enter(xs,ys) == (init$xs,[last$xs]) &
leave(xs,ys) == (xs,[]) &

(Wait(x)(xs,ys) <==> x ‘in‘ xs) &
(Crit(x)(xs,ys) <==> x ‘in‘ ys) &
(Idle(x)(xs,ys) <==> x ‘NOTin‘ xs & x ‘NOTin‘ ys) &

safe(xs,[]) & safe(xs,[x]) &
(noSeq$x

<==> EF $ Crit(x) /\
(Crit(x) ‘EU‘ (not(Crit$x) /\

(others(not.Crit)(x) ‘EU‘ Crit$x)))) &
(others(P)(x)$st ===> (x =/= y ==> P(y)$st))

conjects:
(c ‘in‘ xs | c ‘in‘ ys no infinite waiting

==> AF(Crit$c)(xs,ys)) (proof by Noetherian induction w.r.t. >>)
(Idle(x)(xs,ys) & length$xs < maxwait no blocking

==> EX(Wait$x)(xs,ys)) & (proof by resolution upon EX)
(safe$st ==> AG(safe)$st) & safety of the critical region

(proof by coinduction upon AG)

Again, states are pairs consisting of the lists of actually waiting resp. working processes. The
transition relation is specified in terms of the “methods” request, enter and leave and the “at-
tributes” Idle, Wait and Crit. Obviously, attributes correspond to atoms of a Kripke structure.
But they are more general because they may assign a value of arbitrary type to a each state, not
just a Boolean one. In the terminology of coalgebraic specifications, methods and attributes are
destructors, like head and tail in LTLS (see Section 4).

17 / 22 Volume 26 (2010)

Algebraic Model Checking

Parameterization by a natural number (here: the number of processes) suggests verification by
Noetherian induction. At least, the first conjecture of MUTEXco, which says that each waiting
or working process c will work eventually—no matter which path the system takes—, could be
proved by Noetherian induction, but only with respect to a rather sophisticated lexicographic
ordering on states that takes into account the position of c in the waiting list and the lengths of
the waiting and working lists, respectively.

The proof of “no blocking” is straightforward. A parameterized proof of “no sequencing” (see
MUTEX in Section 3) has not yet been tried. We close the section with the complete Expander2
protocol of its proof of the last conjecture of MUTEXco: there is at most one process in the
critical region. Expander2 records each interactive proof in this way and also generates a proof
term consisting of commands whose execution repeats the proof automatically.

safe(st) ==> AG(safe)$st

Adding

(AG0(z0)$st <=== safe(st) & z0 = safe)
& (notAG0(z0)$st ===> Not(safe(st)) | z0 =/= safe)

to the axioms and applying coinduction w.r.t.

(AG(P)$st ===> P(st) & AX(AG(P))$st)

at position [] of the preceding formula leads to

All st:(safe(st) ==> AX(AG0(safe))$st)

The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All st st’:(safe(st) & st -> st’ ==> AG0(safe)$st’)

The axioms were MATCHED against their redices.
The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All st st’:(safe(st) & st -> st’ ==> safe(st’))

The axioms were MATCHED against their redices.
The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All st’ xs:((xs,[]) -> st’ ==> safe(st’)) &
All st’ xs x:((xs,[x]) -> st’ ==> safe(st’))

Festschrift H.-J. Kreowski 18 / 22

ECEASST

The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All xs f:(enabled(f)(xs,[]) ==> safe(f(xs,[]))) &
All st’ xs x:((xs,[x]) -> st’ ==> safe(st’))

The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All xs x0:(x0 ‘NOTin‘ xs & maxwait > length(xs) ==> safe(x0:xs,[])) &
All xs0 x0:safe(init(x0:xs0),[last(x0:xs0)]) &
All st’ xs x:((xs,[x]) -> st’ ==> safe(st’))

The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All xs0 x0:safe(init(x0:xs0),[last(x0:xs0)]) &
All st’ xs x:((xs,[x]) -> st’ ==> safe(st’))

The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All st’ xs x:((xs,[x]) -> st’ ==> safe(st’))

The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All xs x f:(enabled(f)(xs,[x]) ==> safe(f(xs,[x])))

The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All xs x x3: (x3 ‘NOTin‘ xs & x3 =/= x & maxwait > length(xs)
==> safe(x3:xs,[x])) &

All xs:safe(xs,[])

The reducts have been simplified.

Narrowing the preceding formula (1 step) leads to

All xs:safe(xs,[])

The reducts have been simplified.

19 / 22 Volume 26 (2010)

Algebraic Model Checking

Narrowing the preceding formula (1 step) leads to

True

The reducts have been simplified.

Number of proof steps: 12

7 Conclusion

We have shown a way of integrating Kripke structures into algebraic specifications, presented
three methods for proving their properties and illustrated their implementation and joint use in
Expander2. All three methods admit structured states represented as functional terms. Moreover,
the models may involve a labelled or unlabelled transition system (also called a Kripke frame), a
labelled or unlabelled atom valuation or a mixture thereof. The first method consists in evaluating
modal formulas in an algebra where logical operators come as functions taking sets of states to
sets of states. The evaluation procedure is part of the simplification component of Expander2.
Some logical operators compute fixpoints. Hence model checking by evaluation requires models
with a finite set of states.

The second technique extends the modal algebra of the first one by simplification rules, in
particular by expansion, induction and coinduction. This allows us to prove not only state, but
also path formulas and to verify Kripke models with an infinite state space. Due to the selection
of only outermost rule redices, Expander2’s strategy of applying expansion, co/induction and
other simplification rules is complete: it terminates whenever any strategy terminates.

The third approach is based on our work on co/Horn logic [19, 20, 23, 24] where co/Horn
clauses axiomatize least resp. greatest relational fixpoints and parallel co/resolution provides the
counterpart of expansion in the second approach. The co/induction rules of the second approach
are replaced by incremental co/induction that admits the automatic—and often inevitable—
generalization of a conjecture. Incremental coinduction is also called circular [7, 12] and has
recently been used to prove bisimilarities induced by non-deterministic transition systems with
structured states [27]. Proof assistants offering coinduction are CLAM [5], Isabelle [6, 26] and
PVS [10, 13]. We claim that the simplification version presented in Section 4 and the incremental
version of Section 5 are the most general coinduction rules so far. The first one has been inte-
grated into a formula/term simplifier, which applies it automatically. The second one can be used
for checking any relation with a greatest-fixpoint semantics and not only bisimulations or other
equalities. Moreover, incremental induction does not seem to have been mentioned anywhere
else. However, the restriction of previous approaches to coinduction and equalities only applies
to the incremental rules. The simplification version of co/induction has many forerunners, also
in a more general, non-logical context where an arbitrary partial order replaces the implication
(see, e.g., [17, 9, 6, 26]).

Mainstream model checkers hide their logical background by translating both Kripke models
and the formulas to be proved into bit representations that a deterministic proof algorithm can
process efficiently without manual intervention. At least at the present stage of development,

Festschrift H.-J. Kreowski 20 / 22

ECEASST

the methods presented in this paper do not compete against established model checkers. Instead,
the methods resulted from questions like: What are the characteristics, benefits and drawbacks
of Kripke structures if compared with coalgebraic models in general? Which models and modal
logics are adequate for describing and verifying which kind of systems? How does the complex-
ity or generic nature of a system affects its formalization and the degree of proof automation?

Bibliography

[1] J. van Benthem, J. Bergstra, Logic of Transition Systems, J. Logic, Language and Infor-
mation 3 (1995) 247-283

[2] C. Cirstea, A. Kurz, D. Pattinson, L. Schröder, Y. Venema, Modal Logics are Coalgebraic,
The Computer Journal, to appear

[3] E.M. Clarke, O. Grumberg, S. Jha, Verification of Parameterized Networks, ACM
TOPLAS 19 (1997) 726-750

[4] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, The MIT Press 1999

[5] L.A. Dennis, A. Bundy, I. Green, Making a productive use of failure to generate witnesses
for coinduction from divergent proof attempts, Annals of Mathematics and Artificial Intel-
ligence 29, Springer (2000) 99-138

[6] J. Frost, A Case Study of Co-induction in Isabelle, Report, Computer Laboratory, Univer-
sity of Cambridge 1995

[7] J. Goguen, K. Lin, G. Rosu, Conditional Circular Coinductive Rewriting with Case Anal-
ysis, Proc. WADT’02, Springer LNCS 2755 (2003) 216-232

[8] J. Goguen, G. Malcolm, A Hidden Agenda, Theoretical Computer Science 245 (2000)
55-101

[9] A.D. Gordon, Bisimilarity as a Theory of Functional Programming, Theoretical Computer
Science 228 (1999) 5-47

[10] H. Gottliebsen, Co-inductive Proofs for Streams in PVS, Report, Queen Mary, University
of London 2007

[11] I. Hasuo, Modal Logics for Coalgebras - A Survey, Report, Tokyo Institute of Technology
(2003)

[12] D. Hausmann, T. Mossakowski, L. Schröder, Iterative Circular Coinduction for CoCasl
in Isabelle/HOL, Proc. FASE’05, Springer LNCS 3442 (2005) 341-356

[13] U. Hensel, B. Jacobs, Coalgebraic Theories of Sequences in PVS, J. Logic and Computa-
tion 9 (1999) 463-500

21 / 22 Volume 26 (2010)

Algebraic Model Checking

[14] M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems,
2nd Ed. Cambridge University Press 2004

[15] B. Jacobs, J. Rutten, A Tutorial on (Co)Algebras and (Co)Induction, EATCS Bulletin 62
(1997) 222-259

[16] A. Kurz, Specifying Coalgebras with Modal Logic, Theoretical Computer Science 260
(2001) 119-138

[17] Z. Manna, Mathematical Theory of Computation, McGraw-Hill 1974

[18] M. Müller-Olm, D.A. Schmidt, B. Steffen, Model-Checking: A Tutorial Introduction,
Proc. SAS’99, Springer LNCS 1694 (1999) 330-354

[19] P. Padawitz, Proof in Flat Specifications, in: Algebraic Foundations of Systems Specifi-
cation, IFIP State-of-the-Art Report, Springer (1999) 321-384

[20] P. Padawitz, Swinging Types = Functions + Relations + Transition Systems, Theoretical
Computer Science 243 (2000) 93-165

[21] P. Padawitz, Dialgebraic Specification and Modeling, in preparation, fldit-www.cs.tu-
dortmund.de/∼peter/Dialg.pdf

[22] P. Padawitz, Expander2: A Formal Methods Presenter and Animator, fldit-www.cs.tu-
dortmund.de/∼peter/Expander2.html

[23] P. Padawitz, Expander2: Towards a Workbench for Interactive Formal Reasoning, in:
Formal Methods in Software and Systems Modeling: Essays Dedicated to Hartmut Ehrig,
Springer LNCS 3393 (2005) 236-258

[24] P. Padawitz, Expander2: Program Verification between Interaction and Au-
tomation, Proc. 15th Workshop on Functional and (Constraint) Logic Program-
ming, Elsevier ENTCS 177 (2007) 35-57 (more recent version: fldit-www.cs.tu-
dortmund.de/∼peter/Expander2/Prover.pdf)

[25] P. Padawitz, Algebraic Model Checking and more, in preparation, fldit-www.cs.tu-
dortmund.de/∼peter/Haskellprogs/CTL.pdf

[26] L.C. Paulson, Mechanizing Coinduction and Corecursion in Higher-Order Logic, J. Logic
and Computation 7 (1997) 175-204

[27] A. Popescu, E.L. Gunter, Incremental Pattern-Based Coinduction for Process Algebra and
Its Isabelle Formalization, Proc. FOSSACS 2010, Springer LNCS 6014 (2010) 109-127

[28] J. Rutten, Universal Coalgebra: A Theory of Systems, Theoretical Computer Science 249
(2000) 3-80

[29] C. Stirling, Modal and Temporal Logics, in: Handbook of Logic in Computer Science,
Clarendon Press (1992) 477-563

Festschrift H.-J. Kreowski 22 / 22

	Introduction
	Kripke structures in Expander2
	Modal logic and algebra
	Model checking by simplification
	Model checking within co/Horn logic
	Beyond model checking
	Conclusion

