
Electronic Communications of the EASST
Volume 53 (2012)

Proceedings of the
12th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2012)

Proving Linearizability of Multiset with Local Proof Obligations

Oleg Travkin, Heike Wehrheim and Gerhard Schellhorn

15 pages

Guest Editors: Gerald Lüttgen, Stephan Merz
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ECEASST

Proving Linearizability of Multiset with Local Proof Obligations

Oleg Travkin1, Heike Wehrheim1 and Gerhard Schellhorn2

1Universität Paderborn, Institut für Informatik,
33098 Paderborn, Germany

[oleg82|wehrheim]@uni-paderborn.de
2Universität Augsburg, Institut für Informatik,

86135 Augsburg, Germany
[schellhorn]@informatik.uni-augsburg.de

Abstract: Linearizability is a key correctness criterion for concurrent software.
In our previous work, we introduced local proof obligations, which, by showing a
refinement between an abstract specification and its implementation, imply lineariz-
ability of the implementation. The refinement is shown via a thread local backward
simulation, which reduces the complexity of a backward simulation to an execution
of two symbolic threads. In this paper, we present a correctness proof by applying
those proof obligations to a lock-based implementation of a multiset. It is interest-
ing for two reasons: First, one of its operations inserts two elements non-atomically.
To show that it linearizes, we have to find one point, where the multiset is changed
instantaneously, which is a counter-intuitive task. Second, another operation has
non-fixed linearization points, i.e. the linearization points cannot be statically fixed,
because the operation’s linearization may depend on other processes’ execution.
This is a typical case to use backward simulation, where we could apply our thread
local variant of it. All proofs were mechanized in the theorem prover KIV.

Keywords: linearizability, refinement, multiset, concurrency, verification, KIV

1 Introduction

With an increasing number of cores per CPU, data structures like lists or sets can be used more
and more concurrently. To avoid bottlenecks in a system, such data structures must be designed
for maximizing throughput. This is done by applying fine-grained synchronisation schemes or
avoiding the use of locks at all and using hardware primitives for synchronisation instead. Due
to the fine granularity of synchronisation and interleaving of instructions, verifying such data
structures to be correct is hard.

Reasoning about correctness of concurrent data structures also means reasoning about their
linearizability [HW90]. Linearizability is a safety property. Data structure implementations
are said to be linearizable, if for each concurrent execution there exists a sequential execution
producing the same result. Operations of linearizable data structures seem to take effect instanta-
neously at some point in time between their invocation and response. This point is referred to as
the linearization point (LP) or sometimes also as the commit point. The LP does not necessarily
have to be a fixed location. Sometimes, the LP is even outside the performed operation, i.e. an
operation is linearized by another concurrently running operation.

1 / 15 Volume 53 (2012)

Proving Linearizability of Multiset with Local Proof Obligations

Proving a data structure to be linearizable usually involves showing a refinement relation be-
tween an abstract specification of a data structure and its actual implementation. An abstract
specification contains atomic operations only. To show that an implementation is linearizable
w.r.t. its abstract specification, one has to prove that the implemented operations non-atomically
refine the operations from the abstract specification.

Several different approaches exist in order to prove linearizability, such as shape abstrac-
tion [ARR+07], rely-guarantee reasoning and separation logic combined [VP07] and our own
simulation-based approach [DSW07]. In our approach, we formally defined a general theory
relating refinement theory and linearizability following the notion of Herlihy and Wing [HW90].
From our general theory, we could derive proof obligations that are thread local and, once proven
for a concrete data structure implementation, imply linearizability of the implementation. In our
ongoing work, we aim to determine the class of algorithms and data structures, to which these
local proof obligations can be applied.

As a case study for this paper, we selected a multiset implementation proposed by Elmas et al.,
which they verified linearizable [EQS+10]. In contrast to Elmas et al., our aim is to understand
why it is linearizable. It is an interesting case study for several reasons: (1) Its operation Insert-
Pair adds two elements to the multiset non-atomically. Thus, finding an abstraction function for
a refinement proof may be challenging for such an operation as Elmas et al. already pointed out.
It seems to be counter-intuitive in thinking of it to have exactly one location for the LP, since the
point of element insertion is implemented by two instructions. (2) It includes an operation with
an LP that is not statically fixed. In such cases usually a full backward simulation is required.
We could avoid this by using our theory extension for potential linearization points [DSW11b].
(3) Another point to mention is that the multiset is blocking, i.e. critical variables are protected
by locks. However, the implementation contains a writing instruction to a potentially locked
variable. This property forced us to slightly modify our local proof obligation theory.

We used the interactive theorem prover KIV [RSSB98] to formalize the implementation, the
abstract specification as well as to mechanize all our linearizability proofs. In Section 2, we
introduce the multiset implementation, the encoding of the implementation and its abstract spec-
ification. Section 3 presents the abstraction function that we used for the refinement proofs. We
give a brief overview of our local proof obligations in Section 4, followed by an explanation of
the invariants used for the proofs in Section 5. In Section 6, we discuss why we modified our
local proof obligations. Finally, Section 7 concludes.

2 Multiset as a Case Study

As a case study for our local theory, we chose an implementation of a multiset data structure
of integers from Elmas et al. [EQS+10]. The parts of the implementation we considered in our
proof are only the three operations presented in Figure 1 as Elmas et al. published it. A delete
operation or an insert operation for single elements were not considered to limit the proof effort
on the one hand and to gain results that can be compared on the other.

The multiset is implemented as an array containing elements of type Slot. A slot encodes
its value by the integer attribute elt. A second attribute stt of type Status encodes the state of
insertion. A slot may be in empty, reserved or full state. An integer i is supposed to be in the set,

Proc. AVoCS 2012 2 / 15

ECEASST

enum Status = { empty,reserved,full }; InsertPair(x:int, y:int) returns {r:bool}
record Slot { elt: int, stt: Status }; var i,j: int;
var M: array[0..N-1] of Slot I1 i := FindSlot(x);

I2 if (i == N) {
LookUp(x:int) returns(r:bool) I3 r := false;
var i: int; I4 return;}
L1 for (i := 0; i < N; i++) { I5 j := FindSlot(y);
L2 lock(M[i]); I6 if (j == N) {
L3 if (M[i].elt==x && M[i].stt==full) { I7 M[i].stt := empty;
L4 unlock(M[i]); I8 r := false;
L5 r := true; return; I9 return; }
L6 } else unlock(M[i]);
L7 } //i++ evaluation I10 M[i].elt := x;
L8 r := false; return; I11 M[j].elt := y;

atomic FindSlot(x:int) returns (r:int) I12 lock(M[i]);
1 if (forall 0<=i<N. M[i].stt != empty) { I13 lock(M[j]);
2 r := N; I14 M[i].stt := full;
3 } else { I15 M[j].stt := full;
4 assume (0<=r<N && M[r].stt==empty); I16 unlock(M[i]);
5 M[r].stt := reserved; I17 unlock(M[j]);
6 } I18 r := true; return;

Figure 1: Multiset operations LookUp, FindSlot and InsertPair from [EQS+10]

if there is a slot s with s.elt = i∧ s.stt = full.
The LookUp operation tests whether some integer value is contained in the set. To do so, it

traverses the array and tests (at location L3) each element whether it is equal to the parameter
value and in full state. A slot is locked before the test is performed and released afterwards to
prevent other threads from modifying the slot while it is tested.

Elements are inserted pairwise in the InsertPair operation. InsertPair calls the FindSlot oper-
ation to reserve empty slots. Actually, FindSlot is implemented similarly to LookUp by means of
an array traversal, but here we rely on the algorithm by Elmas et al. [EQS+10] for simplicity and
assume it to be atomic. The assume statement in FindSlot blocks execution until the succeeding
statement becomes true. Atomicity of FindSlot ensures that two concurrent FindSlot calls always
reserve different slots. If FindSlot cannot find an empty slot to reserve, it returns with N as error
value1. In this case, InsertPair returns with value false either at location I4 or I9. If the second
FindSlot call fails to reserve an empty slot, the slot reserved during the first call is released at
location I7. If two slots i, j could be reserved, the new values are assigned at I10 and I11. To
accomplish insertion, both slots need to be in full state. Surrounded by lock statements, both
slots get the full state assigned in I14 and I15. By unlocking the elements, changes are made
visible to other threads.

2.1 Abstract Multiset

We start with formalizing the operations of the abstract data structure as well as its initialization.
A multiset can contain several instances of an element. A function count : Z×mset → N is
used to count the instances of an element contained in an mset. Initialisation of the set s is done
by setting it to an empty set, which we model by the predicate ASInit. We define the abstract

1 We use N, not −1 as in [EQS+10], just to avoid the extra type N∪{−1} in KIV.

3 / 15 Volume 53 (2012)

Proving Linearizability of Multiset with Local Proof Obligations

multiset as

ASInit(s)⇔ s =∅
LookUp(n,s,s′,result)⇔ s′ = s ∧ (result ⇔ n ∈ s)

InsertPair((x,y),s,s′,result)⇔ if result then s′ = s∪{x,y} else s′ = s

where LookUp and InsertPair model legal operation executions of the abstract specification. The
first parameter is the operations input, i.e. a single integer value in case of a LookUp and a tuple
of two integer values in case of InsertPair. Two parameters represent the multiset before (s) and
after (s′) operation execution completes. A boolean parameter result models the return value.

In case of LookUp the multiset remains unchanged: s = s′. The result is true iff parameter n
is contained in the set s. Since the InsertPair operation may fail, we have two possible outcomes
to consider. A successful execution (result = true) adds values x and y to the set s. In a failing
execution the multiset remains unchanged.

2.2 Concrete Multiset

Since we want to show a refinement, we need a concrete specification besides the abstract one.
Therefore, we go on with formalizing the multiset implementation and an arbitrary number of
processes, which may execute operations LookUp or InsertPair, as a concrete state. For brevity,
we use the Z notation to introduce the concrete implementation.

To keep our specification modular we divide the concrete state CS into a local and global part.
The global state GS is represented by an array of slots M, where N is the array length. Each Slot
stores a value of a multiset element in its attribute elt of type integer Z. The insertion status is
encoded by the attribute stt. An additional third attribute lock distinguishes between locked and
unlocked slots. If the lock attribute lock stores p, then the Slot is locked by process p. Otherwise
it stores none. Initially, the array is filled with empty unlocked slots holding 0, which we model
by a predicate GSInit.

Slot
elt : Z
stt : {empty,reserved, full}
lock : (PId∪{none})

CS
GS
lsf : PId → LS

CSInit
CS

GSInit
∀p : PId • lsf (p).pc = Idle ∧ lsf (p).pid = p

LS
pc : PC
li, ini, inj : N
lx, inx, iny : Z
lr, inr : B
pid : PId

GS
M : [0..N-1]→ Slot

GSInit
GS

∀m : N • m < N ⇒ M[m] = (0,empty,none)

The local state LS is used to model process execution. Therefore, we need a program location
variable pc of type PC. We use dot notation for modelling access to type attributes, e.g. ls.pc

Proc. AVoCS 2012 4 / 15

ECEASST

for the pc attribute. To distinguish between different processes, we also need a process identifier
pid of type PId. Furthermore, the local state models all local variables of both operations. Local
variables are prefixed with l for LookUp (resp. in for InsertPair). There are three input variables
lx, inx and iny of type Z and two boolean output variables lr and inr. We use li in LookUp for
array traversal. In InsertPair, ini and inj are used to store the index of a reserved slot. The latter
three are of type N, since an array index is never negative.

Finally, a full concrete state CS consists of the array modelled by GS and a local state function
lsf : PId → LS that assigns a local state to each process. We initialize the concrete state by initial-
izing the array via GSInit and assigning value Idle to all program counters pc in CSInit. A process
at location Idle models an idle process. Interleaved runs are sequences (cs0,cs1, . . .csn) of con-
crete states starting with an initial state cs0 that satisfies CSInit, such that all pairs (csk,csk+1)
are related by one operation.

InsertPair0
GS
∆LS
(x,y)? : Z×Z

pc = Idle ∧ pc′ = I1
inx′ = x ∧ iny′ = y

InsertPair15
∆GS
∆LS

pc = I15 ∧ pc′ = I16
M′ = M∪{inj 7→ (M[inj].elt, full, M[inj].lock)}

We describe a program by specifying one operation for each instruction, using Z notation.
Each instruction may modify the local state and the global state. Control flow is encoded using a
program counter that is part of the local state. Two examples are the steps InsertPair0 and Insert-
Pair15. The first step InsertPair0 is the invocation of the operation with the input2 tuple (x,y)?.
The step can only be executed, if the current program counter is pc = Idle, i.e. not executing
another operation. The next program counter by control flow is pc′ = I1. Local variables inx′

and iny′ are initialized with the input. By convention, variables not mentioned are unchanged.
Similarly, InsertPair15 updates the program counter and modifies the slot at index inj to full,
corresponding to the instruction in the code at line I15. Later, we use insertPair15p to denote the
execution of InsertPair15 by process p with lsf (p) as its local state.

InsertPair1
∆GS
∆LS

pc = I1 ∧ pc′ = I2
∃n : N • ini′ = n ∧

if n < N
then M[n].stt = empty ∧

M′ = M∪{n 7→ (M[n].elt, reserved, M[n].lock)}
else n = N ∧ M′ = M ∧ ∀m : N • m < N ⇒ M[m].stt ̸= empty

Since we rely on atomicity of FindSlot, we had to model its execution as a single instruction.
2 Input variables in Z are suffixed with “?”, output variables are suffixed with “!”

5 / 15 Volume 53 (2012)

Proving Linearizability of Multiset with Local Proof Obligations

The figure above shows the encoding of the first FindSlot call in line 1 of InsertPair, which is
basically a decision between “there was a slot that could be reserved” or “there was no empty
slot”. In the first case 0 ≤ n < N holds and the status of the slot indexed by n is changed to
reserved. In the second case n = N holds and the global state remains unchanged.

2.3 Challenges in showing Linearizability

In a simulation based approach for verification of linearizability like ours, we have to find an
abstraction function Abs : CS → AS that maps each concrete state cs of the implementation to
an abstract state as. In our case study, cs is basically an array and as is a multiset. Hence,
we have to find a function that abstracts an array to a multiset representation. The abstract
multiset has only atomic operations and we want to show that the concrete implementation is
simulated by the abstract multiset. Therefore, execution of the concrete implementation must be
either ignored by the abstract specification (a skip step) or both abstract and concrete steps must
coincide (linearization step) in their execution3. In a third case (see Section 4), a process can
pass its own LP and by doing that causing another process to pass its LP. A skip step must not
change the abstract state. A linearization step changes the abstract state as if the whole operation
was executed at once. There must be exactly one linearization step per operation invocation.

In our case study, the abstract multiset has to remain unchanged during an execution of In-
sertPair as long as the LP of the operation is not reached. After it is reached, the state changes
immediately to a multiset containing both elements inserted.

One could use a naive abstraction function like:

count(x,Abs(M)) = | {i | 0 ≤ i < N ∧ M[i].elt = x ∧ M[i].stt = full} |

where Abs is implicitly characterized by the function count : Z×mset → N. The function
count counts the number of instances of a value in a multiset and hence uniquely characterizes
a multiset. The multiset Abs(M) contains exactly those elements x, for which there exists a slot
holding the value x and that is in full state. As Elmas et al. already mentioned, this abstraction
function is not useful. By choosing this function, the abstract multiset changes twice (in I14 and
I15) during the execution of InsertPair. Hence, linearizability cannot be shown. One could think
of adding a constraint to consider only those elements to be in the set, which are not locked,
but this idea is even worse for two reasons. First, unlocking in InsertPair is still not atomic and
just moves the problem to locations I16 and I17, where the inserted elements become visible to
other threads. Second, LookUp would change the set during traversal of the array by locking and
unlocking slots. See Section 3 for an abstraction function that can be used to show linearizability.

Another challenging property of the multiset implementation is its LookUp operation. It has
no fixed LP in the code, since other threads may change the result of a LookUp call during their
progress. For example, a LookUp call could test the set for an element x that is not contained in
the set. Some other thread could insert x to a location, which was not tested yet. Before insertion
the LookUp would have returned false, but afterwards it will return true. The LP of LookUp
must be the last modification of the array that also has an influence on the result of LookUp.
Obviously, such a location cannot be determined statically. In Section 4, we give an explanation
of how local proof obligations can be used to overcome this problem.
3 We sometimes refer to this as a process linearizes or passes its LP

Proc. AVoCS 2012 6 / 15

ECEASST

Moreover, the implementation contains writing instruction to variables, which are potentially
locked by other processes. This property turned out to be a limit to our local proof obligations as
they were proposed in our previous work [DSW08]. However, a slight modification of our proof
obligations (see Section 6) was sufficient to verify the case study linearizable.

3 Abstraction Function

As already mentioned in Subsection 2.3, in order to prove linearizability a naive characterization
of when an element should be considered in the set is useless in this case. Although surrounded
by locks, the InsertPair operation does not work atomically. So, the interesting question to
answer is: How can we show that the obviously non-atomic execution of InsertPair changes
the implemented set atomically? We do this by refinement. To show a refinement between the
abstract multiset and the concrete array implementation, we have to find an abstraction function
that abstracts the array state to a multiset state. Since, a multiset can contain several instances of
the same element, its state is determined by the count of its elements. Hence, we have to define
a count function to count instances of an arbitrary element i in the array M. As shown below,
we take the sum of those slots, for which the predicate In is true. Therefore, we need to identify,
when an element should be considered in the set and when it’s not. This is the hardest part about
the abstraction function.

count(i,Abs(M)) =
N−1

∑
n=0

(if In(M,n, i) then 1 else 0)

In(M,m, i) =̂ m < N

∧ M[m].elt = i

∧ M[m].stt = full

∧ notExLckRes(M,m,M[m].lock)

notExLckRes(M,m,pin) =̂ (pin ̸= none

⇒¬(∃n. n ̸= m ∧ n < N

∧ M[n].lock = pin

∧ M[n].stt = reserved))

As in a naive variant, the first part of our definition of In begins with: An element i is in the
set, if its slot index is in the range of the array size N and the slot’s elt attribute is holding the
value i and the insertion status stt is full.

The predicate notExLckRes ensures that InsertPair changes the set atomically. It states that
if a slot is locked by some process pin, then there is no other slot, which is locked by the same
process and is in reserved state. By choosing this definition, it is made sure that a LookUp does
not change the abstract multiset. It never has more than one locked slot and neither changes the
element value nor its insertion state. During an execution of InsertPair the interesting lines are
14 and 15. When execution reaches line 14, both slots are reserved and the first slot is set to full
status. In the naive abstraction function (see Subsection 2.3), the full slot’s element i would be
counted as a new element of the set. Hence, the abstract multiset would change before reaching
the LP in line 15. The early change is avoided by the predicate notExLckRes. By reaching line
15 the second slot’s status is set to full. Since there is no other slot locked by the currently
executed process, which is also in reserved state, the notExLckRes predicate evaluates to true
for both slots. Thus, by our implicit definition of Abs via In, the InsertPair operation changes

7 / 15 Volume 53 (2012)

Proving Linearizability of Multiset with Local Proof Obligations

the multiset atomically at location I15 and we have found a valid abstraction function to prove
linearizability.

To the best of our knowledge, we are the first to provide an abstraction function that allows
linearization of InsertPair. We chose line 15 as an LP, because it seemed closest to our intuition
of reaching the LP, when both slots’ status attributes become full. However, this abstraction
function is only one out of several possible functions and it would be interesting to see, how
different abstraction functions relate to the proof effort.

4 Local Proof Obligations and Status Function

This section summarizes our approach to verifying linearizability. The approach is based on
the global refinement theory given in [SDW12], which views linearizability as a specific non-
atomic refinement problem, where each run of an operation implements the corresponding ab-
stract atomic operation with the same inputs and outputs. For verification of such refinements,
backward simulation alone is complete, which is also a result of [SDW12].

Since an arbitrary number of processes has to be considered, finding a backward simulation
that works on the full concrete state CS is difficult, but unavoidable in general. However, in
most cases it is sufficient to look locally at one process p, and to abstract all the other processes
to a single process q. Thereby, all quantification over processes is avoided. Informally, this is
possible, if the steps of other processes all “look the same” to p, which holds for the case study.
No matter which process locks a certain element, the influence on the behaviour of p is the same.

For such cases, the global proof obligations can be reduced to sufficient local proof obligations,
as given in [DSW11b]. The main proof obligation, that has to be verified for all internal steps
COp of an operation is

∀gs,gs′ : GS, lsp, lsq, lsp′ : LS •
INV(gs, lsp) ∧ INV(gs, lsq) ∧ D(lsp, lsq) ∧ COp(gs, lsp,gs′, lsp′)
⇒ (LPO)
INV(gs′, lsp′) ∧ INV(gs′, lsq) ∧ D(lsp′, lsq) ∧ AOPpq(Abs(gs),Abs(gs′))

Invoking and returning steps, e.g. InsertPair0 and InsertPair18 have simpler proof obligations,
which we omit here due to lack of space. The proof obligation uses a global state gs (here: the
array M) and the two local states lsp and lsq of processes p and q. Predicate INV is used as a local
invariant for each process, that must be reestablished after each step. Predicate D(lsp, lsq) is also
an invariant specifying disjointness properties for two processes, e.g. that they cannot lock the
same array element. A definition of INV and D is outlined in Section 5. Abs is the abstraction
function as defined in Section 3.

The main linearizability condition is that each concrete step COp of the operation must imple-
ment a sequence of zero, one or two abstract steps AOPpq, that correspond to linearization points.
This sequence is always a subsequence of AOPp(inp,as,as′,outp) o

9AOPq(inq,as′,as′,outq) where
AOPp (and similarly AOPq) is the abstract step corresponding to the operation executed by pro-
cess p. If, e.g. lsp.pc = I3, then AOPp = InsertPair. Inputs and outputs of AOPp (resp. AOPq)
must agree with those of the concrete operation. We omit them in LPO due to lack of space.

Proc. AVoCS 2012 8 / 15

ECEASST

The sequence to be executed depends on whether p or q or both pass their linearization point
(LP) in the step of process p. If none of them passes the LP, then the step must implement
skip, i.e. AOPpq(Abs(gs),Abs(gs′)) simplifies to Abs(gs) = Abs(gs′). If both pass their LP, both
abstract steps must be executed. Note, that q abstracts many processes. Hence, it is necessary,
that their abstract step does not change the state as′ = Abs(gs′). This is the main restriction for
the applicability of our local proof obligations.

4.1 Status of Linearization

Whether or not one of the processes p or q passes its linearization point is determined for each
of the processes separately, using a status function that must be defined for verification.

status : GS×LS → STATUS where
STATUS = IDLE | IN(Input) | INOUT(Input×Output) | OUT(Output)

The value of status(gs, lsf (p)) determines, whether process p has passed the linearization point
of the operation it runs. Status IN(in) means that the operation was called with input in and it
did not pass its LP yet, while status OUT(out) means that the operation already passed its LP
and will return out. Status IDLE is used for idle processes. Status INOUT is explained below.

The proof obligation (not shown) for invocation instructions with input in demands a status
change from IDLE to IN(in). Similarly, the proof obligation for returning instructions demands
that status changes from OUT(out) to IDLE, and that out is returned.

While an algorithm is running, the status changes once from IN(in) to OUT(out) at the lin-
earization point. In this case, the corresponding abstract operation with the same input and output
must be in the sequence AOPpq. Note, that the LP of q is allowed to be a step of p and vice versa.
If the status of p (resp. q) is unchanged, the step implements a skip step, i.e. no abstract operation
for p (resp. q) is in AOPpq. For our case study we define the status function by case analysis.

status(gs, ls) =̂

if ls.pc = Idle then IDLE

else if ls.pc ∈ {I1, I5, I10, I11, I12, I13, I14, I15}
∨ (ls.pc = I2 ∧ ls.ini < N) ∨ (ls.pc = I6 ∧ ls.inj < N) then IN(ls.inx, ls.iny)

else if ls.pc ∈ {I16, I17, I18} then OUT(true)

else if ls.pc ∈ {I3, I4, I7, I8, I9} ∨ (ls.pc = I2 ∧ ls.ini = N)

∨ (ls.pc = I6 ∧ ls.inj = N) then OUT(false)

The cases fix the LP for InsertPair returning true to the step at I15. Figure 2 shows how the
status changes in such a run. At the LP, the abstract operation InsertPair is refined, all other steps
refine skip. The definition also fixes the LP for returning false to the steps at I1 and I5, where
calls to FindSlot fail to find a free slot and return N.

For LookUp, the situation is more complex. Consider the two runs shown in Figure 3, where
process q runs LookUp searching for element x. Assume that x is not in the array initially.
The algorithm first executes steps Lookup0 and Lookup1, entering the loop. At this point, it

9 / 15 Volume 53 (2012)

Proving Linearizability of Multiset with Local Proof Obligations

IN
(x,y)

IN
(x,y)

OUT
(true)

OUT
(true) IDLEIDLE

InsertPair15p

Abs

InsertPair18p(true)

s∪{x,y}
InsertPair((x,y),true)

Abs

InsertPair0p(x,y)

s

Figure 2: Status changes for InsertPair linearizing to true

has a chance to pass its LP, linearizing to false. We indicate this potential linearization point
by a change of the status to INOUT(x, false). In general, a change of status from IN(in) to
INOUT(in,out) must implement the abstract operation AOP(in,as,as′,out) as well as a skip
step. It must therefore leave the abstract state unchanged.

Status INOUT(in,out) indicates, that there is a chance an operation already linearized to a
specific value out earlier. Given a state with this status, further changes to OUT(out) are allowed
(fixing the decision to linearize), but also to IN(in) (revoking the decision). In our proof obli-
gation, steps with these status changes implement skip. From INOUT(in,out) it is also possible
to change the status directly to OUT(out′) or INOUT(in,out′) with a new linearized value out′.
This change revises the decision to linearize to out, and immediately establishes a new (defini-
tive or potential) linearization point. Both changes must implement the corresponding abstract
operation, just as if the prior status has been IN(in).

Assume the example run continues with Lookup checking some of the first array elements.
If process q is preempted and another process p runs an InsertPair(x,y) that passes its LP (i.e.
executes InsertPair15) adding x to the array, two cases are possible: In the first case, x is added
at a position in the array, that LookUp has already traversed. This case is shown as the lower
of the two runs. In this case the old LP must be kept. The status does not change. Note that
linearizing to false is now no longer possible, but the information about a potential LP is kept
in the status. The lower run finally leaves the loop as if it has linearized before another process
added element x. At that point it modifies the status to OUT(false), and the proof obligation for
the return operation ensures that indeed false is returned.

In the second case, process p adds element x at a position that Lookup still has to traverse. In
this case, the decision of linearizing to false was wrong and must be revised. The upper of the two
runs in Figure 3 visualizes this case, in which the status establishing a new potential LP changes
to INOUT(x, true). This allows more revisions of the status, but since we currently do not con-
sider a Delete operation, which could remove x again, the status change could alternatively be
directly to OUT(true).

Note that for the upper run the status also changes for InsertPair15. Therefore, in the local
proof obligation AOPpq consists of an abstract step for both InsertPair and Lookup. When the
run finally leaves the loop in LookUp, the status makes the decision of linearizing to a particular
value permanent. The status function for Lookup is

Proc. AVoCS 2012 10 / 15

ECEASST

IN(x)IDLE
INOUT
(x,false)

INOUT
(x,true) IDLE

IDLE

OUT
(true)

OUT
(false)

INOUT
(x,false)

INOUT
(x,false) InsertPair15p

LookUp(x,true)
s

Abs Abs AbsAbs

LookUp18q(true)

LookUp18q(false)

LookUp1qLookUp0q

LookUp(x,false)

s

Figure 3: Status changes for Lookup

status(gs, ls) =̂

if ls.pc ∈ {L1,L2,L3} then INOUT(ls.lx,∃m • ls.li ≤ m < N ∧ In(M,m, ls.lx))

else if ls.pc ∈ {L6,L7} then INOUT(ls.lx,∃m • ls.li < m < N ∧ In(M,m, ls.lx))

else if ls.pc ∈ {L4,L5} then OUT(true)

else if ls.pc = L8 then OUT(false)

Observe that when the status is INOUT(in,out), the only meaningful value for out is easy to
determine: It is the one that an operation would return, if it would run to completion from the
current state without any interleaved steps from other processes.

5 Interference Freedom

In our refinement setting a process is executed symbolically. Each step of a process is interleaved
with every possible step of another process. These processes may interfere during execution as
they modify the global state. By interfering with each other, a process may invalidate another
processes’ invariant. An invariant INV describes what a process may rely on during its execution.
To rely on its own INV one has to prove that a process does not conflict with the INV of any
other process, i.e. it has to guarantee other processes’ INV . This approach can be viewed as an
adaption of the interference freedom conditions of Owicki and Gries [OG76]. A more detailed
explanation of our adaption of interference freedom was published in [DSW11a].

5.1 Invariant

We split the INV into two predicates, where LOCK-INV is used to capture when a slot is locked
or not and ARRAY-INV to capture other properties concerning the array. LOCK-INV models
which slot is locked by a process at a certain program location. Since a process may have one,
two or no locked slots during its execution, we used three different predicates to model these
situations. The first and the last parameter of the predicates are the array and the process id. The
parameter(s) in between represent the index of the locked slot(s). We identified five situations

INV(M, ls) =̂ LOCK-INV(M, ls) ∧ ARRAY-INV(M, ls)

11 / 15 Volume 53 (2012)

Proving Linearizability of Multiset with Local Proof Obligations

LOCK-INV(M, ls) =̂ if ls.pc ∈ {L3,L4,L6} then locksonly(M, ls.li, ls.pid)

else if ls.pc = I13 then locksonly(M, ls.ini, ls.pid)

else if ls.pc = I17 then locksonly(M, ls.inj, ls.pid)

else if ls.pc ∈ {I14, I15, I16} then locksboth(M, ls.ini, ls.inj, ls.pid)

else locksnone(M, ls.pid)

Note that program locations, where the lock gets acquired (e.g. L2) are not part of LOCK-INV .
This is due to our transition like specification of program steps, where INV holds for the source
state. For the same reason, slots are still locked at locations, where they actually get released.

ARRAY-INV(M, ls) =̂ (ls.pc ∈ {L2, . . .}⇒ ls.li < N)

∧ (validIni(ls) ∧ validInj(ls)⇒ ls.ini ̸= ls.inj)

∧ (ls.pc ∈ {I5, . . .}⇒ M[ls.ini].stt = reserved)

∧ . . .

The ARRAY-INV models all other properties that are related to the array M as a conjunction.
Basically, it defines program location ranges, which imply some property, e.g. the index variable
ls.li is smaller than the array length N or the slot indexed by ini must be in reserved state. We
also modeled that the two slot indices ini and inj in InsertPair must be distinct, if reservation was
successful. The range is determined by the conjunction of the predicates validIni and validInj.
The full specification is available on our website [KIV12].

5.2 Disjointness

However, proving our proof obligations for non-interference may fail due to exhibiting situations
between two processes that never occur in reality. As an example, consider the slot reservation
of FindSlot. Two different processes would always reserve different slots and never the same.
A proof may unfold a case, where two processes reserve the same slot. Such cases cannot be
contradicted unless the specification forbids them explicitly. To overcome such cases, we use the
disjointness predicate D ⊆ LS×LS.

D(lsp, lsq) =̂ (lsp.pid ̸= lsq.pid

∧ (validIni(lsp) ∧ validIni(lsq)⇒ lsp.ini ̸= lsq.ini) ∧ . . .

∧ (li-locked(lsp) ∧ li-locked(lsq)⇒ lsp.li ̸= lsq.li) ∧ . . .)

The first statement simply means that two different processes have different process ids. The
following implications use program ranges as defined by some predicates (e. g. validIni or li-
locked), which imply inequality of certain local variables. For instance, if two processes both
perform a LookUp and both have their local variable li locked, their local values of li must be
different. Otherwise, both processes would have locked the same slot. Due to lack of space, we
omit parts of the disjointness specification and refer to our website for full specification [KIV12].

Proc. AVoCS 2012 12 / 15

ECEASST

6 Verification of the Multiset

During a first attempt of proving the case study linearizable, we failed due to a slightly too weak
precondition of our local proof obligations. In the following, we explain why we had to adapt our
proof obligations. Finally, we summarize our verification results and discuss some experiences
that we made while working with the theorem prover KIV.

6.1 Adaption of Local Proof Obligations

One of the challenges mentioned in Subsection 2.3 is the modification of potentially locked slots.
For the case study, this may happen at program locations I1, I5, I7, I10 or I11, where the slots
reserved may be locked by another process. We did not run into trouble with locations I10 and
I11, but with the other locations. One reason for this is our abstraction function, which does not
change the abstract multiset just by modifying a slot as long as the slot is still reserved.

At location I7, we found a case during our proofs, where the slot reserved by process p is also
reserved and locked by another process q, which is also executing InsertPair. If q were at location
I14 or I15, then the process p would linearize the other process by setting the slot from reserved
to empty. Obviously, this cannot happen in reality and therefore should be avoided in the proof.
Locations I1 and I5 have very similar characteristics to I7. Our attempt to prove (LPO) failed for
COp = InsertPair7, since the precondition was too weak. The disjointness predicate D(lsp, lsq)
guarantees that p and q cannot reserve the same slot, but only if the local state lsq = lsf (q) stores
its own identifier q = lsq.pid. The latter was missing in our general theory, since local states
were left unspecified. Hence, we could not use the disjointness predicate properly in this case.

However, the problem is repairable by adding process identifiers to local states and strengthen-
ing the precondition of (LPO). Since the local invariants INV(gs, lsp), INV(gs, lsq) and D(lsp, lsq)
are derived from a global invariant INV(cs) for the full state cs : CS, defined by

INV(cs) =̂ ∀p : P • INV(gs, lsf (p)) ∧ ∀q : P • p ̸= q ⇒ D(lsf (p), lsf (q))

it is possible to replace preconditions INV(gs, lsq) and D(lsp, lsq) with the stronger formula

∀q : P • q ̸= lsp.pid ⇒∃ lsq : LS • INV(gs, lsq) ∧ D(lsp, lsq) ∧ lsq.pid = q

which is also implied by the global invariant. This adds a disjointness precondition to the process
holding the lock, ruling out the situation described above.

6.2 Experiences and Results

The local proof obligation theory including its proofs of correctness is specified in the interactive
theorem prover KIV [RSSB98]. Hence, we used KIV to instantiate proof obligations for the
multiset case study and to mechanize our proofs. Overall, we needed to prove 45 lemmas within
approximately 11000 proof steps. Less than 10% of the steps were done manually and most of
them were quantifier instantiations. Some of the proofs were quite interaction intensive, because
of the universal quantifier in the definition of the In predicate. Whenever we had to reason about
one slot being modified, the In predicate forced us to reason about other slots, because slots with
stt = full can be in or outside the multiset and do not have to be modified directly to change this.

13 / 15 Volume 53 (2012)

Proving Linearizability of Multiset with Local Proof Obligations

Most of the effort for specification and proofs was spent by our first author, who used this case
study as an introduction to KIV and to the linearizability theory. It took him two month to get
familiar with KIV and to create a first specification of the case study. Another month and two
further major revisions (including adaption of theory) were necessary to complete the proofs.

7 Conclusion

In this paper, we presented a part of a multiset implementation, which we could successfully
verify linearizable using our approach of local proof obligations. The multiset implementation
is interesting, because it implements an obviously non-atomic insertion of two elements to a set.
Finding an adequate abstraction function to show its linearizability is counter-intuitive, since
the LP has to be fixed to a single instruction. We presented an idea, which can also be applied
to other non-atomic cases. The operation LookUp has a non-fixed LP. To prove it linearizable,
a backward simulation is necessary. Instead of doing a full backward simulation, we used the
multiset as a second case study to potential linearization points [DSW11b], which simplify the
reasoning effort.

While doing our proofs, we realized that the preconditions used for the local proof obligations
as proposed before were slightly too weak. We fixed this by adding the disjointness property as
part of the precondition. As a result we got a more generalized variant of local proof obligations.
All proofs were mechanized in KIV and are available online [KIV12].

Elmas et al. were the first to verify the chosen case study linearizable [EQS+10]. In their ap-
proach of using atomic actions [EQT09] a program gets transformed (abstracted and reduced) in
several iterations until it is equal to the abstract specification by increasing the level of granular-
ity of atomic actions. The approach needs no explicit specification of linearization points, since
the implemented operations are reduced to atomic operations, for which a sequential reasoning
is sufficient. The key to the approach is to identify code blocks that can be interleaved with other
threads without conflicts, also referred to as commuting actions. Such code blocks are reduced
to atomic blocks, if an SMT-solver is able to approve their commuting property. The approach
establishes an abstraction mapping between the states of an abstract specification and its imple-
mentation, which requires that at least initial and final states are equal. Hence, the established
mapping is weaker than a simulation. The identification of commuting actions is done manually
and needs expertise. However, the specification effort is comparably low, because implementa-
tions do not need conversion into logic statements. In contrast to their approach, our focus lies in
finding a valid abstraction function that can be used to verify our local proof obligations. Hence,
an argument why an implementation is linearizable is part of the result in our approach. By using
the interactive theorem prover KIV, we can automate proofs partially. Its visualization of proofs
as trees can help to gain insights about why proofs fail and how they can be fixed (as was done
with the local proof obligations during this case study).

Currently, we work on a linearizability proof of the case study with an approach combining
temporal logic and rely guarantee reasoning [TSR11] to compare several verification approaches.

Acknowledgements: We would like to thank Bogdan Tofan for all his support. He helped us
with the specifications in KIV and gave us important advice, when we carried out our proofs.

Proc. AVoCS 2012 14 / 15

ECEASST

Bibliography

[ARR+07] D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, E. Yahav. Comparison Under Abstrac-
tion for Verifying Linearizability. In CAV. Pp. 477–490. 2007.

[DSW07] J. Derrick, G. Schellhorn, H. Wehrheim. Proving Linearizability Via Non-atomic
Refinement. In Davies and Gibbons (eds.), IFM. Lecture Notes in Computer Sci-
ence 4591, pp. 195–214. Springer, 2007.

[DSW08] J. Derrick, G. Schellhorn, H. Wehrheim. Mechanizing a correctness proof for a lock-
free concurrent stack. In FMOODS 2008. LNCS 5051, pp. 78–95. Springer, 2008.

[DSW11a] J. Derrick, G. Schellhorn, H. Wehrheim. Mechanically verified proof obligations for
linearizability. ACM Trans. Program. Lang. Syst. 33(1):4, 2011.

[DSW11b] J. Derrick, G. Schellhorn, H. Wehrheim. Verifying Linearisabilty with Potential Lin-
earisation Points. In Proc. Formal Methods (FM). Pp. 323–337. Springer LNCS
6664, 2011.

[EQS+10] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, S. Tasiran. Simplifying linearizability
proofs with reduction and abstraction. In In TACAS. Pp. 296–311. Springer, 2010.

[EQT09] T. Elmas, S. Qadeer, S. Tasiran. A calculus of atomic actions. In Proceedings of
the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. POPL ’09, pp. 2–15. ACM, New York, NY, USA, 2009.

[HW90] M. Herlihy, J. M. Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM TOPLAS 12(3):463–492, 1990.

[KIV12] Web presentation of KIV proofs for this paper. 2012. URL:
http://www.informatik.uni-augsburg.de/swt/projects/MultiSet.html.

[OG76] S. S. Owicki, D. Gries. An Axiomatic Proof Technique for Parallel Programs I. Acta
Inf. 6:319–340, 1976.

[RSSB98] W. Reif, G. Schellhorn, K. Stenzel, M. Balser. Structured Specifications and Interac-
tive Proofs with KIV. In Automated Deduction—A Basis for Applications. Volume II,
chapter 1: Interactive Theorem Proving, pp. 13 – 39. Kluwer, 1998.

[SDW12] G. Schellhorn, J. Derrick, H. Wehrheim. How to prove algorithms linearizable. In
Proc. CAV. Springer LNCS, 2012.

[TSR11] B. Tofan, G. Schellhorn, W. Reif. Formal Verification of a Lock-Free Stack with
Hazard Pointers. In Proc. ICTAC. Springer LNCS 6916, 2011.

[VP07] V. Vafeiadis, M. J. Parkinson. A Marriage of Rely/Guarantee and Separation Logic.
In CONCUR 2007. LNCS 4703, pp. 256–271. 2007.

15 / 15 Volume 53 (2012)

