
Electronic Communications of the EASST
Volume 25 (2010)

Proceedings of the Workshop
Visual Formalisms for Patterns

at VL/HCC 2009

Towards Generalizing Visual Process Patterns

Christian Soltenborn and Gregor Engels

10 pages

Guest Editors: Paolo Bottoni, Esther Guerra, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Towards Generalizing Visual Process Patterns

Christian Soltenborn and Gregor Engels

University of Paderborn
{christian,engels}@uni-paderborn.de

Abstract: Visual Process Patterns (VPP) is a visual language to describe constraints
on the behavior of UML Activities. They have been developed for the sake of formu-
lating and verifying requirements on business process models in a visual, intuitive
way (with UML Activities being one possible description language). In the VPP
approach, a visual process pattern is translated into an LTL formula, which can then
be verified against a transition system describing the behavior of the Activity under
consideration.

In this paper, we aim at generalizing VPP. We show how to formulate patterns more
generally, using an enhanced version of the concrete syntax of the behavioral model
under consideration. Additionally, we describe how these more general patterns can
be verified against a model’s behavior.

Keywords: Pattern, semantics, verification, business process, activity, state machine

1 Introduction

Business processes are a crucial part of many companies’ business, and therefore have to fulfill
certain domain specific and quality requirements. Such requirements can e.g. be specified by
means of so-called process patterns. For instance, such a process pattern can state that “after
each production action a quality check has to be performed prior to delivery”.

Given the complexity of many business processes, it would be desirable to be able to auto-
matically verify such requirements against a particular business process. This implies that the
modeler has to somehow formalize the requirements.

Unfortunately, the semantic gap between a visual, flow-oriented business process model and
most formal specification languages (e.g., temporal logic [CES86]) is quite large. Therefore,
the translation of (informal) requirements into a (formal) specification language is a challenging
task, and must be expected to be beyond knowledge of the average business analyst.

Visual Process Pattern (VPP) [För08] aim at bridging that semantic gap by allowing the busi-
ness analyst to model the requirements in basically the same language as the business process
itself. In the case of VPP, the underlying modeling language is UML Activities [Obj09]; its fit-
ness for business process modeling is obvious. See Fig. 1 for an example business process from
the insurance domain, modeled as a UML Activity.

Consequently, Förster et.al. [FESS07, FSES06, FES05] have suggested an Activity based vi-
sual language which allows for the specification and verification of requirements like “After each
production action, a quality check has to be performed prior to delivery”. Figure 2 gives a first
impression of a VPP representation of that requirement, which will serve as a running example
for the rest of this paper; more details of VPP will be explained in Sect. 2.

1 / 10 Volume 25 (2010)

Towards Generalizing Visual Process Patterns

produce
part 2receive

order

ship

send invoice

close bill

[else]

[order accepted]

report
order

report rejected order

report
payment

test
quality

receive
payment

fill
order

produce
part 1

Figure 1. Example business process (adopted from [14, p. 312])

report order

test quality ship

<<complete>>

a) Process constraint #1

<<all>>

produce

b) Process constraint #2

close order

Figure 2. Process patterns for constraints #1
and #2

can state:

Process constraint #1: Before an order is being closed,
records of the received orders have to be made.

The constraint implies that the Action “report order” is exe-
cuted at some point before the Action “close order” is exe-
cuted, but it does not require that the Action “report order”
is executed directly before “close order”.

It is an important property of typical process require-
ments that they frequently contain rather loose or incom-
plete temporal/logical relationships between Actions. In a
concrete business process there may be many other Actions
executed in between “report order” and “close order” with-
out contradicting the pattern. Since the original semantics
of an ActivityEdge as described in the UML Superstruc-
ture is that Action “close order” is enabled immediately
when Action “report order” terminates [14], we introduced
the stereotype �after� for an ActivityEdge to express that
some Action has to be executed after another but not nec-
essarily directly following it. Stereotyping of model ele-
ments is the standard extension mechanism of the UML.
Using stereotypes, model elements can be given additional
or extended semantics. Figure 2a shows process constraint
#1 modeled in our PPSL. The curly line in Fig. 2a is a
visualization option of the �after� stereotype. In the re-
mainder, we refer to this sort of stereotyped ActivityEdge
as AfterEdge.

Being able to express such loose order relationships in
process patterns is also a necessary prerequisite to enable

flexible application of the process patterns since pattern ac-
tions and actions of the original business process usually
need to be weaved together. If the pattern designer wants to
specify that there may not be other Actions being executed
in between two Actions of a pattern, a regular ActivityEdge
without stereotype can be used in the pattern.

Process constraint #1 could be read in two directions. Ei-
ther “every time an order is closed this has to be preceeded
by reporting an order” or “every report of an order must
be followed by closing the order”. It is important to have
the possibility to distinguish these two cases in the process
constraint language. This can be done using the stereo-
type �all� for Actions. It denotes whether the implication
given by the AfterEdge in the constraint refers to all “close
order” Actions or all “report order” Actions. In the remain-
der, we will refer to an Action having an �all� stereotype
as AllAction. The multi-node in Figs. 2 and 3 are a visu-
alization option of the AllAction. It is also possible to use
AllActions on both sides of the AfterEdge or ActivityEdge
denoting that both implications have to be fulfilled. Conse-
quently, it is a well-formedness rule for our language that at
least one of two Actions being connected by an AfterEdge
or ActivityEdge is an AllAction.

The next process constraint that we want to consider is:

Process constraint #2: After each production action a
quality check has to be performed prior to delivery.

Process constraints #2 is similar to process constraint #1
but contains precisely spoken two different constraints put
together. The first requirement is that after each produc-
tion action there has to be a quality check and the second
requirement is that before shipping a product, the quality
has to be checked. This is why the actions “produce” and
“ship” in the process pattern are AllNodes. The use of a
regular ActivityEdge between ”test quality” and ”ship” sets
the requirement that shipping has to be directly preceded by
the quality test. There may not be other actions executed in
between these two actions.

If we now compare the process constraints with the ex-
ample business process in Fig. 1, we can see that it does
not have an action called “produce” like the pattern in Fig.

Figure 1: Example business process, modeled as a UML Activity

produce
part 2receive

order

ship

send invoice

close bill

[else]

[order accepted]

report
order

report rejected order

report
payment

test
quality

receive
payment

fill
order

produce
part 1

Figure 1. Example business process (adopted from [14, p. 312])

report order

test quality ship

<<complete>>

a) Process constraint #1

<<all>>

produce

b) Process constraint #2

close order

Figure 2. Process patterns for constraints #1
and #2

can state:

Process constraint #1: Before an order is being closed,
records of the received orders have to be made.

The constraint implies that the Action “report order” is exe-
cuted at some point before the Action “close order” is exe-
cuted, but it does not require that the Action “report order”
is executed directly before “close order”.

It is an important property of typical process require-
ments that they frequently contain rather loose or incom-
plete temporal/logical relationships between Actions. In a
concrete business process there may be many other Actions
executed in between “report order” and “close order” with-
out contradicting the pattern. Since the original semantics
of an ActivityEdge as described in the UML Superstruc-
ture is that Action “close order” is enabled immediately
when Action “report order” terminates [14], we introduced
the stereotype �after� for an ActivityEdge to express that
some Action has to be executed after another but not nec-
essarily directly following it. Stereotyping of model ele-
ments is the standard extension mechanism of the UML.
Using stereotypes, model elements can be given additional
or extended semantics. Figure 2a shows process constraint
#1 modeled in our PPSL. The curly line in Fig. 2a is a
visualization option of the �after� stereotype. In the re-
mainder, we refer to this sort of stereotyped ActivityEdge
as AfterEdge.

Being able to express such loose order relationships in
process patterns is also a necessary prerequisite to enable

flexible application of the process patterns since pattern ac-
tions and actions of the original business process usually
need to be weaved together. If the pattern designer wants to
specify that there may not be other Actions being executed
in between two Actions of a pattern, a regular ActivityEdge
without stereotype can be used in the pattern.

Process constraint #1 could be read in two directions. Ei-
ther “every time an order is closed this has to be preceeded
by reporting an order” or “every report of an order must
be followed by closing the order”. It is important to have
the possibility to distinguish these two cases in the process
constraint language. This can be done using the stereo-
type �all� for Actions. It denotes whether the implication
given by the AfterEdge in the constraint refers to all “close
order” Actions or all “report order” Actions. In the remain-
der, we will refer to an Action having an �all� stereotype
as AllAction. The multi-node in Figs. 2 and 3 are a visu-
alization option of the AllAction. It is also possible to use
AllActions on both sides of the AfterEdge or ActivityEdge
denoting that both implications have to be fulfilled. Conse-
quently, it is a well-formedness rule for our language that at
least one of two Actions being connected by an AfterEdge
or ActivityEdge is an AllAction.

The next process constraint that we want to consider is:

Process constraint #2: After each production action a
quality check has to be performed prior to delivery.

Process constraints #2 is similar to process constraint #1
but contains precisely spoken two different constraints put
together. The first requirement is that after each produc-
tion action there has to be a quality check and the second
requirement is that before shipping a product, the quality
has to be checked. This is why the actions “produce” and
“ship” in the process pattern are AllNodes. The use of a
regular ActivityEdge between ”test quality” and ”ship” sets
the requirement that shipping has to be directly preceded by
the quality test. There may not be other actions executed in
between these two actions.

If we now compare the process constraints with the ex-
ample business process in Fig. 1, we can see that it does
not have an action called “produce” like the pattern in Fig.

Figure 2: Visual process pattern formalizing the requirement “After each production action a
quality check has to be performed prior to delivery”

Förster’s approach is well-suited for the formulation of requirements put on UML Activities
and the execution of the contained Actions, but it does not allow for the formulation of require-
ments about other Activity constructs (e.g., whether a token has arrived at a FinalNode) or even
against other languages (e.g., UML State Machines). This is due to the fact that Förster’s lan-
guage is dedicated to formulating requirements against UML Activities only. As a consequence,
UML Actions (i.e., the places in an Activity where actual work takes place) are an important
element of that language. As a result, the language is not able to express requirements against
models which do not contain Actions (e.g., models which are not UML Activities).

In this paper, we describe how to generalize the VPP approach to be able to do exactly that.
We will show how to formulate and verify requirements on arbitrary languages. For that, we will
reuse a part of Förster’s language. The basic idea is to replace Actions in a VPP with arbitrary
states of execution of the underlying model, and to connect these states with the flow elements
used in VPPs. The states of execution of the underlying behavioral model can be described in
concrete syntax.

Structure of paper: In the next section, we will give more insight into the VPP approach. We
will point out some technical details of VPP and demonstrate them using the running example
introduced above. Based on that, Sect. 3 will then show how the VPP approach can be general-
ized such that requirements can be formulated and verified against arbitrary language constructs.
Section 4 presents work related to our approach, and the last section concludes and points out
the current state and the future of our work.

2 Visual Process Pattern

We have mentioned in the introduction that a VPP is expressed as a number of Actions, connected
by custom flow elements (we have seen an example in Fig. 2). In this section, we want to
precisely define the example’s semantics, and we want to shed light on the technical background
of VPP.

Proc. VFfP 2009 2 / 10

ECEASST

Business Process
(UML Activity)

DMM-
Specification

GROOVE
Generator

Labeled
Transition
System

Business
Process
Pattern

GROOVE
Model

Checker

True/False,
Counter example

Temporal
Logic

Formulas

BPP
Translator

Figure 3: Overview of the VPP approach

We start with an assumption, though: We expect to receive the semantics of a business pro-
cess model as a labeled transition system (LTS), where the labels contain information about the
model’s execution. A trace through such an LTS is the sequence of labels we get on one of
the possible “ways” through the LTS. We will later see how this is actually realized in the VPP
approach, and how to use this fact for generalizing the approach.

The idea of VPP is to visually describe temporal properties of a model. For instance, one
wants to express that “when Action A is executed, Action B will be executed at some point in the
future”. The interested reader will immediately see that the temporal part of the above statement
(“when event A, then eventually event B”) can easily be expressed using temporal logic.

This is indeed what the VPP approach does: in [FESS07], the authors have defined the visual
pattern language by mapping the custom flow elements into the temporal logic dialect LTL. For
instance, the example VPP depicted as Fig. 2 is translated into the two formulas G(produce →
F test quality) and G(ship → Y test quality). Figure 3 shows the whole underlying process.

In LTL, expressions about paths G stands for “all future states”, F means “some future state”,
and Y translates to “the previous state”. It now becomes clear how the formulas are related to
our example VPP: The first expression is true for a trace of the LTS, if for all the trace’s states it
is the case that if label produce occurs, label “test quality” will occur in the future. The second
expression is true for traces such that if label “ship” occurs, label “test quality” must have been
the previous label. Note that an expression is true for an LTS iff it is true for all (possibly infinite)
traces through that LTS.

So far, we have seen how to express VPPs into according LTL formulas which can then be
verified against an appropriately labeled transition system. Our next step will be the generation
of such an LTS. This is where Dynamic Meta Modeling comes into play.

2.1 Dynamic Meta Modeling

Dynamic Meta Modeling (DMM) [Hau05] is a semantics specification technique targeted at
visual behavioral modeling languages whose abstract syntax is defined by means of a metamodel.
The idea of DMM is to enhance such a given metamodel with concepts needed to express states
of execution of a language’s model, leading to a so-called runtime metamodel. In a second
step, operational rules are defined which describe how instances of the runtime metamodel (i.e.,
models in a certain state of execution) change in time (i.e., which state(s) of execution will be

3 / 10 Volume 25 (2010)

Towards Generalizing Visual Process Patterns

Semantics Definition

Syntax
Definition

Transition System

States

Expression

Model

Operational rules

conforms to

Semantic
metamodeling

conforms to

Metamodel Graph
transformation rules

semantic
 mapping Runtime metamodel

Language

Model (Instance)

conforms to
conforms to

typed
over

Figure 4: Overview of the DMM approach

reached from a certain state according to the language’s behavior). Such a DMM rule has a
precondition which must be fulfilled for the rule to match; if this is the case, the rule is applied,
leading to a new state. The DMM approach is depicted as Fig. 4.

Let us illustrate the above using the example language of UML Activities: The runtime meta-
model of UML Activities adds concepts such as an ActivityExecution class, a Token class1 etc.,
whereas the operational rules describe how tokens flow through an Activity during execution.
For instance, one of the mentioned DMM rules makes sure that an Action is executed if all its
incoming edges carry at least one token. If this is the case, the Action starts execution.

A DMM specification together with an instance of the runtime metamodel give rise to an LTS,
where states are states of execution of the according model, transitions are applications of oper-
ational rules, and labels are names of operational rules. The instance of the runtime metamodel
serves as the start state of the LTS. The LTS can then be analyzed with model checking tech-
niques, e.g. to verify LTL formulas as defined above: The idea is to refer within these formulas
to the names of appropriate DMM rules corresponding to the desired states of execution (e.g.,
the execution of a particular Action).

Technically, DMM is based on graph transformations [EEKR99]. The instances of the runtime
metamodel are treated as (typed) graphs, and the DMM rules manipulate these graphs. As a
result, DMM specifications are not only formal, but also easily understandable due to their visual
nature. The execution of DMM specifications as well as the model checking are performed using
the GROOVE tool set [Ren04, KR06], an excerpt of the resulting LTS is depicted as Fig. 5. See
[Hau05, För08] for more details on DMM and the way VPPs make use of it.

1 Note that since UML 2.0, the semantics of Activities is based on token flow.

Proc. VFfP 2009 4 / 10

ECEASST

and verifying constraints for business processes, it is not in-
tended to be a graphical notation for temporal logic in gen-
eral.

Furthermore we show how the example process patterns
of Sect. 3 are translated into temporal logic and whether
the business process of Fig. 1 conforms to these patterns.
Finally in Sect. 4.3 we show how the verification process
shown in Fig. 4 can be embedded in a tool chain, using
state-of-the-art model checkers. This tool support supports
the business process designer in verifying the application of
the process patterns he/she selected.

4.1 Generation of the Labeled Transition
System

The semantics of a visual language is defined in the
DMM framework by a semantic domain meta model and
a set of meta operations. The semantic domain meta model
describes the semantical concepts of the language. For ex-
ample, to be able to express the semantics of Activity Dia-
grams, the semantic concept ActionExecution is defined as
a class in the semantic domain meta model. This concept
denotes a currently running execution of an Action. For
each semantic concept that relates to behavior it captures
this behavior in a set of meta operations. The meta opera-
tions are defined by rules represented as UML communica-
tion diagrams. These communication diagrams are given a
formal interpretation based on graph transformation rules.

Given the set of DMM rules for a particular language
and a user-defined model expressed in the same language,
a labeled transition system (LTS) is generated by a DMM
interpreter that reflects all possible behaviors to the model.
In the DMM approach, the GROOVE (GRaphical Object-
Oriented VErification) tool set [15] has been chosen as
DMM interpreter to produce the resulting labeled system.

Using the GROOVE tool, the set of DMM rules for UML
2.0 Activity Diagrams, and given a user-defined Activity
Diagram, which is in our case the business process, we can
generate a LTS that specifies the exact execution paths of
the Activity Diagram. Figure 5 shows an excerpt of the re-
sulting LTS from the example in Fig. 1. Each state in the
LTS represents a state in the execution of the Activity Di-
agram. The labels in the states represent the fact that the
corresponding Action is actually executing.

A name of an Action in the business process refers to a
certain Behavior. Since the business process and the pro-
cess pattern may have been devised by different persons us-
ing different Behavior namespaces, a mapping needs to be
defined. This mapping is part of the tool chain described in
Sect. 4.3. For the formalization, without loss of generality,
we assume that the Behavior namespaces are synchronized.

The DMM approach for UML Activity Diagrams incor-
porates the semantics of the UML 2.0 Superstructure [14]

Figure 5. Excerpt of the transition system re-
sulting from the example business process in
Fig. 1b generated using DMM and GROOVE.

for model elements of the packages StructuredActivities and
IntermediateActivities. These semantics implemented in
DMM include all important issues described in the UML
Specification like traverse-to-completion, the fact that Ac-
tions capture all of their input tokens in one atomic step,
etc. Concurrency in the Activity Diagram leads to a transi-
tion system that contains all possible interleavings between
the concurrent Actions.

In the next section we specify how the process patterns
can be translated into temporal logic formulas which can be
checked against the transition system.

4.2 Formalization of Process Patterns

The formalization of the process patterns is presented in
two consecutive steps. First, the notion of Pattern Graph is
defined. Secondly, the translation of a process pattern into
temporal logic is established.

A process pattern is represented by a Pattern Graph.

Definition 1. A Pattern Graph (PG) is a tuple PG =
(N,E) where N is the set of nodes and E is the set of edges,
i.e., the set of tuples N×N. The notation e(n1, n2) is equiv-
alent with e ∈ E ∧ e = (n1, n2).
The set N is divided into different disjoint subsets, N =
Na ∪ Nd ∪ Nm ∪ Nf ∪ Nj where Na is the set of Ac-
tionNodes, Nd is the set of DecisionNodes, Nm is the set
of MergeNodes, Nf is the set of ForkNodes, and Nj is the
set of JoinNodes.
The set of ControlNodes, denoted by Nc, is defined as
Nc = Nd ∪Nm ∪Nf ∪Nj.
The set of edges E is divided into two disjoint sets E =
Ed ∪Ea, where
Ed is the set of ActivityEdges, Ea is the set of AfterEdges,
and Ed ∩Ea = ∅.
The set of AllActions is denoted by Nall ⊆ Na.

In the remainder of this section, we explain how process
patterns can be expressed by Linear-time temporal logic

Figure 5: Excerpt of the transition system resulting from the example business process in Fig. 1,
generated using DMM and GROOVE

3 Generalization of VPP

In the last section, we have seen how VPPs are translated into temporal logic formulas which
can then be model checked against the LTS derived from the language’s semantics specification
and the business process itself (which serves as the start state). We have also seen how VPP
uses DMM: For every Action of the business process, a corresponding DMM rule exists; the
according label in the LTS corresponds to the execution of the according rule.

However, as mentioned earlier, this approach does not help if we e.g. want to formulate re-
quirements on other language elements than Actions, let alone other behavioral languages. This
is not possible with VPPs since the usage of Actions is “hardcoded” into the approach, as we
have seen earlier. For instance, we would like to be able to express requirements like “When
Action A is executed, the Activity will always terminate properly”. However, the VPP language
does not contain any constructs allowing to express requirements on other elements than Actions.

One solution could be to directly refer to rules of the semantics specification within a VPP
expression. For instance, instead of connecting Actions with the VPP flow elements (as seen in
Fig. 2), we could connect a representation of the rules corresponding to the behavior of interest.
However, this has two serious drawbacks: First, the business analyst creating the VPPs needs to
have knowledge about the rules contained in the semantics specification: Which rules do exist,
and which situations do they correspond to? Second (and even worse), we would also like to be
able to express requirements about states of execution of our model for which no corresponding
rule exists. For instance, we might want to express that at some point in time, both Actions A and
B are executed in parallel; however, there is no corresponding rule for that kind of requirement.

Fortunately, GROOVE offers the concept of so-called property rules. The next section will
show how these property rules can be used to formulate requirements about a much broader class
of states of execution.

5 / 10 Volume 25 (2010)

Towards Generalizing Visual Process Patterns

3.1 Property Rules

Property rules are rules which have a precondition, but they do not change the states they are
applied to. In other words: if such a rule matches a state, the rule is applied, leading to a
self-transition of the according state. Technically, a property rule is a graph transformation rule
having the same left-hand and right-hand graphs.

These property rules can be used for our goal of formulating requirements in a more flexible
way: For every state property of interest, an according property rule is defined and added to
the DMM ruleset. For instance, if we are interested in the state where Actions A and B are
executed in parallel, we just need to create a property rule describing exactly that situation: The
rule would contain the according Actions which would both carry a token, corresponding to the
fact that they are both executed.

The resulting LTS will contain some additional transitions: Every state which fulfills the for-
mulated property will have a label with the property rule’s name. This allows for the verification
of temporal formulas about those properties as described in Sect. 2. Note that the new LTS will
be stuttering equivalent to the original transition system, i.e., if we remove all occurences of
property rules from the traces of our new LTS, the resulting set of traces is equal to the set of
traces of the original LTS. To put it differently: Adding property rules to an existing ruleset does
not significantly change the ruleset’s semantics.

Note also that using property rules still allows to verify all requirements formulated with
“plain” VPPs as described by Förster. This is done by deriving property rules from the DMM
rules used within the verification process in a trivial way. For each DMM rule used in the
verification process (i.e., each rule referenced by our original VPPs), we introduce a new property
rule whose precondition is fulfilled if the according Action is executed. If we compute the LTS,
every state which was labeled with one of the original rules will additionally be labeled with the
according property rule. This means that we can still check the requirement by using the same
LTL formulas as before; the only difference is that the rules referenced within these formulas
have been replaced with the corresponding property rules.

3.2 Specification of State Properties

But how to specify property rules? Our assumption is that the business analyst knows the se-
mantics of the modeling language used (otherwise she will probably not be able to come up with
a meaningful model). Therefore, it seems reasonable to use a concrete syntax of the runtime
metamodel for specifying the property rules, since we want their appearance to be as close to the
original language as possible.

Let us illustrate this with a small example in the domain of Activities: We have seen above
that the semantics of Activities is based on token flow, and that the DMM runtime metamodel of
UML Activities therefore contains a Token class. An obvious visualization of the Token concept
is a black, filled dot which is drawn at the language element the token is located. Figure 6 shows
an example property rule: The rule matches if a token is sitting at an ActivityFinalNode.

Besides being intuitive and easily understandable, the suggested representation of property
rules has another advantage: Having a concrete syntax for the runtime part of the language
allows for the (animated) visualization of the execution of a model, e.g. for using it within a

Proc. VFfP 2009 6 / 10

ECEASST

Figure 6: A property rule as concrete syntax; the rule matches if a token is sitting on a FinalNode.

Figure 7: A VPP expression making use of property rules.

visual debugger, which is indeed part of one of our research projects (more on this in Sect. 5).

3.3 Formulating VPPs Using Property Rules

It is now straight-forward how to use property rules within a VPP. Instead of referring to a
concrete Action within one of the boxes contained in the VPP, a property rule is used which
describes the properties of the state of interest. Figure 7 shows such a VPP realizing the require-
ment “When Action A is executed, the Activity will always terminate properly”: the left Action
of the VPP contains Action A carrying a token (corresponding to that Action being executed),
the right part shows a FinalNode carrying a token (corresponding to the whole Activity being
terminated).

Of course, the boxes can still be connected using the flow elements contained in the VPP
language (as we did in Fig.7). As a result, the translation to temporal logic nearly remains
unchanged. The only difference is that instead of using a reference to an existing DMM rule
within a VPP, the according property rule is referenced.

Finally, it is now easy to see how this approach can be used for formulating requirements
against other behavioral languages: for instance, in the case of UML State Machines, the runtime
metamodel will most likely contain the concept of a “marker” which shows the current state(s)
the machine is in. Having a concrete syntax for that marker concept, the marker can then be used
to formulate requirements like “When the State Machine is in state A, it will eventually be in
state B”.

4 Related Work

The relatedwork of this paper mainly falls into two categories: workflow and process patterns
and the verification of formal properties against workflows and processes.

Workflow and Process Patterns Van der Aalst et.al. [AHKB03] have suggested a number
of workflow patterns describing several types of control flow structures in workflow systems.
Using Petri nets, their main focus was to identify typical control flow structures contained in
workflows, and to use this knowledge to assess existing workflow management systems and
workflow specification languages for expressiveness. Ambler [Amb96] suggests the application
of process patterns to software development processes; however, his approach does not contain
a formal underpinning which could be used for automatic verification of such processes.

7 / 10 Volume 25 (2010)

Towards Generalizing Visual Process Patterns

Verification of Workflow and Process Properties Kindler and van der Aalst [KA99] describe
how to verify Petri Nets for general properties like soundness and liveness, but their approach
does not support the verification of user-defined properties raising e.g. from domain-specific
requirements. Janssen et.al. [JMM+99] suggest an approach for the verification of business
processes using model checking techniques which is based on a proprietary process modeling
language. The authors formalize different basic constraints; again, the approach does not allow
for the verification of custom, user-defined properties.

5 Conclusion

In this paper, we have shown how to generalize the VPP approach, which deals with the visual
specification of formal requirements against business processes. For this, we have briefly intro-
duced the VPP approach, and we have explained how DMM and GROOVE are used to perform
the verification of such requirements in Sect. 2.

Based on that, we have shown in Sect. 3 how to replace the “hard-coded” Action rules of the
DMM approach with so-called property rules, i.e., rules which do not change states they are ap-
plied to, but are still represented as labels in the resulting LTS. We have shown how to formulate
the property rules using a concrete syntax of the runtime metamodel which is part of the DMM
specification. To demonstrate our approach, we have shown how to reformulate existing VPPs
using property rules, and we have provided a simple process requirement which could not be
formulated using the existing VPP language, but can be formulated with our approach. Addi-
tionally, we have described how to compose property rules to requirements on the whole LTS,
borrowing the flow constructs and their mapping to LTL from Förster’s VPP approach.

Future Work We are currently working on incorporating the described approach into our
DMM tooling. This involves several steps: First, we need to investigate a reasonable way to
define a concrete syntax for a runtime metamodel as used in the DMM specification technique
(given that the syntax metamodel of the language is already equipped with a concrete syntax).

Additionally, as mentioned earlier, we plan to reuse the concrete syntax of the runtime meta-
model for a visual debugger for languages having a DMM specification. The general idea is
to animate the execution of a behavioral model (in the case of UML Activities, that animation
would basically show the flowing of tokens through the Activity to be debugged). A first step in
this direction has already been performed as part of a diploma thesis [Ban09].

If the verification shows that one of our VPPs does not hold for a particular model, the model
checker will produce a counter example showing under which circumstances the violation of the
VPP occurs. That counter example is expected to be very helpful for the business analyst when
fixing the model’s flaws. Using the visual debugger as described in the previous paragraph,
we want to back-propagate that counter example to the business analyst in an intuitive, easily
understandable way.

Finally, we plan to visually model the soundness requirements against UML Activities iden-
tified in [ESW07]. Having shown the general usefulness of our approach that way, we plan to
perform a larger case study in the context of DMM and our notion of VPPs.

Acknowledgements: Thanks to Nils Bandener for last-minute technical support.

Proc. VFfP 2009 8 / 10

ECEASST

Bibliography

[AHKB03] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases 14(1):5–51, 2003.

[Amb96] S. W. Ambler. Process Patterns - Building Large-Scale Systems Using Object Tech-
nology. SIGS Books/Cambridge University Press, Cambridge, 1996.

[Ban09] N. Bandener. Visual Interpreter and Debugger for Dynamic Models Based on the
Eclipse Platform. Master’s thesis, University of Paderborn, 2009.

[CES86] E. M. Clarke, E. A. Emerson, A. P. Sistla. Automatic Verification of Finite-State
Concurrent Systems using Temporal Logic Specifications. ACM Trans. Program.
Lang. Syst. 8(2):244–263, 1986.
doi:http://doi.acm.org/10.1145/5397.5399

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages, and Tools. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1999.

[ESW07] G. Engels, C. Soltenborn, H. Wehrheim. Analysis of UML Activities using Dynamic
Meta Modeling. In Bosangue and Johnsen (eds.), Proceedings of the FMOODS 2007
Conference. LNCS 4468, pp. 76–90. Springer, 2007.

[FES05] A. Förster, G. Engels, T. Schattkowsky. Activity Diagram Patterns for Modeling
Quality Constraints in Business Processes. In L. C. Briand (ed.), Proceedings of the
8th International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2005), Montego Bay (Jamaica). Pp. 2–16. Springer, 2005.

[FESS07] A. Förster, G. Engels, T. Schattkowsky, R. V. D. Straeten. Verification of Business
Process Quality Constraints Based on Visual Process Patterns. In TASE. Pp. 197–
208. IEEE Computer Society, 2007.

[För08] A. Förster. Pattern-Based Business Process Design and Verification. PhD thesis,
University of Paderborn, 2008.

[FSES06] A. Förster, T. Schattkowsky, G. Engels, R. V. D. Straeten. A Pattern-driven Develop-
ment Process for Quality Standard-conforming Business Process Models. In IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2006),
Brighton (UK). Pp. 135–142. IEEE Computer Society, 2006.

[Hau05] J. H. Hausmann. Dynamic Meta Modeling. PhD thesis, University of Paderborn,
2005.

[JMM+99] W. Janssen, R. Mateescu, S. Mauw, P. Fennema, P. van der Stappen. Model Checking
for Managers. In Dams et al. (eds.), SPIN. Lecture Notes in Computer Science 1680,
pp. 92–107. Springer, 1999.

9 / 10 Volume 25 (2010)

http://dx.doi.org/http://doi.acm.org/10.1145/5397.5399

Towards Generalizing Visual Process Patterns

[KA99] E. Kindler, W. M. P. van der Aalst. Liveness, Fairness, and Recurrence in Petri Nets.
Information Processing Letters 70(6):269–27, 1999.

[KR06] H. Kastenberg, A. Rensink. Model Checking Dynamic States in GROOVE. In Val-
mari (ed.), SPIN. Lecture Notes in Computer Science 3925, pp. 299–305. Springer,
2006.

[Obj09] Object Management Group. OMG Unified Modeling Language (OMG UML) – Su-
perstructure, Version 2.2. http://www.omg.org/docs/formal/09-02-02.pdf, 2 2009.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Pfaltz
et al. (eds.), AGTIVE 2003 – Revised Selected and Invited Papers. LNCS 3062,
pp. 479–485. Springer, 2004.

Proc. VFfP 2009 10 / 10

http://www.omg.org/docs/formal/09-02-02.pdf

	Introduction
	Visual Process Pattern
	Dynamic Meta Modeling

	Generalization of VPP
	Property Rules
	Specification of State Properties
	Formulating VPPs Using Property Rules

	Related Work
	Conclusion

