
Electronic Communications of the EASST
Volume 57 (2013)

Proceedings of the
Second International Workshop on

Bidirectional Transformations
(BX 2013)

Delta lenses and opfibrations

Michael Johnson and Robert Rosebrugh

18 pages

Guest Editors: Perdita Stevens, James F. Terwilliger
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Delta lenses and opfibrations

Michael Johnson1 and Robert Rosebrugh2

1 http://www.cs.mq.edu.au/∼mike
Department of Computing

Macquarie University, Australia
and

School of Mathematics and Statistics
University of Sydney, Australia

2 http://www.mta.ca/∼rrosebru
Department of Mathematics and Computer Science

Mount Allison University, Canada

Abstract: We compare the delta lenses, also known as d-lenses, of Diskin et al.
with the c-lenses, known to be equivalent to opfibrations, already studied by the
authors. Contrary to expectation a c-lens is a d-lens but not conversely. This result
is surprising because d-lenses appear to provide the same information as c-lenses,
and some more besides, suggesting that the implication would be the reverse – a
d-lens would appear to be a special kind of c-lens. The source of the surprise can
be traced to the way the two concepts deal differently with morphisms in a certain
base comma category (G,1V). Both c-lenses and d-lenses are important because
they extend the notion of lens to take account of the information available in known
transitions between states and this has important implications in practice.

Keywords: Delta lens, opfibration, view update

1 Introduction

One common asymmetric situation that requires bidirectional programming arises when one has
a system and, in some sense or another, a view of that system. The asymmetry arises because
the view can always be computed from the system, but in general constructing or reconstructing
a system state from a view state may be difficult or even impossible.

An (asymmetric) lens is a framework for attacking this problem. We consider the states of
the system, say S, and the states of the view, say V, and the way of computing the view state
from the system state is represented by an operation G, often called Get, with G : S //V. In the
reverse direction a lens provides an operation called a Put, P, which yields a system state S, but
depends upon knowing both a view state and some other information including the immediately
previous system state (the state that we are seeking to update).

Often the system in question is a database, as it will be in many of our examples below, and the
view is the result of a query on that database (so the view state is directly computable from the
system state). In many applications the view is a major interface to the system, so information
is updated by changing the view, and the view update problem is the question of how to modify

1 / 18 Volume 57 (2013)

http://www.cs.mq.edu.au/~mike
http://www.mta.ca/~rrosebru

Delta lenses and opfibrations

a state of the database to correspond to a given modification of the corresponding view state.
Notice that in this situation, as in lenses in general, the Put operation will take as input both
the new view state, and further information including the system state immediately before the
update, and possibly other information such as the operations that were carried out to achieve the
view modification.

Much of the early work on the view update problem, and on lenses in general, concentrated
merely on the states, so that S and V were simply the sets of system states and view states
respectively, and the Get and Put could be represented as functions

G : S //V and P : V×S //S.

Of course states usually have more structure, typically being represented as directed graphs or
categories, with the transitions between states being represented as edges or arrows. Further-
more, in more recent times the present authors and others, especially Diskin et al [4], have
argued for the benefits of paying attention to those transitions, and wherever possible, of using
them to aid in calculating better solutions to view updating problems.

The transitions between states might be thought of as a record of the changes from one state to
another. This is what Diskin et al called the deltas. They developed a new notion of lens called
a delta-lens, which they abbreviate to d-lens, and they introduced those lenses in [4] along with
very good arguments and practical examples showing why the transitions, the deltas, should be
used in calculating Puts.

Independently, both in concept, and in their nomenclature, the present authors and their col-
league Wood introduced c-lenses [7, 12]. We had been exploring category theoretic approaches
to lenses, and had studied lenses in the category cat so that the system and view states S and
V would be categories — the objects of those categories would be the states, and the arrows in
those categories would be the transitions between states. However, classical lenses in cat don’t
really take advantage of the transitions in calculating Puts, so we started afresh seeking to de-
velop category lenses — those that took advantage of the category theoretic structure of state
spaces — and abbreviated the resulting notion to c-lens.

The main goal of this paper is to study the relationships between c-lenses and d-lenses. The
two concepts are clearly trying to take advantage of the same extra real-world structure. There
are superficial differences that can be dealt with fairly easily. But there are also some perplexing
differences, chief among them being that c-lenses, like lenses in general, have a put operation that
delivers a new system state, while d-lenses are designed to also deliver the transition that shows
how the new system state arises from the immediately preceding system state — an apparently
significantly stronger requirement. Furthermore, as became apparent through our study, the c-
lenses and d-lenses treat morphisms between inputs to the Put operation very differently.

One of the main problems, dealt with in the immediately succeeding section, is to develop
a suitable “input category” for P analogous to V×S for classical lenses. It turns out that both
c-lenses and d-lenses can be based on variants of a certain comma category (G,1V) described
below. The different treatment of morphisms referred to at the end of the previous paragraph
refers to the way c-lenses and d-lenses deal with morphisms of (G,1V).

Our main result is that, while d-lenses might a priori appear to be stronger than c-lenses, they
are in fact more general than c-lenses: If we ignore a connectedness requirement introduced, but

Proc. BX 2013 2 / 18

ECEASST

not used substantively, in [4], then every c-lens is a d-lens. And the extra generality of d-lenses
arises from the looser treatment of morphisms in (G,1V).

(Alternatively, one could add the connectedness requirement to c-lenses, and then the result
still holds: Every c-lens with connected state categories is a d-lens with connected state cate-
gories.)

We turn now to the structure of this paper.
First it should be noted that in this introduction we have reviewed G and P, but there are of

course axioms, “laws”, that they must satisfy and we have for simplicity said nothing about them
yet. The PutGet (“Put and then Get”) law for example says that if one starts with a view state
and some other information, and constructs a system state, then calculating a view state from the
resultant system state yields the original view state: A Put should give a system state whose view
is the one we Put.

Similarly there are well known GetPut and PutPut laws. A lens which satisfies all three has
been called very well behaved. In fact, all our lenses, c-lenses and d-lenses, will be very well
behaved in the appropriate senses (their own versions of GetPut, PutGet and PutPut will be
introduced as they are defined) so an unadorned reference to “lens” should be read as being very
well behaved.

For simplicity this paper has been written to deal with updates in the “insert” direction. Some
authors treat transitions among states as simply that — a record that one state, the one at the
source of the transition, changed to another, the one at the target of the transition. Other authors,
especially in the database field, orient their transitions in the direction of increasing information
(so that the arrows can be thought of as inclusions of tuples), and “delete” transitions are achieved
by traversing an arrow backwards. In most respects the paper can be read with either approach
in mind, but for the fullest treatment of c-lenses one should view what we present here as being
about inserts, and consider dual approaches (involving (1V,G)) for deletes, and refer to [9] for a
treatment of mixed insert and delete updates.

The next section introduces some notation and standard constructions from category theory.
The ideas are simple, and fully described, but because they are succinctly described those with
limited category theoretic background might want to refer to a standard text (eg [13]), or to skim
that section and read on.

The following three sections respectively introduce d-lenses (Section 3) and c-lenses (Sec-
tion 4) and establish the main results relating them (Section 5). Then in Section 6 we establish
some further category theoretic properties of d-lenses.

We end this introduction with a remark about universal properties. The authors have shown
that c-lenses satisfy a universal property — the P of a c-lens provides a “least-change update” (in
a sense that will be made precise below). Something which is particularly interesting about c-
lenses is that this universality is an emergent property — the definition of c-lens merely requires
functors G : S //V and P : (G,1V) //S satisfying category theoretic expressions of the three
standard lens laws for very well behaved lenses. The c-lenses are not required to be least-change
lenses — the fact that they are arises from the interaction between the standard laws and the
functoriality of the operations.

Interestingly d-lenses, as we will see, satisfy almost exactly the same laws as c-lenses, and
the G and P of d-lenses are also functors. Furthermore, the domains and codomains of G and P
have the same objects for both kinds of lenses, and mostly the same arrows too. The substantive

3 / 18 Volume 57 (2013)

Delta lenses and opfibrations

difference turns out to be that the P of a d-lens need only be defined on some of the arrows of
(G,1V) (to be precise, arrows for which G f in the notation of the first display of the next section
is an identity arrow).

2 Notation

To describe both d-lenses and c-lenses we need some standard constructions and notation from
category theory.

For a functor G : S //V denote the “comma category” (with the identity functor) as (G,1V).
The objects of (G,1V) are pairs (S,α : GS //V) with S and V objects of S and V respectively
and α an arrow of V. An arrow from (S,α : GS //V) to (S′,α ′ : GS′ //V ′) is a pair of arrows
(f : S //S′,g : V //V ′) satisfying α ′G f = gα in V:

(S,α) (S′,α ′)
(f ,g)
//

V V ′g
//

GS

V

α

��

GS GS′
G f // GS′

V ′

α ′

��

There is an obvious projection functor from (G,1V) to V denoted by RG : (G,1V) //V and
defined by RG(S,α) =V and RG(f ,g) = g.

Since RG is also a functor with codomain V, we can iterate the construction and obtain the
comma category (RG,1V) and denote its projection to V by RRG : (RG,1V) //V. The objects
of (RG,1V) are conveniently described as triples: (S,α : GS //V,β : V //U). The arrows from
(S,α,β) to (S′,α ′ : GS′ //V ′,β ′ : V ′ //U ′), say, are also triples (g : S // S′,h : V //V ′,k :
U //U ′) rendering two squares commutative:

(S,α,β) (S′,α ′,β ′)
(g,h,k)

//

V V ′
h

//

GS

V

α

��

GS GS′
Gg // GS′

V ′

α ′

��

U U ′
k

//

V

U

β

��

V V ′
h

// V ′

U ′

β ′

��

We define a functor ηG : S // (G,1V) on objects of S by ηG(S) = (S,1GS : GS //GS), and
then the extension of ηG to morphisms is obvious. We can also define µG : (RG,1V) // (G,1V).
On objects, µG(S,α,β) = (S,βα). Readers familiar with category theory will rightly suspect
that the names of ηG and µG suggest they are part of the structure of a monad. Indeed, our

Proc. BX 2013 4 / 18

ECEASST

c-lenses are precisely algebras for a monad on the category whose objects are functors with
codomain V.

The Put functors defined below will be of the form P : (G,1V) //S. The PutGet law means
that they will be required to satisfy GP = RG. For a functor P satisfying that equation, we can
define the functor (P,1V) : (RG,1V) //(G,1V) on objects by (P,1V)(S,α,β) = (P(S,α),β) and
note that since GP = RG, the domain of β is indeed the object GP(S,α) as required.

3 Delta lenses

The delta-lens concept was introduced by Diskin et al in [4] to deal with some of the limitations
of the (set-)lenses of Foster et al [5]. Instead of using an unstructured set to model the states of a
system (perhaps a database for example), they use the objects of a category to model the states.
In [4] no further structure is assumed on the category of models except that, as noted below, they
require the category of models to be connected. Using an object of a category to model a state
of a database has also been advocated by the authors and R.J. Wood in [10]. This idea is not
very new. Indeed, the current authors as well as Diskin and co-authors (for example in [3]) and
several others (for example [14]) have argued that the objects of a category of database states
should be models of a categorical structure called sketches. Sketches have nodes and edges and
their models associate sets and functions to them. The idea is similar to entities and entity sets
in ERA (Entity-Relationship-Attribute) modelling.

There is an important advantage to having morphisms between states: an update of a specific
single state to another state may be represented by a morphism in the category of database states
or in the category of view states. This point of view was also adopted by the current authors in
[7, 8]. A related way to view updates is as a process defined on the states. When the database
states and the view states are merely sets, say S and V , then a view update process is a function
u : V //V and view updatability requires a lifting to a database state update function (called
a translation) tu : S // S [1]. By analogy, when the database states and the view states are
categories, say S and V, then a view update process is a functor U : V //V and updatability
requires a functor LU : S //S. The two points of view can be reconciled as we showed in [12]
by specifying a natural transformation between the identity functor and the process U . The
second point of view is taken in the edit lenses [6] of Hofmann et al and in Steven’s monoid of
edits [15], but we will not deal with it further here as these matters are treated with symmetric
lenses in another paper currently in preparation.

It is natural to define a database view to be a functor between a category of database states and
a category of view states. The functor sends a database state to a view state and each individual
database state update to a corresponding update (arrow) between the corresponding view states.

Note that [4] requires the categories of models to have a strongly connected (and of course
composable) underlying graph. Their interpretation is that for any database state (object of the
model category) there is an update (morphism) to any other state. We do not adopt that restriction
in our definition of delta lens since it plays no role.

For a delta lens a Put update strategy is defined by a correspondence from view updates to
database state updates. The idea is that for any view update (which is specified by a morphism,
a delta, in the category of view states), there is an update of database states specified by the Put.

5 / 18 Volume 57 (2013)

Delta lenses and opfibrations

The Put for an ordinary (set-)lens specifies the updated database state only as a function of the
initial database state and the updated view state. In the set based paradigm, neither the actual
update process for the view update nor the update process for the database states can even be
mentioned. Indeed, the only information available about a database or view state is simply the
state itself.

Example 1 We briefly consider an example discussed in [4] to illustrate the need for deltas. The
database for a firm has one table Person with columns for FirstName, LastName, Department and
Birth. The Marketing Department view has a Person table with only the first two attributes.

In this example, the database state has Person rows for Bill Gates, Melinda French and Bill
Clinton. The second and third are in the Marketing Department so they appear (without their
birthdates) in the view state. What should happen to the database state when in the Marketing
Department view Melinda French apparently updates her last name to Gates? Indeed, there are
two different updates that could have taken place: Melinda French changed her name as sug-
gested (an update), or Melinda French left the department (a delete) and a new person, Melinda
Gates, joined (an insert). In the former case the correct update of the database would result in
simply a LastName change. In the latter case the old employee has gone and the database is
updated with a new employee, but one whose Birth attribute is unknown.

In order to know which database update should result from the initial database state and the
resulting view state (the same in either case), it is clearly important to know which of the two
different view state updates occurred. The view state updates with the actual change noted are
called deltas. In a delta lens the initial database state and the view delta are both needed to obtain
the resulting Put value which is a specific database state update.

We should point out that the deltas in [4] are allowed to be view inserts, deletes or updates.
As we will mention below, our c-lenses are concerned with formal view inserts. View deletes
are handled separately and updates which require a mixture of insert and delete should consider
further structure as discussed in more detail in [9].

The coherent specification of a database update (morphism) as the result of a Put on a view
update (morphism) requires several equations that are similar to those for an ordinary lens, as
well as others (d-PutInc and d-PutId below) that are expected given the categorical structure.

For any category C, we write |C| for the set (discrete category) of objects of C and C2 for the
category of arrows of C.

Definition 1 A (very well-behaved) d-lens in cat is a quadruple (S,V,G,P) where G : S //V
is a functor and P : |(G,1V)| // |S2| is a function and the data satisfy:

(i) d-PutInc: the domain of P(S,α : GS //V) is S

(ii) d-PutId: P(S,1GS : GS //GS) = 1S

(iii) d-PutGet: GP(S,α : GS //V) = α

(iv) d-PutPut:

P(S,βα : GS //V //V ′) = P(S′,β : GS′ //V ′)P(S,α : GS //V)

Proc. BX 2013 6 / 18

ECEASST

where S′ is the codomain of P(S,α : GS //V)

Notice that equation (ii) d-PutId can also be written PηG(S) = 1S using the ηG defined above.
Similarly equation (iv) d-PutPut can also be written P(µG(S,α,β)) = P(S′,β)P(S,α) with S′ as
in the Definition.

In [4] the Get, G, for a d-lens is initially just a graph morphism and the equations there called
(GetId) and (GetGet) guarantee that the Get is a functor as we require. The equations (PutInc1)
and (PutInc2) in [4] require that the domain of the Put, P, be a pair consisting of an object of
S and an arrow of V whose domain is the Get of the first object. Such a pair is just an object
of (G,1V), and so an element of the domain of P as we require above. Moreover the equations
mentioned also imply the equation d-PutInc required above.

Example 2 Consider again the example discussed above with the Marketing Department view.
The ambiguity about which database update should result from the update to Melinda French

is resolved when the update is seen as a sequence of two view updates: delete Melinda French,
then insert Melinda Gates (with unknown birth). There is an unambiguous Put for each of these
view updates: the first Put provides a database delete of Melinda French and the second Put
provides a database insert of Melinda Gates. We can extend these considerations to define a
d-lens structure on the Get for the firm database. The d-PutPut law implies that the Put for the
view update from Melinda French to Melinda Gates provides the second of the possible database
updates.

The authors of [4] define a category we will call DLens. The objects of DLens are arbitrary
categories (though they are required to be connected in [4]). The arrows are d-lenses. Now
suppose K = (S,V,GK ,PK) and L = (V,W,GL,PL) are d-lenses with the codomain of the Get
for K being the domain of the Get for L. Thus they are composable arrows of DLens. Their
composite is defined by composing the Get functors GK and GL and then defining the Put for the
composite by using the Puts from the factors. In detail, the composite LK is the 4-tuple LK =
(S,W,GLGK ,PLK) where PLK : |(GLGK ,1V)| // |S2| is defined by PLK(S,γ : GLGKS //W) =
PK(S,PL(GKS,γ : GLGKS //W)). Note that d-PutInc for GL means PLK is well-defined, and
together with d-PutInc for GK we see that PLK satisfies d-PutInc. The other axioms for a d-lens
are easily verified for LK. Finally, each identity functor is the Get of an obvious d-lens and the
composition of d-lenses just defined is manifestly associative.

4 c-lenses

In this section we describe the context for our c-lenses and then define them.
Considerations similar to those in the previous section led the authors first to generalize lenses

so that instead of a set with no additional structure the domain and codomain of the Get is
supposed to be an ordered set, or more generally a category. Then it is natural to require that
the Get be an order-preserving mapping in the case of ordered sets, or more generally a functor.
We began by considering functors that satisfy the ordinary lens equations in [11]. This direct
generalization of ordinary lenses has a very strong consequence for the domain of the Get functor.
Indeed, the Get functor is required to be a projection from a product of categories. That is, the

7 / 18 Volume 57 (2013)

Delta lenses and opfibrations

domain of the Get functor S must be the categorical product of the category of view states V with
some other category C. This C can be thought of as the view complement. Moreover the Get
functor G : S //V = G : C×V //V must be essentially the projection π : C×V //V. This is
not too surprising since the same is true of ordinary lenses: the domain of the Get function is a
product of sets where one factor is the codomain of the Get and the Get function is the projection.

Like the authors of [4], we were motivated by wanting to record the change from a view state
to its update for use as an input to the Put. We were also motivated by wishing to avoid the strong
restriction on Get functors to be only projections. Thus, we also require that the domain of Put
for (insert) updates should be a comma category.

The equations in the next definition are very similar to those for a lens, but with the domain of
Put generalized to the appropriate comma category.

Definition 2 A c-lens in cat is a quadruple (S,V,G,P) where G : S //V and P : (G,1V) //S
satisfy

i) c-PutGet: GP = RG

ii) c-GetPut: PηG = 1S

iii) c-PutPut: PµG = P(P,1V)

The notation using η and µ is precise and incorporates compactly the requirements both on
objects and on arrows. But we do want to emphasise that these axioms are simply category
theoretic expressions of the standard lens laws, so here is a sentence or two about each.

First c-PutGet is the usual Put and then Get law which says that starting from an update in
V, and of course an appropriate object of S, if we Put and then Get we return to the given V
update. The left hand side says Put and then Get, and the right hand side, RG, says project off
the “appropriate object of S” to give simply the original V update (remembering that R is an
endofunctor on cat/V which takes G, an object of cat/V, to another object of cat/V, which by
the defintion of R in Section 2 is the projection from (G,1V) to V).

Next c-GetPut is the usual Get and then Put law which says that starting from a state S in S if
we apply G to get a state in V and we do nothing to it (update it with the identity), then applying
P returns us to the original state in S. The η appearing in the equation merely takes GS and turns
it into the “do nothing” object (S,1GS) of (G,1V) to which P can then be applied.

Finally, c-PutPut is the usual PutPut law: If we start with an object S of S and a composable
pair of arrows in V starting at GS then we can either compose the arrows (which is what µ does)
and then apply P to the single resulting arrow (the left hand side), or we can successively apply
P to the first arrow (while remembering the second) and then apply P to the second arrow (using
in (G,1V) the object S′ which resulted from the first application of P).

Notice also how these equations are very similar to the equations for a d-lens. The Put for a
c-lens has the category (G,1V) as its domain, so it is automatically defined on arrows of (G,1V),
but c-GetPut is similar to d-PutId, c-PutGet is similar to d-PutGet and the PutPut laws are also
related.

As the authors showed in [12], these equations turn out to be equivalent to requiring that
the Get functor G of a c-lens is an instance of a well-known categorical concept: the (split)

Proc. BX 2013 8 / 18

ECEASST

opfibration where the Put functor assigns the (codomains of the) opcartesian arrows in that
structure. We briefly describe opfibrations and their interpretation for view updating.

Let G : S //V be a functor. The functor G is an opfibration if it satisfies the following: for
any morphism α : GS //V in V (that is, an object of (G,1V)) there is a morphism α̂ : S // S′

such that Gα̂ = α and furthermore, for any γ : S //S′′, if Gγ factors as Gγ = α ′α then there is
a unique morphism γ ′ : S′ // S′′ satisfying Gγ ′ = α ′ and γ ′α̂ = γ . The situation is depicted as
follows, where the dashed vertical lines indicate the effect of G:

GS V
α

//

S

GS
�
�
�
�S S′α̂ // S′

V
�
�
�
�

V V ′
α ′

//

S′

V
�
�
�
�S′ S′′

γ ′ // S′′

V ′
�
�
�S S′′

γ

''

The idea is that the opcartesian arrow α̂ is a lift of α : GS //V . The domain of a c-lens Put
is similar to that of a d-lens Put. The resulting opcartesian arrow is a database update whose Get
is α . We note that we interpret α : GS //V as a formal insert from GS to V in the category V of
view states. A formal delete should be an arrow of V ending at GS. Thus it should be of the form
β : V //GS. Providing a lift to S of such arrows is called the cartesian property and a functor
G : S //V that has a cartesian arrow for every β : V //GS is called a fibration.

The factorization (or universal) property required above makes α̂ the best lift of α . This is
a stronger property than is required of a d-lens Put. The reader will already have guessed that
the Put for a c-lens structure on G has the codomain S′ of the opcartesian arrow as its P(S,α).
Conversely given a c-lens structure, the fact that P is a functor (along with the c-PutPut law)
allows the definition of an opcartesian arrow for every α : GS //V as shown in the following
section.

Example 3 There is a c-lens associated with the Marketing Department view.
Assume that the morphisms of database states are simply inclusions among tables with the fol-

lowing exception: there is a value unknown for the Birth attribute and we decree that for a Per-
son database table, a (F,L,D,unknown) row is considered to be included in a (F,L,D,B)
row in any other Person database table for any B. That allows any view insertion update to have
a unique best lifted database update whose result is the Put of the view update. The structure that
results is a c-lens which is the d-lens described in Example 2.

5 c-lenses are d-lenses

Let L = (S,V,G,P) be a c-lens. We will define a d-lens Ld = (S,V,Gd ,Pd). For Gd we just take
G. The data for L define a put functor P that determines an object P(S,α) of S for each object
(S,α) of (G,1V). To define a Pd we need to define a function on objects of (G,1V) that returns
an arrow of S. We use functoriality of P which includes that P is defined on arrows of (G,1V).
Let (S,α) be an object of (G,1V). We need to define Pd(S,α) to be an arrow of S. Now there is

9 / 18 Volume 57 (2013)

Delta lenses and opfibrations

an arrow (1S,α) : 1GS //α in (G,1V):

GS V
α

//

GS

GS

1GS

��

GS GS
G1S // GS

V

α

��

(S,1S) (S,α)
(1S,α)

//

Define Pd(S,α) to be the arrow P(1S,α) : S //S′ with codomain the object S′ = P(S,α). Note
that equation c-GetPut on objects guarantees that the domain of Pd(S,α) is S.

Proposition 1 Let L = (S,V,G,P) be a c-lens and Ld = (S,V,Gd ,Pd) with Gd and Pd as just
defined. Then Ld is a d-lens.

Proof. The required data are already in place, so we have four equations to check.
(i) d-PutInc: the domain of Pd(S,α : GS //V) is S. We already observed this.
(ii) d-PutId: Pd(S,1GS : GS //GS) = 1S. By definition, Pd(S,1GS) = P(1S,1GS) and the mor-

phism (1S,1GS) : 1GS // 1GS is an identity in (G,1V) and since P is a functor, its value after
application of P is 1S as required.

(iii) d-PutGet: GPd(S,α : GS //V) = α . By definition GPd(S,α) = GP(1S,α) and by the
c-PutGet law, GP(1S,α) = RG(1S,α) = α as required.

(iv) d-PutPut: Pd(S,βα : GS //V //V ′) = Pd(S′,β : GS′ //V ′)Pd(S,α : GS //V) with
S′ the codomain of Pd(S,α). This eventually follows from the c-lens law c-PutPut. We make
a couple of preliminary observations. First, note that Pd(S,α) = P(1S,α) is the opcartesian
morphism denoted α̂ above, so Gα̂ = α . However, it is not the case that Ĝc = c for an arbitrary
morphism c : S //S′ of S: not every morphism in S need be the opcartesian morphism over its
image under G. Next, we remind the reader that the c-GetPut equation says that applying P to
ηG of a morphism c in S returns c. Finally, the morphism of (G,1V):

GS′ GS′
1GS′

//

GS

GS′

Gc

��

GS GS′Gc // GS′

GS′

1GS′

��

GS GS′
(Gc,1GS′)

//

is sent by P to the unique (fill-in) morphism over 1GS′ between the opcartesian morphism Ĝc and
c. And again, remember that Ĝc is not in general equal to c.

Next consider the domain of an instance of the c-PutPut equation that we need. It is a mor-

Proc. BX 2013 10 / 18

ECEASST

phism in the iterated comma category:

(S,1GS,1GS) (S,α,β)
(1GS,α,β)

//

GS V
α

//

GS

GS

1GS

��

GS GS
G(1S) // GS

V

α

��

GS V ′
βα

//

GS

GS

1GS

��

GS V
α

// V

V ′

β

��

The left hand side of c-PutPut first applies µG to obtain:

(S,1GS) (S′,βα)
(1GS,βα)

//

GS V ′
βα

//

GS

GS

1GS

��

GS GS
G(1S) // GS

V ′

βα

��

Applying P to this square gives the opcartesian morphism for βα , namely β̂α : S // S′′. This
morphism is also the left hand side of the d-PutPut equation.

The right hand side of c-PutPut first applies (P,1V) to the two vertically stacked squares above
to obtain the (G,1V) morphism:

(S,1GS) (S′,β)
(α̂,βα)

//

GS V ′
βα

//

GS

GS

1GS

��

GS GS′
G(α̂) // GS′

V ′

β

��

Applying P to this also gives β̂α : S // S′′ by c-PutPut. To finish we need to analyze this
morphism (α̂,βα) further. It can be factorized in (G,1V) as follows:

(S,1GS) (S,α)
(1S,α)

// (S,α) (S′,1GS′)
(α̂,1V)

// (S′,1GS′) (S′,β)
(1S′ ,β)

//

GS V
α

//

GS

GS

1GS

��

GS GS
G(1S) // GS

V

α

��
V GS′

1V

//

GS

V

α

��

GS GS′
G(α̂) // GS′

GS′

1GS′

��
GS′ V ′

β

//

GS′

GS′

1GS′

��

GS′ GS′
G(1S′) // GS′

V ′

β

��

11 / 18 Volume 57 (2013)

Delta lenses and opfibrations

Now recognize that applying P to the first and last arrows gives α̂ : S // S′ and β̂ : S′ // S′′

as noted above. Recall that α = G(α̂) and so the middle arrow of the three is, as noted above,
the unique fill-in morphism between α̂ = Ĝ(α̂) and α̂ over the identity on S′, so it must be the
identity on S′. Hence applying P to the composite of all three gives β̂ α̂ since the middle (identity)
arrow goes to the identity. But we recognize β̂ α̂ as Pd(S′,β : GS′ //V ′)Pd(S,α : GS //V), the
right hand side of d-PutPut, and so the proof is complete.

It is worth noting that what we have shown in part (iv) is essentially that opcartesian mor-
phisms compose. This fact is not new, but we feel that the proof above provides insight into the
relation between c-lenses and d-lenses. In particular, among the three squares above, the middle
square is a morphism that cannot be lifted by a d-lens, while the functoriality of the Put for a
c-lens is what we used in the proof. This different treatment of morphisms of (G,1V) is at the
heart of the relationship.

If two c-lenses have composable Get functors, then the c-lenses themselves can be composed:
The construction parallels the composition of d-lenses described above in defining DLens. Fur-
thermore each identity functor is the Get of a trivial c-lens. Thus there is a category that we call
CLens with categories as objects and c-lenses as arrows. Consequently:

Proposition 2 CLens is a subcategory of DLens.

The following example shows that not every d-lens is a c-lens, and hence that CLens is a not
a full subcategory of DLens. In other words, the subcategory inclusion just noted is strict — this
is expressed by not being full since the objects of interest, the lenses, are morphisms.

Example 4 Let S be the category with two objects A and B and exactly two (different!) non-
identity arrows f and g, both from A to B. Let V be the category with two objects 0 and 1 and
exactly one non-identity arrow a from 0 to 1. The functor G sends A to 0 and B to 1, so both f
and g go to a as in the diagram below.

A B
f //A B
g

//

G
��

0 1a
//

Now G is not an opfibration, so it is not a c-lens. Indeed, one of f or g must be the non-trivial
opcartesian arrow and then there is no factorization through a unique fill-in for the other. On
the other hand, if we take G as Get and define the Put by P(A,GA = 0 a //1) = f (or g for that
matter) we obtain a perfectly good d-lens. The only other objects of (G,1V), the domain of P,
involve identity arrows, and the equations are clearly satisfied.

We would argue that the example shows that the d-lens notion is slightly more general than is
desirable (we say “slightly” because the difference is just whether or not P is defined on some
of the arrows of (G,1V)). If S has two parallel “deltas”, it may not be possible to determine a
canonical Put. Of course our example is artificially minimal, but it is not artificial. It can arise

Proc. BX 2013 12 / 18

ECEASST

anytime that there is a state-space with parallel deltas and that can easily happen in categories of
bags or strings for example. We believe that the opfibration requirements for a c-lens are exactly
what one would want to ensure canonical (least-change) updates, but of course there is room for
more empirical study to determine when the extra generality of d-lenses might be useful.

6 More on delta lenses

We noted in the last section that the different treatment of morphisms of (G,1V) by c-lenses and
d-lenses results in c-lenses satisfying a universal property, while d-lenses need not. Indeed, it
has even been said that d-lenses “are not functorial” — after all, the P for a d-lens is defined on
the discrete category, the set, |(G,1V)|, so it “ignores the arrows” of (G,1V). In fact, d-PutPut
ensures that the P of a d-lens extends uniquely to some of the arrows of (G,1V) — those arrows
of the form (1S,α) as in the leftmost square of the three square display near the end of the proof
of Proposition 1. Such squares might be called triangles since the top of the square is degenerate
(being the identity morphism G1S). The put of a d-lens is in fact functorial on those triangles.

In this section we develop this in detail.
Furthermore d-lenses are not, in contrast to c-lenses, the algebras for a monad R on cat/V.

Even extending P to the above triangles in (G,1V) we see that the domain of P does not include
the morphisms in the image of ηG, so the identity law for the monad cannot be required of P.

Nevertheless, the requirements for a d-lens can be expressed in terms of certain algebras for a
semi-monad on cat/V which we now describe.

We need some notation. In this section we denote the discrete category with the same objects
as S by S0 and the inclusion functor by IS : S0 //S (suppressing the subscript when possible).
For a functor G : S //V, we will also denote the composite GIS by G0. Next we consider the
comma category (G0,1V). The objects are the same as those of (G,1V), namely pairs (S,α :
G0S //V) and remember that G0S = GS. However there are fewer morphisms since the only
morphisms of S0 are identities. A morphism from (S,α) to (S′,α ′ : GS′ //V ′) is a pair (f :
S //S′,g : V //V ′) satisfying α ′G f = gα as before, but since f must be an identity arrow, so
is G f and the equation reduces to α ′ = gα . We might as well think of morphisms as triangles:

V V ′g
//

GS

V

α

����������
GS

V ′

α ′

��77777777

As before, there is a projection functor we denote R0G : (G0,1V) //V which remembers the
codomains. Our construction has defined a functor

R0 : cat/V // cat/V

We have not specified the action of R0 on morphisms of cat/V but the reader can easily fill in
the details.

Moreover, since R0G has codomain V, we can iterate the construction and obtain R0R0G :
((R0G)0,1V) //V. It is worth explicitly describing the domain of this functor. The objects

13 / 18 Volume 57 (2013)

Delta lenses and opfibrations

are pairs consisting of an object (S,α : G0S //V) of (G0,1V) and a morphism of V from V =
R0G(S,α), say, β : V //U . We write this object as (S,α,β). A morphism is again a “triangle”,
so is specified by a g : U //U ′ from (S,α,β) to (S,α,β ′) satisfying gβ = β ′:

G0S

V

α

��

U U ′g
//

V

U

β

����������
V

U ′

β ′

��77777777

With the same formulas as before, we can define functors ηG0 : S0 // (G0,1V) and µG0 :
((R0G)0,1V) // (G0,1V). Moreover, it is easy to see that R0GµG0 = R0R0G. We also have
R0GηG0 = G0. Thus µG0 defines a morphism of cat/V from R0R0G to R0G and ηG0 defines a
morphism from G0 to R0G.

Now µG0 is again the component at G of a natural transformation we call µ0 from R0R0 to
R0. However, ηG0 is now the G component of a natural transformation η0 whose domain is not
the identity on cat/V, but rather is the functor sending G to G0. The codomain of the natural
transformation is, of course, still R0. Nevertheless, R0 and µ0 do provide the structure of a
semi-monad on cat/V. The requirement for this is only that the following associative law holds:

R0R0 R0
µ0

//

R0R0R0

R0R0

µ0R0

��

R0R0R0 R0R0
R0µ0

// R0R0

R0

µ0

��

This is easy but tedious to verify.
An algebra for this semi-monad is a pair consisting of an object G of cat/V and a morphism

P in cat/V from R0G to G satisfying the equation:

R0G G
P

//

R0R0G

R0G

R0P

��

R0R0G R0G
µ0G // R0G

G

P
��

Notice that the required P : R0G //G is determined by a functor P0 : (G0,1V) //S satisfying
GP0 = R0G and we will denote semi-monad algebras (G,P0).

Proposition 3 A d-lens (S,V,G,P) determines an algebra (G,P0) for the semi-monad (R0,µ
0)

satisfying P0η0G = P0ηG0 = IS, and conversely.

Proc. BX 2013 14 / 18

ECEASST

Proof. Let (S,V,G,P) be a d-lens. We have the data for an algebra once we extend P to a
functor P0 : (G0,1V) // S satisfying GP0 = R0G. On objects we define P0(S,α) = d1(P(α))
where d1 is codomain. Now suppose that βα : GS //V //V ′ = α ′ : GS //V so that β is
a morphism of (G0,1V) from α to α ′. Define P0(β) = P(S′,β) where S′ is the codomain of
P(S,α). It is precisely d-PutPut which ensures that P0(β) is well-defined. It is easy to se that P0
respects identities and composition in (G0,1V). Now on objects, R0G(S,α : G0S //V) =V and
GP0(S,α) = Gd1(P(α)), but by d-PutGet, GP(α) = α , whose codomain is V . On an arrow β as
above, GP0(β) = GP(β) = β = R0G(β) again using d-PutGet.

For the algebra equation we have only to show that the following square commutes:

(G0,1V) S
P0

//

((R0G)0,1V)

(G0,1V)

(P0,1V)

��

((R0G)0,1V) (G0,1V)
µG0 // (G0,1V)

S

P0

��

On objects this requires that P0(µG0(S,α,β)) = P0((P0,1V)(S,α,β)). The left hand side is
P0(S,βα) = d1(P(βα). The right hand side evaluates as P0(d1(P(α),β)) = d1(P(β)), but by
d-PutPut, d1(P(βα)) = d1(P(β)). The argument for morphisms is similar.

Furthermore, for any object S of S0, we have P0(ηG0(S)) = P0(S,1GS) = d1P(S,1GS) which is
S by d-PutId.

Next we show that a semi-monad algebra (G,P0) satisfying the extra equation determines a
d-lens. Of course, S, V and G are as for the algebra. We need to define P : |(G,1V)| // |S2|. Sup-
pose that (S,α : GS //V) is an object of (G,1V). Then there is a morphism α : (S,1GS) //(S,α)
in (G0,1V) and we define P(S,α) = P0(α), which is a morphism of S.

We need to check the conditions for a d-lens. It is our extra equation which guarantees d-
PutInc since it says P0(S,1GS) = S, and P0(S,1GS) is the domain of P(S,α). Since P0 is a functor,
1S = P0(1GS) : P0(S,1GS) //P0(S,1GS) which proves d-PutId. To see that GP(S,α) = α (d-
PutGet) just notice that GP0 = R0G implies GP(S,α) = GP0(α) = α (where the second α is the
morphism of (G0,1V)).

Finally, for d-PutPut, we have to show that

P(S,βα : GS //V //V ′) = P(S′,β : GS′ //V ′)P(S,α : GS //V)

where S′ is the codomain of P(S,α : GS //V). Now P(S,βα : GS //V //V ′) = P0(βα) =
P0(β)P0(α) by definition and functoriality of P0 where α : (S,1GS) // (S,α) and β : α //βα

are in (G0,1V). Thus the second factor is P(S,α) by definition. In the first factor we need to
show that P0(β : α //βα) =P0(β : 1GS′ //β). To see this we consider the semi-monad algebra
equation for (G,P0) applied to the arrow β : (S,α,1GS′) // (S,α,β):

G0S

V

α
��

V ′ V ′
β

//

V

V ′

1GS′

����������
V

V ′

β

��77777777

15 / 18 Volume 57 (2013)

Delta lenses and opfibrations

Recall that S′ is P0(α : GS //V). The image of that arrow under µG0P0 is clearly P0(β :
α //βα). On the other hand, applying P0(P0,1V) to β : (S,α,1GS′) //(S,α,β), we first obtain

V ′ V ′
β

//

S′

V ′

1GS′

����������
S′

V ′

β

��77777777

again since S′ = P0(α : GS //V), and applying P0 to the displayed morphism β gives P0(β :
1GS′ // β). The semi-monad algebra equation tells us that the two results are equal and that
completes the proof.

Thus we have shown that a d-lens has a P which extends to P0 which is functorial on the
subcategory (G0,1V) of (G,1V) determined by the “triangular” morphisms. Furthermore (G,P0)
is an algebra for the semi-monad R0, and the extra equation in Proposition 3 is analogous to the
identity axiom for an algebra, but takes into account the restriction that we have here — with
only triangular morphisms we can only require the identity axiom to work on S0, the objects of
S, and not on the arrows of S whose images under ηG are not triangular.

7 Conclusions

The two notions of c-lens and d-lens are both designed to advance the theory of lenses, and their
applicability in real-world update problems, by incorporating the available information about
transitions. If one has just modified a view, and one wants to update the entire system to take
account of the view modification, it is very valuable to be able to take account of the nature of
the modification that was made (rather than just the resulting final view state).

Thus, it is important to understand the two notions and to develop a precise treatment of their
interrelationships.

This paper has shown that they are related in quite the opposite way to what might be ex-
pected on examining them initially — c-lenses are special cases of d-lenses and not vice-versa.
Furthermore it has determined what is behind that unexpected finding: The different treatments
of morphisms of (G,1V) (a matter that would have remained invisible but for a detailed category
theoretic analysis).

In many respects, the two notions, while distinct, do have more in common than their defi-
nitions might suggest. While c-lens Puts return objects rather than arrows, they do determine
uniquely an arrow of S analogous to d-lens Puts. While d-lens Puts are only defined on objects
of (G,1V), they can be extended to be defined and functorial on the triangular arrows of (G,1V)
(of course c-lens Puts are defined and functorial on all of the objects and arrows of (G,1V)).
While c-lenses are the algebras for the monad R, d-lenses cannot be, but they are the algebras
for a closely related semimonad R0 which satisfy an axiom analogous to the identity axiom for
monad algebras. Nevertheless, their differences are still important.

Practical implications and examples will be taken up elsewhere, but in summary the differ-
ences in practice are that d-lenses are more general, permitting as they do update strategies that

Proc. BX 2013 16 / 18

ECEASST

are coherent in the sense that they satisfy d-PutPut, but not necessarily canonical, while c-lenses
are more specific providing as they do universal solutions to view update problems.

The precise benefits of one over the other in practice await detailed empirical study.

Acknowledgements: The authors gratefully acknowledge the support of the Australian Re-
search Council and the Natural Sciences and Engineering Research Council of Canada.

Bibliography

[1] Bancilhon, F. and Spyratos, N. (1981) Update semantics of relational views, ACM Trans-
actions on Database Systems 6, 557–575.

[2] Bohannon, A., Vaughan, J. and Pierce, B. (2006) Relational Lenses: A language for
updatable views. Proceedings of Principles of Database Systems (PODS), 338–347.
doi:10.1145/1142351.1142399

[3] Diskin, Z. and Cadish, B. (1995) Algebraic graph-based approach to management of mul-
tidatabase systems. In Proceedings of The Second International Workshop on Next Gener-
ation Information Technologies and Systems (NGITS ’95).

[4] Diskin, Z., Yingfei Xiong and Czarnecki, K. (2011) From State- to Delta-Based Bidirec-
tional Model Transformations: the Asymmetric Case, Journal of Object Technology 10,
6:1–25. doi:10.5381/jot.2011.10.1.a6

[5] Foster, J., Greenwald, M., Moore, J., Pierce, B. and Schmitt, A. (2007) Com-
binators for bi-directional tree transformations: A linguistic approach to the view
update problem. ACM Transactions on Programming Languages and Systems 29.
doi:10.1145/1232420.1232424

[6] Hofmann, M., Pierce, B. and Wagner D. (2012) Edit lenses. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 495–508.

[7] Johnson, M. and Rosebrugh, R. (2001) View updatability based on the models of a for-
mal specification. In Proceedings of Formal Methods Europe, Lecture Notes in Computer
Science 2021, 534–549.

[8] Johnson, M. and Rosebrugh, R. (2007) Fibrations and universal view updatability. Theo-
retical Computer Science 388, 109–129. doi:10.1016/j.tcs.2007.06.004

[9] Johnson, M. and R. Rosebrugh, R. (2012) Lens put-put laws: monotonic and mixed. Elec-
tronic Communications of the EASST 49, 1–13.

[10] Johnson, M., Rosebrugh, R. and Wood, R. J. (2002) Entity-relationship-attribute designs
and sketches. Theory and Applications of Categories 10, 94–112.

[11] Johnson, M., Rosebrugh, R. and Wood, R. J. (2010) Algebras and Update Strategies.
Journal of Universal Computer Science 16, 729–748. doi:10.3217/jucs-016-05-0729

17 / 18 Volume 57 (2013)

Delta lenses and opfibrations

[12] Johnson, M., Rosebrugh, R. and Wood, R. J. (2012) Lenses, fibrations and
universal translations. Mathematical Structures in Computer Science 22, 25–42.
doi:10.1017/S0960129511000442

[13] Pierce, B. (1991) Basic category theory for computer scientists. MIT Press.

[14] Piessens, F. and Steegmans, E. (1995) Categorical data specifications. Theory and Appli-
cations of Categories 1, 156–173.

[15] Stevens, P. (2008) Towards an algebraic theory of bidirectional transformations. In Graph
Transformations, Lecture Notes in Computer Science 5214, 1–17.

Proc. BX 2013 18 / 18

	Introduction
	Notation
	Delta lenses
	c-lenses
	c-lenses are d-lenses
	More on delta lenses
	Conclusions

