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Abstract: This paper presents a Live Sequence Chart (LSC) to automata trans-
formation algorithm that enables the verification of communication protocol imple-
mentations. Using this LSC to automata transformation a communication protocol
implementation can be verified using a single verification run as opposed to pre-
vious techniques that rely on a three stage verification approach. The novelty and
simplicity of the transformation algorithm lies in its placement of accept states in
the automata generated from the LSC. We present in detail an example of the trans-
formation as well as the transformation algorithm. Further, we present a detailed
analysis and an empirical study comparing the verification strategy to earlier work
to show the benefits of the improved transformation algorithm.

Keywords: live sequence chart, transformation, automata, verification

1 Introduction

Current trends in system development are shifting towards creating and developing larger sys-
tems using several smaller communicating sub-systems. With the increasing popularity of such
modular designs comes the burden of creating, implementing, and testing the implemented com-
munication protocols. Specification of communication protocols has been explored significantly
in the past. English, which has been traditionally used as the most common language for spec-
ifying protocols, lacks the formal rigor and preciseness needed for clarity. Viable alternatives
are formal specification languages such as UML, Message Sequence Charts (MSCs) and Live
Sequence Charts (LSCs) [IT93, DH99, BDK+04]. The evolution of these graphical languages
has led to their application to modeling and specifying communication behaviors in a variety of
different domains [BHK03, KHG05, DK01]. Other research has also investigated the automatic
synthesis of systems from LSCs as well as the verification and validation of requirements on
the LSCs themselves [HK01, AY99, SD05]. Efficient methodologies for using these graphical
languages in a formal verification environment provide the support in the development process
to completely certify, test and develop a system. Since LSCs are a more expressive and seman-
tically rich visual specification language compared to MSCs, Timing Diagrams and Sequence
Diagrams in UML, we focus on techniques related to LSCs. Due to the encompassing nature
of LSCs, the techniques and algorithms presented in this paper are also applicable to the afore
mentioned specification languages.
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Improved LSC to Automata Transformation

Previous work in [KTWW06,Klo03] presents a strategy to verify systems against LSC specifi-
cations by transforming the LSC to a positive automaton. We use the term positive automaton to
denote automaton that witness chart completions. With the positive automaton, a system is veri-
fied against the LSC in three stages: reachability analysis for detecting safety violations, ACTL
verification for detecting liveness errors, and finally, if the first two steps fail to provide a signif-
icant result, full LTL verification is required to completely verify the system. The authors argue
that the verification algorithms are applied in increasing order of cost and for certain sub-classes
of LSCs not all algorithms need to be applied, which can eventually save on the total verifica-
tion cost. Although the approach presented in [KTWW06] is sound, it has several drawbacks.
For any arbitrary LSC, the approach at a minimum has to apply reachability analysis as well as
ACTL model checking for verifying the safety and liveness properties of the system against the
LSC. In the worst case, LTL verification is required to completely verify the system, which was
shown to be impractical for LSC verification [KM07]. Another drawback of the verification ap-
proach is the specialized algorithms and tools that have to be created to perform the verification,
which limit the general applicability and acceptance of the approach. The approach presented
in this paper only requires one verification algorithm of the same cost as reachability analysis to
completely verify a system against any arbitrary LSC.

We present a direct and obvious transformation of the LSC to a negative automaton by chang-
ing the placement of accept states. We use the term negative automaton to denote automaton that
witness chart violations as opposed to chart completions. Using this improved LSC to automa-
ton transformation a system can be formally verified against the LSC specification by performing
only language containment on the parallel composition of the system automaton and the nega-
tive automaton of the LSC. Additionally, this approach does not require the use of customized
algorithms and tools to verify a system against a specification. Using our new LSC to automaton
transformation, we verify systems against larger more concurrent LSCs that were previously not
verifiable with direct LSC to LTL or LSC to positive automaton transformations.

The structure of the paper is as follows. Section 2 presents a brief introduction to LSCs and
an overview of the basic LSC to automaton transformation algorithm as described in [Klo03].
Section 3 discusses in detail an example of using our approach for verifying a system against an
LSC. This example will be used for the remainder of the paper as well. Section 4 discusses the
details of the transformation algorithm and presents the theoretical results to prove the correct-
ness of the transformation algorithm. Section 5 presents an analysis of the improved transfor-
mation compared to the old transformation presented in [Klo03]. Section 6 presents a subset of
the results using the improved verification approach in both symbolic and explicit state model
checkers. Finally, Section 7 discusses the conclusions and future work. Proofs, details and addi-
tional results can be found in the long version of the paper at http://vv.cs.byu.edu/∼
rahul/lsc2automata.pdf.

2 LSC Overview

We briefly introduce some constructs of the LSC grammar1. Fig. 1(a) shows an example LSC
where an idle node in a compute cluster requests and processes a job from the scheduler’s queue

1 See [DH99, BDK+04] for details.
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with a possible implementation of the Node and DB process in Fig. 1(b). There are three pro-
cesses in the example LSC: Scheduler, Node and DB. Each process is drawn with a rectangular
instance head and a vertical life-line originating from each instance head. The life-line represents
the time dimension in the LSC with time progressing in the downward direction. Communication
between processes occurs via messages with the arrows representing the direction of communi-
cation. The idle message is an example of a synchronous message (filled arrowhead) where both
the sender and receiver have to be ready for the message to be observed. The actual message
communication occurs instantaneously for the sender and receiver. The result message is an ex-
ample of an asynchronous message (unfilled arrowhead) where the sender does not have to block
for the receiver to be ready to receive the message. The send event is written as result! and the
receive event is written as result?. The example LSC also contains a cold non-bonded condition
(second dashed hexagon) which enforces the validID predicate after a jobID has been received
from the Scheduler. If the condition is violated, the Node process exits the chart. On each
life-line any point where a condition or an event occurs is referred to as a location. Locations
are unique to each life-line and in our research are represented by numbers next to the instance
life-line. By default all locations are hot or mandatory locations unless specified otherwise using
a dashed line for the life-line. The location for receiving the result message in the Scheduler
life-line is the only cold location in the example chart. The behavior specified on a cold loca-
tion is not mandatory, which implies that the result message may or may not be received by the
Scheduler. Finally, behaviors described by the LSC are partitioned into the pre-chart (dashed
hexagon before solid rectangle) and the main chart (rectangle after pre-chart). The pre-chart
specifies the activation condition of the LSC and the main chart describes the behavior which
must follow the pre-chart. In the example LSC, the main chart is a universal main chart (solid
line), which represents behaviors that have to be observed every time the pre-chart is satisfied.

In addition to the constructs shown in the example LSC, several other constructs are also
available. The main chart can be specified as an existential chart (drawn with a dashed rectangle)
that specifies behavior the system must satisfy at least once when the pre-chart is satisfied (as
opposed to every time the pre-chart is satisfied). Conditions if attached to another event are
bonded otherwise non-bonded. By attaching conditions to other events, the condition is evaluated
at the exact moment the bonded event occurs, as opposed to non-bonded conditions where the
condition is continuously evaluated until satisfied. LSCs also allow the specification of invariants
which are conditions spanning over multiple events in the LSC. Co-regions specified with a
dashed line parallel to a life-line allow events to occur in any order. For example, if the messages
getData and data are specified in a co-region, either message data or getData may occur first.
It is only necessary for all events in a co-region to occur. Finally, conditions, messages, and
locations may be specified as hot or cold. If drawn with a solid line, the construct is hot and
specifies mandatory behavior, and if drawn with a dashed line, the construct specifies cold or
provisional behavior.

Our method supports all the mentioned constructs of LSCs with the following commonly
accepted restrictions. First, we adopt the strict interpretation of LSCs (i.e., no duplicate message
instances are allowed within a chart). Second, the LSC and all charts within the LSC are to
be acyclic. Third, we also do not consider overlapping LSCs or iterative LSCs (Kleene stars)
where multiple instances of the chart may be executed simultaneously. Since most scenario
based specifications in general do not deal with the constructs omitted from this research, the
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Process Node:
1: if(idle) then
2: Send(‘‘idle’’, Scheduler)
3: Receive(‘‘jobID’’, Scheduler)
4: if(not ‘‘validID’’)
5: break
6: Send(‘‘getData’’, DB)
7: Receive(‘‘data’’, DB)
8: Send(‘‘result’’, Scheduler)
9: endif
10: End Process Node
11: Process DB:
12: while(true){
13: Receive(msg, Node)
14: if(msg is ‘‘data’’)
15: Receive(‘‘data’’, Node)
16: endif
17: RemoveData(data)
18: endif
19: end while
20: End Process DB

(a) (b)

Figure 1: An example specification describing the interaction between a cluster node (Node), a
database (DB) and a job scheduler (Scheduler), and a possible implementation of the Node and
DB processes (a) The example LSC containing a subset of the complete LSC grammar (b) A
system implementing the Node and DB processes described in the LSC.

restrictions do not affect the general applicability of our results.

2.1 Transforming Live Sequence Charts to Automata

Past research in the area of transforming LSCs to automaton has primarily revolved around the
generation of positive automaton that detect chart completions [Klo03, HK01, BH02, KW01].
Work in [Klo03] gives a detailed presentation of the algorithm to transform an LSC to positive
automaton. We present an overview of this algorithm followed by a discussion of some key
aspects of the algorithm.

The LSC to automaton unwinding algorithm explores all possible inter-leavings of the events
defined in the LSC starting from the top and ending at the bottom of each life-line in the chart.
The possible event inter-leavings are explored by considering the partial order induced by the
semantics of the LSC. The partial order of the chart dictates that the locations in each instance
are totally ordered unless part of a co-region; thus, implying that each instance has to progress
linearly from top to bottom. For example, in the chart shown in Fig. 1(a), instance Node cannot
move from location 1 to location 4. From location 1, Node has to move to the next logical
location: location 2. To maintain the current state of the LSC, we define a cut as a set of locations
in the chart with exactly one location for each instance. The cut is used to record the current
state of the chart and create successor cuts. The reachable set of cuts from the initial cut is the
automaton for the chart. Each state of the automaton corresponds to a reachable cut of the chart.
Successor cuts are generated using the set of enabled transitions for a given cut. The initial cut for
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all charts is created by placing each instance at its first location, (0,0,0), where the first, second
and third locations correspond to the locations for the Scheduler, Node and DB instances.

The enabled set of transitions for a cut is created using the chart semantics. For example,
a synchronous message is enabled if both the sender and receiver of the message are at their
respective send and receive locations. In our chart, the message idle is observed if the Scheduler
and Node instances are each at locations 0. At the initial cut, (0,0,0), the idle message is
enabled. On the other hand, since the Node is not at location 3, the getData message is not
enabled in the initial cut, even though the DB is at location 0. When the idle message is explored
from the enabled set, a successor cut is generated where the locations for the involved instances
have been updated. In this case, the locations for the Node and Scheduler instances are updated
to their next logical location giving us the successor cut (1,1,0). At the cut (1,1,0), the jobID
message is enabled, which leads to the cut (2,2,0). Asynchronous sends are enabled by default
when the corresponding instance is at the send location and asynchronous receives are enabled
only if the corresponding send event has occurred and the receiving instance is at the receive
location. Conditions act as a synchronization point where each participating instance should be
at its respective condition location for the condition to be evaluated. A full description of these
semantics can be found in [Klo03]. Multiple enabled transitions lead to multiple successor cuts
from the given cut representing the concurrency in the chart.

Using the chart semantics, successor cuts are generated from the initial cut and each unique
cut is processed until the final cut is reached where each instance is at the bottom of its life-line.
Each unique cut of the chart corresponds to a state in the final automaton. The initial cut (0,0,0)
corresponds to state q0 in Fig. 2(a). The successor cut (1,1,0) corresponds to the state q1 where
the idle message has already been observed and the next message to be observed is jobID. Cut
(2,2,0) corresponds to state q2 and the final cut corresponds to state q7 where no further events
are to be observed. Notice that transitions taken to generate successor cuts correspond to the
transition labels in the automaton.

Finally, to create the positive automaton from the LSC, states corresponding to legal exits of
the chart are marked as accept states. For example, state q7 in Fig. 2(a) is marked as an accept
state because it corresponds to the final cut of the LSC which represents a legal completion of
the chart. Additionally, state q6 is also marked as an accept state since it corresponds to the cut
where the cold message result does not have to be received.

From the automaton in Fig. 2(a) we also notice that state q2, where cold condition validID
occurs is non-deterministic. This non-determinism is a result of the adopted semantics of cold
conditions in [Klo03]. If validID is not satisfied, the automaton can either stay in state q2 and
wait for the condition to be satisfied or move to the exit state qexit to signify that the cold condition
was not satisfied and the chart has exited successfully. This non-determinism resulting from non-
bonded conditions forces the approach of [Klo03, KTWW06] to translate the LSC automaton to
an LTL property and re-perform the verification using the LTL property, which has been shown to
be ineffective for even moderate size charts due to the size of the resulting LTL formula [KM07].
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3 Transformation and Verification Example

We use the automaton produced by the unwinding algorithm discussed earlier as our initial
automaton. The initial automaton from the unwinding algorithm is shown in Fig. 2(a). We
transform this positive automaton to a negative automaton that can be used in our single pass
verification approach. Fig. 2(b) and (c) show the transformed negative automaton.

Our approach transforms the LSC chart to a negative automaton capable of detecting chart
violations (as opposed to chart completions) that is naturally suited for verifying systems using
language containment. The first step in the transformation process is to remove all the accept
labels from the automaton. Next the exit state qexit and any transitions leading to the exit state
are removed from the initial automaton. In our example of Fig. 2(a) we remove the transition
from state q2 to state qexit , which also removes the non-determinism from the automaton arising
from the non-bonded condition. The algorithm then introduces safety transitions (dashed edges
in Fig. 2(b)) from all states that contain a transition belonging to the main chart to the safety
state qsa f ety. The safety state is an accept state introduced in the automaton to capture all safety
violations in the system. It has a single outgoing transition to itself predicated on true. The
safety transitions enable the detection of safety violations which consist of duplicate messages
(messages that have been observed before) and out of order messages in states that correspond
to main chart states. For example, in state q1 of Fig. 2(b), the only legal transition is if the jobID
message is observed. Since jobID is a main chart transition, state q1 corresponds to a main chart
state and a safety transition is introduced. The safety transition idle∨getData∨data∨ result!∨
result? from state q1 to qsa f ety is taken if any message except jobID is observed.

After the introduction of safety transitions, the algorithm updates the self-loops on each state
(dotted edges in Fig. 2(b)). The self-loops enable the automaton to remain in a given state until
an event forcing progress is observed. For example, in the automaton shown in Fig. 2(b), state q4
has a self-loop, ¬idle∧¬ jobID∧¬getData∧¬data∧¬result!∧¬result?, that is taken until the
data message is observed, which moves the automaton to the next state q5. The only exception
is the self-loop for the first state and the final state. The first state q0 contains a self-loop with
the true annotation to capture all possible future instances (and possible errors) of the chart in
a reactive system. The final state does not have any self-loops. This is because the final state
represents the successful completion of the chart and no further errors are possible unless a new
chart instance is observed, which is detected in the first state.

Finally, the algorithm marks illegal end points of the main chart as accept states to facilitate
detection of chart violations. For example, state q1 in Fig. 2(b) is at the beginning of the main
chart where the message jobID is yet to be received. If the jobID message is never observed,
the automaton remains in state q1 indefinitely, which should be reported as an error. To report
this error, state q1 is marked as an accept state. States containing no transitions corresponding
to hot constructs in the main chart are not marked as accept states. For example, in Fig. 2(b),
state q2 is not marked as an accept state because the validID condition is a cold condition, and
its absence does not result in an error. State q0 is not marked as an accept state either because it
does not contain any outgoing transitions corresponding to a hot construct in the main chart. If
the idle message is never observed, the pre-chart is not satisfied, which is not a violation of the
specification. State q6 is not marked as an accept state since the location of the result? event is
cold implying that the result? event does not have to be observed. Finally, state q7 in Fig. 2(b)
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f0
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(a) (b)

f0 idle∨getData∨data∨ result!∨ result? f1 idle∨ jobID∨getData∨data∨ result!∨ result?
f2 idle∨ jobID∨data∨ result!∨ result? f3 idle∨ jobID∨getData∨ result!∨ result?
f4 idle∨ jobID∨getData∨data∨ result? f5 idle∨ jobID∨getData∨data∨ result!
p0 jobID∧¬idle∧¬getData∧¬data∧¬result!∧¬result? p1 validID∧¬ jobID∧¬idle∧¬getData∧¬data∧¬result!∧¬result?
p2 getData∧¬idle∧¬ jobID∧¬data∧¬result!∧¬result? p3 data∧¬idle∧¬ jobID∧¬getData∧¬result!∧¬result?
p4 result!∧¬idle∧¬ jobID∧¬data∧¬getData∧¬result? p5 ¬idle∧¬ jobID∧¬getData∧¬data∧¬result!∧¬result?

(c)

Figure 2: The initial and transformed automaton for the example LSC shown in Fig. 1(a). (a) the
initial automaton (b) the transformed automaton and (c) list of transition labels.

is also not marked as an accept state since it is the final state where the behavior as described in
the universal chart has been satisfied without errors.

Verification of the system is performed by first creating the system automaton in the usual
manner. We verify the parallel composition of the system automaton and the negative automaton
of the LSC by searching the behavior space of the intersection for accepting cycles. Any cycles
detected correspond to errors in the system. Fig. 1(b) shows a possible implementation of the
Node and DB processes in a cluster. The Scheduler process has not been shown in the implemen-
tation but is assumed to be correctly implemented. When idle, the Node process requests a job
from the scheduler (line 2). The Node process then waits to receive the jobID and validates the
jobID using the predicate validID (lines 3 - 5). Next, the Node process requests data from the
DB (line 6), processes the data and sends the result to the Scheduler (lines 7 - 8). The DB process
receives and processes messages as they arrive (lines 12 - 19). In this particular implementation,
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the DB process is erroneous because it never receives/processes the getData message from the
Node. Since the getData message is a synchronous message and the DB process is never ready
to receive the getData message, the Node and DB processes never progress even though they
should. Verification of the parallel composition of the system automaton (not shown) with the
property automaton in Fig. 2(b) produces the word (idle, jobID,validID, (¬getData)ω), with
the corresponding trace: (q0,q1,q2,(q3)ω), where ω indicates infinite repetition. Since q3 is
marked as an accept state, the trace is reported as an accepting cycle and the violation has been
discovered. Using the positive automaton in the verification approach of [KTWW06] requires
two verification runs of comparable complexity to detect the same violation.

4 Transformation and Verification Details

The transformation presented in this work is based on language containment and automata the-
ory. We use Symbolic automata, an extension of Büchi automata, that allows observing any of a
possible set of inputs on an edge. Formally Symbolic automata are given by A = 〈Σ,Q,∆,q0,F〉
where, Σ is the finite alphabet of input symbols (variables), Q is the finite set of states, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final/accepting states, and ∆⊆ Q×φ ×Q is the transition
relation. A transition (q,φ ,q′)∈∆ represents the change from state q to state q′ when the formula
φ is satisfied.

We partition the set of Boolean variables Σ into three distinct sets Σmsgs, Σinvariants, and
Σconditions, that contain the Boolean variables that are used for messages, invariants and condi-
tions in the chart respectively. For the chart shown in Fig. 1(a), Σmsgs = {idle, jobID, getData,
data, result?, result!} and Σconditions = {validID}. The set Σmain = { jobID, validID, data,
getData, result?, result!} is the set of Boolean variables that are used in the main chart only. We
also have a set ∆hot ⊆ ∆ which only contains transitions that correspond to hot constructs in the
chart (hot messages, hot conditions etc.).

For a set of Boolean functions Γ = {φ0,φ1, ...,φn} we define the function dis junct(Γ) which
returns the disjunct of the individual formulas in Γ and the function con junct(Γ) which returns
the conjunction of the individual formulas in Γ. The function f (Σ,φ) = {σ |σ ∈ Σ and σ or
¬σ appears in φ} returns the set of Boolean variables from Σ that appear in φ in either a
positive or negative form. For example, if φ = idle∧ validID, f (Σmsgs,φ) = {idle} and
f (Σcondition,φ) = {validID}.

We take as input the automaton structure for a chart in the form of a symbolic automata
structure, A, with an empty final state set. Intuitively, to capture the bad behaviors of a chart, we
transform the basic automaton structure to the negative automaton that is capable of detecting
safety and liveness errors by yielding accepting cycles in the verification. We do so by adding
accept states to the automaton and adding/updating all transitions.

Fig. 3 shows an intuitive description of the outgoing transitions of a state in the transformed
automaton. The sets ψc,ψm and ψi (initialized by the algorithm in Fig. 4) are sets of condition,
message, and invariant letters used in the outgoing transitions of a given state. There are three
types of transitions that are introduced/updated for each state in the automaton. The φsafety
transition (dashed edge) leads to the safety state and is responsible for detecting any safety errors.
The self-loop (dotted edge), φself, enables the automaton to remain in the current state until an
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φsafety = dis junct(Σmsgs \ψm)∨
¬con junct(ψi)

φchild = φ ∧¬dis junct(Σmsgs \ f (Σmsgs,φ))

φself = ¬dis junct(Σmsgs)∧

true

¬dis junct(ψc)∧
con junct(ψi)

Figure 3: A generic state in the transformed automaton with complete annotations for all types
of outgoing transitions 1. φself: self-loop for non-progress, 2. φsafety: transition to state qsa f ety

for detecting safety errors, and 3. φchild transitions to the successor states.

event or condition progresses the automaton to a successor state. The φchild transitions (solid
edges) lead to the successor states. The dash-dot edge is only added to the first state of the
automaton to enable verification of multiple chart instances in a reactive system.

States are marked as accept states in the automaton based on two criteria. First, the safety state
is marked as an accept state for detecting safety violations such as duplicate message instances
and out of order messages. Second, any state that is not a legal exit point of the chart is marked
as an accept state. We now discuss in detail the creation of the transitions and the marking of
accept states.

Fig. 4 shows the algorithm for transforming the input automaton. We only present an overview
of the algorithm in this version of the paper and refer the reader to the long version for more
details. The algorithm has a general Depth First Search (DFS) structure with line 4 enumerating
the successors and line 11 making a recursive call for each successor. The algorithm is always
invoked for the one initial state of the input automaton to be transformed. Lines 1 - 2 remove any
transitions to the exit state qexit . In the automaton shown in Fig. 2(a), the transition from state
q2 to the exit state qexit is removed. Lines 5 - 7 of the algorithm build the sets of variables that
are used for messages, invariants, and conditions in the transitions from the current state to the
successor states.

Lines 8 - 10 update the transitions to the successor states by first removing the transition and
adding a new transition with the updated label. The updated child transition ensures that only the
enabled messages, invariants and conditions at a given state can enforce progress in the automa-
ton. For example, the algorithm transforms the transition from state q1 to state q2 in Fig. 2(a)
from φ = jobID to φchild = jobID∧¬idle∧¬getData∧¬data∧¬result!∧¬result?.

Lines 12 - 15 update the self-loop for the current state to ensure that the automaton remains in
the current state if no relevant messages are observed. For example, in state q1 of Fig. 2(b), the
self-loop ¬idle∧¬ jobID∧¬getData ∧¬data∧¬result?∧¬result! is enabled if no message is
observed. As mentioned earlier, the first state of the automaton has a self-loop with the true label
and the final state of the automaton has no self-loops. These special cases are not shown in the
transformation algorithm in Fig. 4.

If the current state q contains a main chart transition (labels of transitions to successor states
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Algorithm: T RANSFORM(q)
1: for ∀δ : (q,φ ,qexit) ∈ ∆ do
2: ∆← ∆\{δ}
3: ψm← /0, ψi← /0, ψc← /0
4: for ∀φ ,q′ : (q,φ ,q′) ∈ ∆ do
5: ψm← ψm∪ f (Σmsgs,φ)
6: ψi← ψi∪ f (Σinvariant,φ)
7: ψc← ψc∪ f (Σconditions,φ)
8: ∆← ∆\{(q,φ ,q′)}
9: φchild← φ ∧¬dis junct(Σmsgs \ f (Σmsgs,φ))

10: ∆← ∆∪{(q,φchild,q′)}
11: T RANSFORM(q′)
12: for φ : (q,φ ,q) ∈ ∆ do
13: ∆← ∆\{(q,φ ,q)}
14: φself←¬dis junct(Σmsgs)∧¬dis junct(ψc)∧ con junct(ψi)
15: ∆← ∆∪{(q,φself,q)}
16: if ∃φ ,q′ : (q,φ ,q′) ∈ ∆ and f (Σmain,φ) 6= /0 then
17: φsafety← dis junct(Σmsgs \ψm)∨¬con junct(ψi)
18: ∆← ∆∪{(q,φsafety,qsa f ety)}
19: if (q,φ ,q′) ∈ ∆hot then
20: F ← F ∪q
21: return(A)

Figure 4: Algorithm for building a negated automaton from an input LSC automaton.

are members of the main chart alphabet Σmain), then lines 16 - 18 of the algorithm add a safety
transition to the safety state qsa f ety. The safety transition enables the automaton to detect message
order violations or duplicate messages. For the automaton shown in Fig. 2(a), state q1 contains
a single transition for the jobID message. Since jobID is a member of the main chart alphabet
( jobID ∈ Σmain) a safety transition needs to be added. The safety transition for state q1, idle∨
getData∨ data∨ result?∨ result!, detects the presence of any message except the one allowed
message jobID. Because states with no main chart transitions can not violate the chart, no safety
transitions are added to them.

Lines 19 - 20 of the algorithm label the current state as an accept state if it belongs to the main
chart and contains a hot outgoing transition. The check for main chart transitions is performed
on line 16. To check for hot outgoing transitions, each outgoing transition is checked for mem-
bership in the ∆hot set (line 19). If all outgoing transitions from a state are cold, the state is not
marked as an accept state. In our example, for state q2, the only outgoing transition corresponds
to a cold condition and is not part of the ∆hot set; thus, state q2 is not marked as an accept state.
On the other hand state q1 is marked as an accept state because it has one successor transition
that corresponds to the hot message jobID.

We now state the theoretical results of the presented transformation. We first show that for any
main chart state in the automaton at least one transition is enabled for any arbitrary input (i.e.
the transition relation for main chart states is total). Having enabled transitions guarantees that
the automaton does not ignore any inputs which could cause violations or progress in the chart.
To conserve space, all proofs have been omitted from this version of the paper but are available
in the long version of the paper.
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Lemma 1 For all states containing outgoing main chart transitions, the transition relation is
total. Formally, given a state q with a main chart transition

(∨
∀φi,qi:(q,φi,qi)∈∆ φi

)
= true.

Lemma 1 is only applicable to states containing main chart transitions. Regarding states that
do not contain main chart transitions, the safety transition φsafety is not added, resulting in an
incomplete transition relation. Since these states are responsible for detecting the completion
of the pre-chart and not for detecting violations or errors, the incompleteness of the transition
relation does not affect the correctness of observing the pre-chart. Our next result states that
for all states except the first state of the automaton, the transition relation is deterministic. The
transformed automaton is non-deterministic only in the first state (self-loop annotated with true)
to accommodate for the global verification of every possible instance of the chart in the system.
Non-deterministic automata as used in [KTWW06] result in error traces that have to be validated
using full LTL verification, which has been shown to be impractical for LSCs [KM07]. Using
deterministic automata guarantees that any reported errors are in fact valid errors in the system.

Lemma 2 For states q in the transformed automaton (except the initial state), the transition
relation is deterministic. Formally, ∀q ∈ Q,∀φi,φ j : (q,φi,qi) ∈ ∆∧ (q,φ j,q j) ∈ ∆,(φi ∧ φ j) =
f alse.

The above result guarantees that for any given input to the transformed automaton (except the
first and last state) exactly one transition is ever enabled. We now state our primary result for the
transformed automaton. Intuitively, we show by application of Lemma 1 and Lemma 2 that the
transformed automaton accepts only those words that are not accepted by the LSC and is capable
of detecting all behaviors in a system that violate the LSC. We assume that the automaton created
detects all pre-chart instances correctly.

Theorem 1 The automaton, A, generated by the transformation algorithm in Fig. 4 for a given
LSC, SPEC, defined over an alphabet ΣSPEC⊆ Σ, reads exactly the complement of the language
of the SPEC. Formally, ∀θ = θ0θ1θ2 . . .

[θ ∈ L(SPEC) =⇒ θ 6∈ L(A)]∧ [θ 6∈ L(SPEC) =⇒ θ ∈ L(A)].

where L(A) and L(SPEC) are the languages of the transformed automaton and the SPEC.

4.1 Verification Approach

For explicit state model checking, verification of a system against the specification is performed
in the usual manner. The composition of the system and transformed LSC automata is computed
on-the-fly and checked for accepting cycles using the Double Depth First Search (DDFS) algo-
rithm. If the DDFS algorithm does not discover any accepting cycles, the system implements the
safety and liveness behaviors as described in the chart. For symbolic model checking, we first
label accept states as fair states in the composition of the system and transformed LSC automata.
This automaton is then verified against the ACTL property EG(true), which searches for fair
Strongly Connected Components (SCCs) reachable from the initial state. Any reported SCCs
are violations of the specification.
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5 Analysis

The verification approach presented in [KTWW06] utilizes at least two and in the worst case
three algorithms to completely verify a system against an LSC. If reachability analysis followed
by ACTL verification fails to produce a significant result (proof of correctness or a violation)
the system is verified against an LTL formula generated from the LSC specification [TW06].
Compared to the verification approach of [KTWW06], the new verification approach presented
in this paper only performs one verification run of comparable complexity as the reachability
analysis and ACTL verification in the approach of [KTWW06]. In the average case the total
verification cost is reduced by a factor of two and in the best case (worst case in old approach)
by a factor of three or more.

One side effect of using the negative automaton is the inability to verify multiple instances of
a chart with cold construct violations. For example, if in our example system the Node receives
jobID but is unable to validate jobID, the cold condition validID is never observed and the
chart automaton will remain in state q2. This is not an error since state q2 is a non-accepting
state waiting to observe the cold condition validID. If Node restarts the job acquisition by
sending the idle message to the Scheduler, the safety transition from state q2 to qsa f ety is taken.
Consequently, a false error will be reported (duplicate message). Generally speaking, if in one
instance of the chart a cold construct is never observed, no future instances of the chart can be
observed in a given trace. This drawback can be limiting for highly reactive and iterative systems
with multiple instances in a single trace. A solution is being investigated as future work.

6 Results

We briefly discuss our experiments and results in this section. For a detailed presentation we
refer the reader to the long version of the paper. We create models with multiple communi-
cating processes and test them against highly concurrent worst case specifications as described
in [KTWW06]. All specifications are named Ac×m where c and m are the number of co-regions
and messages in each co-region respectively.

We first test the scalability of our approach in the symbolic model checking domain and com-
pare it to the results presented in [KTWW06]. Table 1 shows a subset of the results for verifying
the abp model using the NuSMV model checker. In general, our verification approach performs
twice as fast as the approach presented in [KTWW06] and we scale to specification sizes that
were unobtainable using the verification approach in [KTWW06]. We also test the scalability of
our approach in explicit state model checking using the SPIN model checker. Table 2 shows a
subset of the results for verifying the plain and soko models. Our approach performs better and
scales to larger specifications when compared to the approach of [KM07].

7 Conclusions and Future Work

The presented LSC to automaton transformation algorithm allows us to verify a system against an
LSC using only language containment with readily available tools. Compared to past approaches,
this approach only requires one verification run of comparable complexity as opposed to three
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Table 1: Results for the traditional and improved verification approaches using NuSMV.
Specification Traditional Verification Improved Verification

Reachability ACTL Total
States Time (s) States Time (s) States Time (s) States Time (s)

A3x5 1.01616e+06 34 1.47142e+07 35 15730360 69 1.41696e+07 34
A3x6 1.01616e+06 237 1.01616e+06 239 2032320 477 471552 251
A3x7 879408 1568 879408 1562 1758816 3130 521504 1550

Table 2: Results for the improved verification approach using SPIN.
Specification Model Without Errors With Errors

States Memory (MB) Time (s) States Memory (MB) Time (s)
A7x6 soko 97500 17.216 125 89323 16.397 125

plain 406 7.385 123 406 7.385 124
A8x6 soko 97500 18.491 214 89323 17.672 210

plain 406 8.661 216 406 8.661 215
A9x6 soko 97500 20.104 325 89323 19.285 344

plain 406 10.274 335 406 10.274 334

verification runs for any arbitrary LSC. Further, we prove that the generated automaton can
detect all safety and liveness violations in a system and empirically show the effectiveness of
the approach. For future work we are investigating the use of LSCs for automated environment
generation to test individual interfaces in a system. We are also investigating the possibility of
extending the transformation algorithm to constructs such as overlapping chart instances, Kleene
star and multiple instance detection with the presence of cold constructs (as discussed earlier).
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