
Electronic Communications of the EASST
Volume 15 (2008)

Proceedings of the
8th International Workshop on

OCL Concepts and Tools (OCL 2008)
at MoDELS 2008

Static Source Code Analysis using OCL

Mirko Seifert and Roland Samlaus

15 pages

Guest Editors: Jordi Cabot, Martin Gogolla, Pieter Van Gorp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Static Source Code Analysis using OCL

Mirko Seifert1 and Roland Samlaus2

1 mirko.seifert@inf.tu-dresden.de,
2 roland.samlaus@inf.tu-dresden.de,

Computer Science Department
Technische Universität Dresden, Germany

Abstract: The majority of artifacts created during software development are rep-
resentations of programs in textual syntax. Although graphical descriptions are be-
coming more widespread, source code is still indispensable. To obtain programs
that behave correctly and adhere to given coding conventions, source code must be
analyzed — preferably using automated tools.

Building source code analyzers has a long tradition and various mature tools exist
to check code written in conventional languages, such as Java or C. As new lan-
guages emerge (e.g., Domain Specific Languages) these tools can not be applied
and building a tool for each language does not seem feasible either.

This paper investigates how meta models for textual languages and the Object Con-
straint Language can enable generic static source code analysis for arbitrary lan-
guages. The presented approach is evaluated using three languages (Java, SQL and
a DSL for state machines).

Keywords: Static Analysis, Object Constraint Language, Domain Specific Lan-
guages

1 Introduction

Since the early days of software development, the main artifact within all processes was source
code. Carefully crafted by developers the textual representation of programs was considered
most important to build software systems. To ease the creation of programs, many programming
languages were designed and evolved over the decades. Driven by the incredibly fast grow-
ing complexity of real world applications, language designers struggled to keep up with this
progress. New language constructs or even paradigms were introduced to support higher levels
of abstraction, easier readability, extensibility, and maintenance.

Despite the various approaches to reduce complexity, current applications can usually not be
understood as a whole by a single human. Finding bugs or design flaws in huge amounts of
program code by hand is not feasible and tools are needed to perform analysis and point out
problems to the developers automatically. Some of these tools [Bur, HP04, Vol06, HP00] use
very sophisticated techniques and do an excellent job analyzing programs written in a particular
language. They can find potential runtime errors, dead code, duplicate code, violations of coding
conventions or style guidelines, and bad design smells. Some tools even allow to extend the set
of available analyses using a custom pattern definition language.

1 / 15 Volume 15 (2008)

mailto:mirko.seifert@inf.tu-dresden.de
mailto:roland.samlaus@inf.tu-dresden.de


Static Source Code Analysis using OCL

Parallel to the advancements in code analysis, the rapidly growing complexity forced prac-
titioners and researchers to find novel approaches that would allow systems to be more easily
created, understood, and maintained. Model Driven Development (MDD) and Domain Specific
Languages (DSLs) are currently considered to be promising approaches to tackle the complexity
problem. MDD uses models to introduce higher levels of abstraction and DSLs can be used by
domain experts to design a system’s structure and behavior in their preferred way.

Within this context, source code analysis gains new relevance. Foremost, textual DSLs can and
must be subject to code analysis. Checking coding conventions and detecting potential errors can
be as beneficial as in the context of traditional programming languages. Furthermore, as models
and DSLs are usually transformed into some conventional programming language, source code
analysis can be applied to find new disallowed patterns. For example checking that hand-written
extensions to generated code do not violate the semantics of the underlying model is one such
novel application scenario.

Altogether, it can be observed that future source code analysis must handle many new lan-
guages and unanticipated application scenarios. Tools that are generic (applicable to multiple
languages) and extensible (usable in arbitrary contexts) will be needed to support modern devel-
opment processes. This paper describes such an approach for generic static source code analysis
based on the Object Constraint Language (OCL) [The06] and evaluates the options and limita-
tions of the presented approach. A prototypical implementation based on the Eclipse Modeling
Framework (EMF) and the Eclipse OCL implementation was used to gain practical experience
and to find limitations of the theoretic concept.

The remainder of this paper is organized as follows: Section 2 introduces meta modeling of
textual languages, which forms a basis for the presented work. Section 3 discusses how the anal-
ysis is carried out conceptually, followed by an explanation of our prototypical implementation
in Sect. 4. The theoretical concepts are evaluated in Sect. 5. Related work is presented in Sect. 6,
before we conclude and elaborate on future work in Sect. 7.

2 Meta Models for Textual Languages

The basic idea of the analysis method we propose, is to use the OCL to query source code. As
OCL can only be applied to models, textual artifacts must be transformed in order to evaluate
OCL expressions on them. More precisely, a model must be derived from the textual repre-
sentation. Naturally, these models must conform to a meta model, which specifies the logical
structure of the language to analyze. This section points out how we derive such meta models
automatically and explains the procedure needed to instantiate models for concrete documents.

We choose to create one meta model for each language that is subject to an analysis. Alterna-
tively one could use a single meta model for all languages and create bindings for the abstract
syntax of concrete languages to this meta model. However, using a single meta model com-
plicates query specification, because no custom language elements can be used. Furthermore,
additional effort for the specification of the binding is needed. Therefore this option was dis-
carded.

To create a meta model for a particular language we utilize Reuseware. Reuseware is a frame-
work for Invasive Software Composition and contains a tool called EMFTextEdit [Reu], which

Proc. OCL 2008 2 / 15



ECEASST

Abstract Syntax
Definition

(EBNF)

Concrete Syntax
Definition

(EBNF)

import

read generate

Lexer

Parser

Java code
for Abstract Syntax

Ecore Model

read

use

generate

generate

Abstract Syntax
Ecore Model

implements

generate

Reuseware
EMFTextEdit

define

define

Figure 1: Deriving lexer, parser and meta model from syntax definitions

can translate syntax definitions of a language to a meta model. To perform this task for a partic-
ular language two input components are needed. First, an abstract syntax has to be defined that
represents the structure of the language. Second, a concrete syntax definition is needed which
defines the exact representation in source code. The relation between EMFTextEdit, both syntax
definitions and the generated artifacts is shown in Fig. 1. The details of the generation will be
explained shortly.

Both the concrete and the abstract syntax are defined using a notation similar to the Extended
Backus-Naur Form (EBNF). This notation allows the user to define the structure of a program-
ming language and the terminal symbols. An example for an abstract syntax definition can be
found in Listing 1.

Listing 1: Abstract syntax for Java class definitions.
1 Class = modifier:Modifier, name:Identifier,
2 extends:QualifiedName?,
3 implements:QualifiedName*,
4 classBody:MemberDeclaration*;

While the abstract syntax solely specifies the logical structure of the language, the concrete
syntax defines key words and symbols that divide the logical elements. For example, Listing 1
(line 2) states that a class definition can contain an optional extends declaration and Listing 2
(line 2) defines that the key word extends will be used to mark the beginning of such a decla-
ration. The two syntaxes are connected by using the same identifiers (e.g., extends).

Listing 2: Concrete syntax for Java class definitions.
1 Class ::= modifier "class" name
2 ("extends" extends)?
3 ("implements" implements+)?
4 "{" classBody* "}";

Based on the concrete syntax the source code can be divided into tokens, which are the smallest
components of a programming language. This task is performed by a lexer that is generated by

3 / 15 Volume 15 (2008)



Static Source Code Analysis using OCL

EMFTextEdit. According to the concrete syntax definition the lexer uses the symbols to find the
elements of a language. The generation of the lexer and parser is carried out by ANTLR [PQ95].

The tokens found by the lexer are analyzed by a parser, which is also generated by EMFTextE-
dit. The parser structures the linear stream of tokens according to the abstract syntax definition
and generates a tree notation of the program called Abstract Syntax Tree (AST). This tree pro-
vides detailed information about the source code. Furthermore, the abstract syntax definition
is not only used to generate a parser, but also to derive a Ecore model [BBM03]. This is the
meta model we will use for the language under consideration. Alternatively the definition of the
abstract syntax can be directly established using an Ecore model. This choice is up to the user,
but does not affect the analysis.

To allow the parser to instantiate models, concrete Java classes are generated from the Ecore
model. Objects of this classes are used to represent the abstract syntax of source code fragments
as an AST. The generation of these Java classes is carried out by the EMF.

In summary, EMFTextEdit allows to automatically derive an Ecore model, both a lexer and
parser from the abstract and concrete syntax definition of a language. Given a source file of
this language we can now easily obtain a model instance of the source code fragment at hand.
Such model instances will serve as the starting point for any of our analyses. Additionally,
EMFTextEdit generates an Editor plug-in for the defined language that supports text editing
features like syntax highlighting.

3 Static Analysis with OCL

Static analysis is based on a suitable representation of a program’s source code. This representa-
tion can be quite different depending on the type of analysis to be performed and the underlying
formalism. Abstract interpretation, for example, uses lattice structures to embody a program’s
state [CC77]. Other approaches, that are based on logic translate source code into logical for-
mulae and perform analysis based on deduction [RSW04]. Opposed to this complex program
representations, we use a more basic representation of programs for our analysis, namely the
AST. This implies several consequences, such as a more restricted analysis power, which will be
discussed more detailed later on.

Following the procedure presented in Sect. 2, we are able to obtain an AST for source code
written in arbitrary languages. This AST is the basis of our analysis. Using a standard OCL
implementation user-defined OCL queries can be evaluated on the AST instance. The whole
procedure is recapitulated in Fig. 2.

Users (e.g., developers or quality assurance engineers) can now define OCL query expressions
that select invalid AST elements. For example names that break coding guidelines can be found,
illegal method calls to internal classes can be detected or classes with too many members can be
mined from the source code. Selecting invalid AST elements instead of valid ones has usability
reasons. In practice, the major part of an AST is expected to be correct and only few elements
violate coding conventions. Therefore, defining invalid AST elements is easier than defining
all valid AST’s. Because the OCL queries narrow the set of legal documents, we use the term
restrictions to refer to the queries.

Restrictions specified in OCL can be specified organization-wide and reused for multiple

Proc. OCL 2008 4 / 15



ECEASST

read

Source Program
(in Language X)

AST
(Language X)

Generated Parser
(for Language X)

Ecore Model
(for Language X)

OCL Queries

Analysis Results
OCL

Evaluator

create

instance of read

use return

Figure 2: Analysis Process

projects (e.g., coding guidelines). They can also be generated (e.g., within model driven pro-
cesses). Depending on the defined queries both very specific and broadly applicable restrictions
can be formulated. Disallowing access to a particular method is an example for the former cat-
egory, while limiting the number of members for classes belongs to the latter one. Whatever
information is present in the AST and which can be extracted by an OCL query, may be in-
corporated into an analysis. Note that this is not limited to object-oriented languages as the
previous examples may suggest. Sections 5.2 and 5.3 provide examples for quite different types
of languages.

The actual OCL expressions to be used, depend on the concrete language that is subject to
the analysis, the degree of abstraction determined by the syntax definition and the purpose of
the analysis. Section 5 contains some possible application scenarios. These include, but are not
restricted to:

• Checking coding guidelines (e.g., naming conventions, documentation rules)

• Detecting security vulnerabilities

• Enforcing extended visibility concepts

• Calculating code metrics to find design flaws

Depending on the concrete application scenario the user must specify OCL expressions that
traverse the AST, find the elements that must be incorporated into the analysis and check their
properties or accumulate them. For example, to encourage meaningful names for interfaces
defined in a set of Java sources, the user can traverse the AST to collect all elements that are
of type Interface and check that the names have a minimal length. A respective OCL query
might be phrased as shown in Listing 1.

Listing 1: OCL expression selecting interfaces with short names.
1 self.typeDeclarations->select(
2 i | i.oclIsKindOf(Interface) and
3 i.oclAsType(Interface).name.size() < 10)

In line 1 the type declarations of the compilation unit are selected. Line 2 constrains the set
of declarations to contain interfaces only and the expression in line 3 checks whether the name

5 / 15 Volume 15 (2008)



Static Source Code Analysis using OCL

Eclipse Platform

RestrictED

Eclipse OCL Implementation EMFTextEdit

Eclipse Modeling Framework (EMF) Eclipse Text Editor

Figure 3: Conceptual design of RestrictED.

of the interfaces is shorter than 10 characters. More OCL queries are presented and discussed in
Sect. 5.

4 Implementation

To evaluate the capabilities of a static analysis tool based on OCL, we implemented a prototype
called RestrictED1 based on Eclipse [Ecl]. We used EMF [BBM03] and the Eclipse OCL im-
plementation, which is part of the Model Development Tools (MDT) project, to evaluate queries
on model instances. Figure 3 depicts how RestrictED integrates with EMF, the Eclipse OCL
implementation and other components.

RestrictED relies on EMFTextEdit, which is part of the Reuseware framework. EMFTextEdit
creates an AST for each open document. Since this AST is based on Ecore, it can be easily used
for the evaluation of the OCL queries. This work is carried out by the MDT, that were originally
designed for use with graphical models, but can examine any Ecore-based structure. If a file is
opened with EMFTextEdit, RestrictED looks for restrictions that apply to this document.

By convention two different types of restrictions can apply to a file. Global restrictions affect
all files in a project and local restrictions refer to one particular document only. For example,
global restrictions are useful to declare naming conventions, while local ones might be used to
specify internal access constraints for a particular document (see Sect. 5.1). Global restrictions
must be placed in a file called “restrictions.ocl” located in the project root directory. Local restric-
tions need to be named after the file they refer to and extended by the suffix “.restrictions.ocl”.

Both global and local restriction documents contain OCL expressions accompanied with an
error description. The latter shortly describes what kind of analysis is performed by the OCL
query. RestrictED reads both the queries and the error descriptions. Now that both the AST of
the open document and the respective OCL queries are available, the root node of the AST is
given to the Eclipse OCL implementation and all queries are evaluated. If queries return results
that are not empty, RestrictED notes violations in the problems view, as depicted in Fig. 4.

The evaluation of the OCL queries starts at the root node of the AST. We consider this a
natural context for the evaluation. Accordingly, all queries must take the structure of the AST

1 Available from http://www.inf.tu-dresden.de/∼ms72/RestrictED/

Proc. OCL 2008 6 / 15

http://www.inf.tu-dresden.de/~ms72/RestrictED/


ECEASST

Figure 4: Notifications about violated restrictions.

into account to select appropriate elements. To create queries, one must have knowledge of the
underlying meta model. For example, OCL conditions on class declarations, method calls, and
attribute declarations (defined in a meta model for Java) can be used to analyze Java programs.

5 Evaluation

To verify the practical applicability of our approach, this section evaluates the proposed concepts
by means of three different languages. Even though this can not be considered an exhaustive
validation it will reveal the advantages and drawbacks of our method. The use case scenario,
which frames our evaluation, is a notional bank application.

Our example application is composed of three different parts. A Java part examines the exe-
cution of transactions and encapsulates the respective business logic. All account information is
saved in a database, which is accessed using Java Database Connectivity (JDBC). All database
queries are externalized from Java source files. Accordingly, the second component of our ex-
ample is the set of SQL queries, which is used to read and write persistent account information.
Finally, we used a small DSL for state machines to incorporate existing business process rules,
such as the life cycle of accounts.

Within this example application different scenarios for source code analysis can be found.
For example, Java code which effects the balance of an account should have very restricted
access. Furthermore, it should use only prepared statements to avoid security vulnerabilities,

7 / 15 Volume 15 (2008)



Static Source Code Analysis using OCL

such as SQL injection. SQL statements in turn should be limited in the set of data they can
modify. Under no circumstances should they alter the database scheme. The state machines
must be checked for correctness criteria (e.g., deadlock-freeness). And, as a matter of course,
the complete code should follow our style guidelines.

Note that even though this particular scenario can be addressed by existing concepts (e.g., vis-
ibilities in Java and database access rights), our approach is more flexible, because no language
specific tool implementation is needed and problems are detected at the implementation time.
This is superior to detecting bugs at runtime or using test cases to ensure correct behavior.

5.1 Analyzing Java Code

Accurate and applicable coding rules can increase the reliability and reduce the number of faults
in software [BM08]. This applies to all programming languages in general and to Java in par-
ticular. A very common coding rule is adhering to naming conventions. For example, using the
prefixes get and set for the names of getter and setter methods can be considered almost an
unwritten law in the Java community. Another frequently recommended guideline is to name
attributes different from method parameters or local variables.

To show that we can check the adherence to such naming conventions, we will exemplarily
enforce attribute names that begin with an underscore. An OCL query that specifies this rule is
shown in Listing 1.

Listing 1: OCL query to enforce attribute names with a prefix.
1 self.typeDeclarations->select(class | class.oclIsKindOf(Class)).

oclAsType(Class).members->select(v | v.oclIsKindOf(Variable))
.oclAsType(Variable)->select(var| var.name.substring(1,1)<>’_
’)

The query searches for class declarations, examines all members that are attributes and com-
pares the first character of the respective names with the underscore character. Note that our
meta model uses the type Variable both for local variables and attributes.

One can already guess from this basic example that queries for more sophisticated rules will
be very complex. In particular checking types with oclIsKindOf and converting types with
oclAsType disrupts the readability of the queries.

A second common example for coding rules is to enforce bounds for certain metrics. For
example, restricting the maximum number of methods per class can be beneficial. This will
encourage programmers to split functionality across classes, which will in turn enable reuse,
modularity and maintainability. An OCL query to check such a rule is shown in Listing 2.

Listing 2: Enforce upper limit for number of methods per class.
1 if self.typeDeclarations->select(class | class.oclIsKindOf(Class)

).oclAsType(Class).members->select(method | method.
oclIsKindOf(Method))->size() > 15 then self else null endif

Again, the query searches for class declarations, but this time members of type method are
considered. If the number of methods is less or equal to 15 null is returned, which indicates that

Proc. OCL 2008 8 / 15



ECEASST

there is no rule violation. Otherwise the result of the query is self, which denotes a problem in
this compilation unit.

The previous examples have shown that we can check basic properties of Java source code. To
take the evaluation one step further, we specified more complex analyses. First of all, we realized
advanced access control. Access modifiers in Java (e.g., public and private) do allow only
a very limited set of access restrictions. However, our bank application requires strict separation
of business logic and database queries. Developers should not be allowed to bypass a designated
database access layer and create or execute SQL statements. For this purpose using objects of
type java.sql.Connection must be prohibited. This can not be achieved using Java built-in
access modifiers. Listing 3 contains the OCL query, which enforces this rule.

Listing 3: OCL query for method calls to java.sql.Connection.
1 self.typeDeclarations->select(class | class.oclIsKindOf(Class)).

oclAsType(Class).members->select(method | method.oclIsKindOf(
Method)).oclAsType(Method).body->statements->select(ass| ass.
oclIsKindOf(Assignment)).oclAsType(Assignment).value->select(
vr| vr.oclIsKindOf(VariableReference)).oclAsType(
VariableReference)->select(v|v.variable.type.oclAsType(Class)
.import = ’java.sql.Connection’)

The query looks up all assignments in all method bodies and checks the type of the referenced
variables. If a variable of type java.sql.Connection is used a problem will be reported.
Again, the size of the query, one of the major drawbacks of our approach, becomes apparent.
Even though an OCL expert can read and interpret the query, most people would consider such
a longish specification useless.

Due to space limitations we omit more examples for OCL queries. Our prototype comes with
an example workspace that contains all queries mentioned in this paper and some more. Among
other things, we created a query that restricts access to attributes within classes. This was in
particular useful to define the methods which are allowed to access important data, such as the
balance of an account. The goal of this restriction was to reduce the lines of code that modify
important data to the minimum. Erroneous modifications, such as thread-unsafe access to an
attribute can be detected more easily this way.

5.2 Analyzing SQL Statements

Our example application uses SQL queries to read and write account information to a database.
Obviously, erroneous queries can cause great amounts of damage. They can either accidentally
modify data which is supposed to be static (e.g., a customer’s name) or, even worse, alter the
database scheme. Hence, restricting the set of legal queries can prevent bugs at the time of
implementation and reduce the number of runtime errors or the amount of required test cases.

A very basic restriction is to ban drop table statements. Since all records are lost if this
command is executed, its use should be detected and result in an error message. At first glance
this seems to be enforceable by using access rules, which are provided by database systems.
But, opposed to access rules, which are checked at runtime, we can detect rule violations at
development time. To prevent drop table statements the OCL query in Listing 4 can be used.

9 / 15 Volume 15 (2008)



Static Source Code Analysis using OCL

Listing 4: OCL expression disallowing dropping of tables.
1 self.sqlStatements->select(dp| dp.oclIsKindOf(Drop))

This query basically iterates over all SQL statements and checks their type to be Drop. Thus,
the query selects drop table statements as we consider them to be illegal. In contrast to
dropping tables, changing and inserting data must obviously be allowed. However, not all update
operations are desired. Consider for example the two queries shown in Listing 5.

Listing 5: Examples of SQL queries.
1 update accounts set value=500000 where owner=’My Name’;
2 update accounts set owner=’My Name’ where value>100000;

While the statement in the first line solely changes the balance of an account, the second
one modifies the name of a customer for a particular account. Since our bank has a policy that
accounts can not be transferred from one customer to another, we don’t want our application to
accidentally support this “feature”. In terms of SQL queries this implies that updates to column
owner must be prohibited. The respective OCL query to enforce this rule is shown in Listing 6.

Listing 6: OCL expression disallowing changing data in column “owner”.
1 self.sqlStatements->select(
2 us| us.oclIsKindOf(Update)).
3 oclAsType(Update).list->select(
4 col| col.columnName.value = ’owner’)

The query selects all UPDATE statements and compares the name of the table, which is subject
to the update, to owner. Depending on the particular needs of an application other restrictions
can be useful too. For example, developers of performance critical applications might not want to
use columns in WHERE clauses, which do not have a corresponding index. Using a general query
language to select illegal code fragments obviously enables very flexible application scenarios.
It can also be observed, that detecting SQL commands which undermine design intentions at
implementation time is better than using classical rights management provided by database sys-
tems. Additionally, it is more efficient to define coding conventions for all languages employed
in a development process using one single mechanism instead of several ones. For example,
using OCL queries for Java programs and using rights management to enforce database integrity
implies learning more concepts and mastering another technology.

5.3 Analyzing a DSL for State Machines

As mentioned in the introduction, the fast-growing application of DSLs within software de-
velopment processes is a strong motivation for generic source code analysis. To confirm the
applicability of our method to this context, we used a textual DSL for state machines. This DSL
allows to define states, transitions, triggers and actions. States can be start states, end states or
ordinary states.

Our example application uses this DSL to model the life cycle of accounts. Newly opened
accounts have the state “regular”. After five years, accounts can attain the status of a “gold”
account, which will allow customers to benefit from favorable interest rates. If a customer closes

Proc. OCL 2008 10 / 15



ECEASST

Figure 5: Specification of an account’s life cycle in a textual DSL.

his account, its state will change to “deleted”. Furthermore, legal regulations require that every
account can be frozen. The complete description of this life cycle is shown in Fig. 5.

The states mentioned above can be found in lines 2 to 5 and the respective transitions are
defined in lines 11 to 14. To check that the life cycle follows predefined rules we utilized OCL
queries. For example, our application requires that the state of an account can change except
that it reached an end state. This is similar to checking models for deadlocks. To avoid that an
account’s state can not change anymore, the OCL query shown in Listing 7 was defined.

Listing 7: OCL expression checking for deadlocks.

1 (self.elements->select(tr | tr.oclIsKindOf(Transition))
2 .oclAsType(Transition).target)->reject(w| (self
3 .elements->select(tr | tr.oclIsKindOf(Transition))
4 .oclAsType(Transition).source)->includes(w))
5 ->reject(end | (self.end)->includes(end))

The query searches for states without outgoing transitions that are not end states. As shown
in Fig. 5, our life cycle does not fulfill this requirement since the state frozen has no outgoing
transition and is not an end state either. To fix this frozen must be either added to the list of
end states or a transition to deleted must be added. Specifying such a consistency rule also
guarantees that future modification to the state model do not violate business rules.

11 / 15 Volume 15 (2008)



Static Source Code Analysis using OCL

We created more OCL queries (e.g., to limit the maximum number of end states) and of course
the previously presented checks (e.g., to enforce naming conventions) can be applied here too.
The tiny life cycle example confirms that applying source code checks to a textual DSL can be
as beneficial as applying them to widespread programming languages, but suffers from the same
problems. In particular the specification of the complex OCL queries posts a major restriction
on the usability of the approach.

6 Related Work

Analyzing source code has received attention in computer science for quite a long time. The
great amount of existing work can be divided into static and dynamic analysis methods. While
static methods analyze programs without executing them, the dynamic approaches run code to
perform an analysis by observing a programs execution and potentially modifying the program
beforehand. Since our approach does not need to execute programs it belongs to the first category.

Static analysis can be used to detect potential or actual coding errors, bad code smells, vio-
lations of style guidelines, proof program properties or even determine resource consumption.
Depending on the application different methods can be used to analyze programs. For example
model checking can be utilized [HP00], abstract interpretation may be used [CC77] or logic-
based approaches are applied [RSW04].

Tools used to find coding errors (e.g., FindBugs [HP07] or SPLint [EL02]) are usually lan-
guage specific because they heavily rely on the formal semantics of the language that is subject
to the analysis. Some of these tools are extensible in the sense that one can add new patterns that
shall be detected in the source code. To define these patterns all tools use custom specialized
languages. Thus, using a new tool involves learning a pattern definition language. We consider
this a major drawback compared to our method, where a standard language (OCL) is used for
pattern definition.

Other tools (e.g., Checkstyle [Bur]) that check coding guidelines are not inherently bound to
a specific language, because they are not tied as much to the underlying semantics. For example
checking naming conventions can be performed with very few knowledge about a languages se-
mantics. With the exception of SemmleCode [HVM06] and “Rough Auditing Tool for Security
(RATS)” [For], all existing tools we are aware of deal with one particular language only. Semm-
leCode supports Java and XML, while RATS can handle C, C++, Perl, PHP and Python code.
Our approach pursues this idea and shows that basic rules can be checked using a language-
independent approach. We can check naming conventions, restrict calls to methods or limit
applicable parameter types. Out of our scope is making statements on the results of calculations.
Nevertheless, we think that a language-independent approach to solve basic static analysis can
complement existing specialized tools.

Using OCL to define problems or style-guide violations is just one way to do so. Usually
specialized query languages are used to select program elements from source code [Vol06]. The
tailoring process that preceded these languages makes them more easy to use, but also implies
the implementation of a custom query processing engine. We eliminate this effort, because we
use existing OCL interpreters. Thus, our approach can be applied to new languages without
implementing a query processor.

Proc. OCL 2008 12 / 15



ECEASST

7 Conclusions and Future Work

In this paper we have shown how meta models of textual languages can be used in conjunction
with OCL to create a tool that performs static source code analysis. The presented prototype can
be reused to analyze arbitrary languages. The only prerequisite is the availability of a concrete
and abstract syntax definition.

The benefits of the approach at hand are the ability to reuse both the analysis tool and the
analysis language. Using a standard language, namely the OCL, does not only prevent developers
from learning new analysis specification languages over and over again, but opens up a new
application area for OCL. Furthermore, OCL provides concepts (e.g., navigation) that must be
coded by hand when analysis is performed with standard program code.

The evaluation has shown that useful application scenarios are covered by our method, such
as checking coding conventions (e.g., naming standards), enforcing security aware coding or im-
plementing extended visibility concepts. Especially coding conventions and visibility constraints
can be applied to various languages.

The downsides of the presented analysis method are mostly induced by the choice of repre-
senting programs using AST’s and using a generic analysis language. As OCL queries are used
to specify concrete analyses, the approach is facilitated and restricted by the expressive power of
OCL at the same time. Whatever can be checked by an OCL query is supported by our tool, but
nothing else. Moreover, the OCL expressions tend to grow with the complexity of the language
that is subject to the analyses. This makes the definition of OCL queries sometimes more com-
plex compared to a custom analysis language. Reuse and generation of queries may be solutions
to tackle this complexity.

Furthermore, the representation using AST’s also limits the power of our analysis. Since the
static structure is embodied rather than the programs state, our analysis can hardly find errors
that are exposed by the dynamic semantics. This limits our analysis compared with abstract
interpretation. Another limitation specific to our implementation is that it can not be used with
arbitrary text editors straight away. As stated before, the presented solution is based on the
previously mentioned components, notably EMFTextEdit. In principal the RestrictED plug-in
can be used with any editor. However, the Eclipse OCL implementation is limited by the fact
that it can only analyze structures that are based on Ecore. Therefore, compatible editors must
offer an Ecore-based AST.

All in all we can not perform as sophisticated analysis as language specific tools do, but the
presented approach covers many useful application scenarios. The depicted method is based on
a standard language (OCL) and can be applied for all textual languages that can be defined with
EMFTextEdit. This enables static analysis for arbitrary programs using a single tool and a single
language.

In the future we plan to evaluate our prototype using new languages. Especially textual DSLs
form interesting use cases. We need to determine where OCL reaches its limits when used for
source code analysis. A clear understanding is needed about the possible types of analysis.
For existing languages the question is to what extent our method can compete with specialized
tools [HP07, EL02].

Furthermore, future work will address the complexity of the OCL queries, which we consider
a major drawback of our analysis method. Using the concrete syntax of the analyzed language

13 / 15 Volume 15 (2008)



Static Source Code Analysis using OCL

itself to specify queries seems a promising goal. Since users are much more familiar with the
concrete syntax of their languages, defining queries in the same syntax is much easier than using
OCL. To achieve this, the concrete syntax must be extended and queries must be translated to
OCL. Last but not least, generating the OCL queries (e.g., within MDD environments) can be
another opportunity to hide complexity from users.

Acknowledgements: This work has been partially funded by the German Ministry for Edu-
cation and Research in the SuReal project. We thank Steffen Zschaler for provoking this work,
as well as Simone Röttger, Jendrik Johannes, Christian Wende and Florian Heidenreich for their
fruitful comments on earlier versions of this paper. We also thank the anonymous reviewers for
their constructive criticism that encouraged use to improve and continue our work.

Bibliography

[BBM03] F. Budinsky, S. A. Brodsky, E. Merks. Eclipse Modeling Framework. Pearson Educa-
tion, 2003.

[BM08] C. Boogerd, L. Moonen. Assessing the Value of Coding Standards: An Empirical
Study. In Proceedings of the 24th IEEE International Conference on Software Mainte-
nance, September 28 to October 4, 2008, Beijing, China, To appear. 2008.

[Bur] O. Burn. Checkstyle Homepage. http://checkstyle.sourceforge.net.

[CC77] P. Cousot, R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. Pp. 238–252. ACM Press, New York, NY, Los Angeles, California, 1977.

[Ecl] Eclipse Foundation. Eclipse.org home. http://www.eclipse.org.

[EL02] D. Evans, D. Larochelle. Improving Security Using Extensible Lightweight Static
Analysis. IEEE Software 19(1):42–51, 2002.

[For] Fortify Software Inc. Rough Auditing Tool for Security (RATS) Website.
http://www.fortify.com/security-resources/rats.jsp.

[HP00] K. Havelund, T. Pressburger. Model Checking Java Programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer 2(4):366–381, March
2000.

[HP04] D. Hovemeyer, W. Pugh. Finding bugs is easy. SIGPLAN Notices 39(12):92–106,
2004.

[HP07] D. Hovemeyer, W. Pugh. Finding more null pointer bugs, but not too many. In Das and
Grossman (eds.), Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering, PASTE’07, San Diego, California,
USA, June 13-14, 2007. Pp. 9–14. ACM, 2007.

Proc. OCL 2008 14 / 15



ECEASST

[HVM06] E. Hajiyev, M. Verbaere, O. de Moor. CodeQuest: Scalable Source Code Queries with
Datalog. In Thomas (ed.), ECOOP. Lecture Notes in Computer Science 4067, pp. 2–27.
Springer, 2006.

[PQ95] T. J. Parr, R. W. Quong. ANTLR: A Predicated-LL(k) Parser Generator. Software —
Practice and Experience 25(7):789–810, 1995.

[Reu] Reuseware Team. EMFTextEdit Website. http://emftextedit.reuseware.org.

[RSW04] T. W. Reps, S. Sagiv, R. Wilhelm. Static Program Analysis via 3-Valued Logic. In Alur
and Peled (eds.), Computer Aided Verification, 16th International Conference, CAV
2004, Boston, MA, USA, July 13-17, 2004, Proceedings. Lecture Notes in Computer
Science 3114, pp. 15–30. Springer, 2004.

[The06] The Object Management Group. OCL 2.0 Specification. Technical report, May 2006.

[Vol06] K. D. Volder. JQuery: A Generic Code Browser with a Declarative Configuration Lan-
guage. In Hentenryck (ed.), PADL. Lecture Notes in Computer Science 3819, pp. 88–
102. Springer, 2006.

15 / 15 Volume 15 (2008)


	Introduction
	Meta Models for Textual Languages
	Static Analysis with OCL
	Implementation
	Evaluation
	Analyzing Java Code
	Analyzing SQL Statements
	Analyzing a DSL for State Machines

	Related Work
	Conclusions and Future Work

