
Electronic Communications of the EASST
Volume 77 (2019)

Interactive Workshop on the Industrial Application of
Verification and Testing,
ETAPS 2019 Workshop

(InterAVT 2019)

Cross-Programming Language Taint Analysis for the IoT Ecosystem

Pietro Ferrara, Amit Kr Mandal, Agostino Cortesi, Fausto Spoto

8 pages

Guest Editors: Anila Mjeda, Stylianos Basagiannis, Goetz Botterweck
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Cross-Programming Language Taint Analysis for the IoT Ecosystem

Pietro Ferrara1, Amit Kr Mandal23, Agostino Cortesi2, Fausto Spoto4

1 pietro.ferrara@juliasoft.com
JuliaSoft Srl, Verona, Italy

2 cortesi@unive.it
Università Ca’ Foscari, Venezia, Italy

3 amitmandal.nitdgp@gmail.com
SRM University, AP - Amaravati, India

4 fausto.spoto@univr.it
Università di Verona, Verona, Italy

Abstract: The Internet of Things (IoT) is a key component for the next disrup-
tive technologies. However, IoT merges together several diverse software layers:
embedded, enterprise, and cloud programs interact with each other. In addition,
security and privacy vulnerabilities of IoT software might be particularly danger-
ous due to the pervasiveness and physical nature of these systems. During the last
decades, static analysis, and in particular taint analysis, has been widely applied to
detect software vulnerabilities. Unfortunately, these analyses assume that software
is entirely written in a single programming language, and they are not immediately
suitable to detect IoT vulnerabilities where many different software components,
written in different programming languages, interact. This paper discusses how to
leverage existing static taint analyses to a cross-programming language scenario.

Keywords: Static Analysis, Taint Analysis, CyberSecurity

1 Introduction

The Internet of Things (IoT) paradigm is considered a key-enabling component of many of the
next disruptive technologies: smart health, smart manufacturing, and smart cities are just three of
the most notable examples. In an IoT system, many different things (i.e., devices with embedded
software) coordinate and communicate through the Internet (e.g., a local gateway and/or the
cloud). Often, these systems can be accessed and managed remotely through cloud services.
Because of the expected pervasiveness of these systems (Gartner estimates that there will be more
than 20 billions IoT devices by 2020 [Gar15]), the IoT revolution introduces major challenges
for building safe, reliable, and privacy-preserving solutions.

Figure 1 reports a common IoT architecture depicted by the IoT Eclipse Working Group [Ecl19].
In particular, “a typical IoT solution is characterized by many devices (i.e., things) that may use
some form of gateway to communicate through a network to an enterprise back-end server that
is running an IoT platform that helps integrate the IoT information into the existing enterprise”.

1 / 8 Volume 77 (2019)

mailto:pietro.ferrara@juliasoft.com
mailto:cortesi@unive.it
mailto:amitmandal.nitdgp@gmail.com
mailto:fausto.spoto@univr.it


Cross-Programming Language Taint Analysis for the IoT Ecosystem

Figure 1: A standard IoT architecture.

Therefore, three main components are involved in an IoT system, each with its own software: (i)
devices (aka things), (ii) gateways, and (iii) cloud platforms. Therefore, the various layers of an
IoT system comprise a wide stack of software that might be written in extremely heterogeneous
programming languages.
IoT CyberSecurity and Static Analysis: IoT devices have been already the target of several
cyberattacks, and their safety and security is a key aspect to ensure their wide adoption. For
instance, the malware Mirai exploited IoT devices (such as IP cameras and home routers) that
were not properly configured to create a botnet and launch DDoS attacks on a large scale, such
as the Dyn cyberattack on October, 21st 20161.

How could we then improve the cybersecurity of IoT systems? Static analysis [CC77] has been
widely applied in this field during the last few decades. They build a semantic model of software
at compile time, without executing it, and check various properties on that. Nowadays, several
standards and regulations (e.g., MISRA DO-178C, IEC 61508, ISO 26262, and IEC 62304) re-
quire the application of such tools. However, their application to IoT cloud components has been
limited up to now. On the other hand, various static analyzers have focused on the detection of
various types of security vulnerabilities (such as SQL injection and cross-site-scripting attacks)
on the back-end of web servers [Son, Spo16].
Taint analysis: A standard approach to address these issues has been taint analysis [TPF+09],
that is, an analysis that detects if a value coming from a source (e.g., methods retrieving some
user input) flows into a sink (e.g., methods executing SQL queries) without being sanitized (e.g.,
properly escaped). This generic schema has been instantiated to several critical security vulnera-
bilities in the OWASP Top 10 list [OWA18], such as (i) SQL injection, where sources are methods
returning user input, sinks are methods executing SQL queries, and sanitizers are methods escap-
ing the input; (ii) cross-site scripting (XSS), where sinks are methods executing the given data;
(iii) redirection attacks, where sinks are instead parameters of methods opening an Internet con-
nection; and (iv) leakages of sensitive data. Taint analysis achieved impressive industrial results,
detecting many vulnerabilities in real-world software (e.g., web servers) and achieving amazing
results [BFS17], in comparison to other (usually pattern-based) approaches. Such analyses have

1 https://en.wikipedia.org/wiki/2016 Dyn cyberattack

InterAVT 2019 2 / 8

https://en.wikipedia.org/wiki/2016_Dyn_cyberattack


ECEASST

been widely applied to detect privacy leaks as well [Mye99, FS18]. Unfortunately, existing static
analyzers focus on a single programming language; if programs written in different languages
interact with each other, then the analysis considers each program “in isolation”.

1.1 Related Work

Majority of the IoT applications use cross programming language programs to interact with the
hardware, that is, to execute native calls. For instance, this is the case of most Java programs that
rely on native code for this purpose. Thus, inter-procedural dataflow analysis provides a general
framework for program analysis. Matthews et al. [MF07] provided a formalization of the inter-
operation among two high-level functional languages with a shared memory. Therefore, this
work mainly focuses on the interaction through this space, and not on taint propagation. Click
and Cooper [CC95] devised a lattice-based representation of conditional constant propagation
by defining special flow functions over the composed domain. Pioli and Hind [PH99] provided a
single analysis which combines constant propagation and pointer analysis by using a combined
flow function. Whereas, Mandal et al. [MCF+18] and Panarotto et al. [PCF+18] demonstrated
the effectiveness of taint analysis for leakage detection in Android automotive apps [MPC+19].
However, the majority of these approaches provides insight about propagation of a particular
type of data, and do not focus specifically on taint propagation. Recently, a few other approaches
have been focused towards the security of IoT systems, and what program analysis can address in
this space. Huuck [Huu15] discussed the security threats of IoT devices, and advocated the use
of static code analysis to detect some of these issues. Similarly, Celik et al. [CFP+18] identified
security and privacy issues of five IoT platforms, and applied existing static analyzers to detect
these issues. Their conclusion is that ”a suite of analysis tools and algorithms targeted at diverse
IoT platforms is at this time largely absent”.

2 Illustrative Example

We now introduce an illustrative example to explain how different software components might
interact in an IoT system. The software we introduce in this section manages a robotic car. In
particular, it allows the user to control the car through a joystick. In this section, we report a
simplified snippet of code of the application; the interested reader can find the full implemen-
tation at https://github.com/amitmandalnitdgp/IOTJoyCar. This software has been installed on
a Raspberry Pi 3B+, with 64-bit, Quad-Core, Broadcom BCM2837B0 CPU running at 1.4GHz
and 1GB of LPDDR2 SDRAM. For steering control, we relied on a TowerPro SG90 micro servo,
and for accelerating the car on a 130 DC 1V - 6V micro motor. Finally, to control the system
we adopted an Analog B103 joystick. In the implementation, we used PCF8591 and L293D as
device driver for the analog motor and the joystick.

Figure 2 reports the Java code implementing the front-end of the IoT system. This program,
running on the gateway, interacts with the joystick to read its data, and with the car in order to
move it accordingly to the input received by the user through the joystick. In particular, the main
method loops indefinitely (line 9) while reading the input from the joystick and moving the car
accordingly (line 10). However, in order to physically interact with the components (that is, to

3 / 8 Volume 77 (2019)

https://github.com/amitmandalnitdgp/IOTJoyCar


Cross-Programming Language Taint Analysis for the IoT Ecosystem

run the motor and turn the car), it relies on two native methods implemented in C++ (lines 2–3).

1 class JoyCar {
2 public native int readUpDown();
3 public native void runMotor(int value);
4

5 public static void main(String[] args) {
6 JoyCar rc = new JoyCar();
7 // Initialization
8 ...
9 while(true){

10 rc .runMotor(rc.readUpDown());
11 // Turn based on joystick input
12 ...
13 }
14 }
15 }

Figure 2: Java code.

1 JNIEXPORT jint JNICALL Java JoyCar readUpDown
2 (JNIEnv ∗env, jobject o){
3 return readAnalog(A1);
4 }
5 long map(long val,long fl,long fh,long tl , long th){
6 return (th−tl)∗(val−fl) / (fh−fl) + tl ;
7 }
8 void motor(int ADC){
9 int value = ADC −130;

10 // initialize the direction
11 softPwmWrite(enablePin,map(abs(value),0,130,0,255));
12 }
13 JNIEXPORT void JNICALL Java JoyCar runMotor
14 (JNIEnv ∗env, jobject o, jint val){
15 motor(val);
16 }

Figure 3: Embedded C++ code.

Figure 3 reports the code of these native methods. This code relies on WiringPi2, a PIN-
based GPIO access library written in C for the Raspberry Pi. This library allows one to send
instructions to the car components through GPIO pins, and facilitates the I2C communica-
tion required for many devices through various extensions3. In our example, the joystick uses
PCF8591 to read the analog value by calling the analogRead(A1) function of the pcf8591.h4

I2C library at line 3; in this way the program reads the analogical Y-axis value of the joystick.
WiringPi also allows one to send pulse width modulation (PWM) signals to the devices through
softPwmWrite(pin,ms); for instance, line 14 sends a signal to the motor.

Therefore, Figure 3 reports the implementation of the two native methods of the class JoyCar
in Figure 2. Method Java_JoyCar_readUpDown simply returns the Y-axis value of the
joystick (line 3). Instead, method Java_JoyCar_runMotor sends a value to the motor that
is the result of some arithmetical computation on the value passed by the Java program.
Potential Attack: What kind of attack might happen in the IoT software we just introduced?
Imagine that an attacker can inject through this code an unbounded numerical value to the motor:
this might damage the car significantly because of the motor overheating and potentially leads
to motor burnout. So the question is: is our code vulnerable to such an attack? In order to give
an answer to this question, we need to consider both the Java and the C++ code. Intuitively, we
want to detect if a user input (that is, a source) might flow into the motor (that is, a sink) without
being sanitized (that is, properly cleaned). In the example above, the user input is retrieved at
line 3 of the C++ code in Figure 3. Therefore, the call to readUpDown() at line 10 of the Java
code in Figure 2 retrieves a tainted value and passes it to runMotor. Then, the motor(val)
call at line 19 of the C++ code passes a tainted value, that is then processed and passed to
softPwmWrite. This method sends a value to the motor, that is, softPwmWrite is a sink.
2 http://wiringpi.com/
3 http://wiringpi.com/extensions/
4 http://wiringpi.com/extensions/i2c-pcf8591/

InterAVT 2019 4 / 8

http://wiringpi.com/
http://wiringpi.com/extensions/
http://wiringpi.com/extensions/i2c-pcf8591/


ECEASST

Figure 4: CodeSonar warnings.

3 Cross-Programming Language Taint Analysis

The main contribution of our work is providing evidence of the effectiveness of a cross-programming
language taint analysis approach to security vulnerability detection in IoT systems. We have
combined two existing commercial analyzers to analyze the example introduced in Section 2.

Julia [Spo16] is a commercial static analyzer for Java and .NET (i.e., CIL [ECM12]) byte-
code, based on abstract interpretation [CC77]. Julia currently features 45 checkers, including
the Injection checker based on the sound taint analysis defined in [ELM+15, SBE+19]. Julia’s
taint analysis has been widely applied to detect security vulnerabilities such as SQL injections
and XSS [BFS17] as well as to the detection of leakages of sensitive data [FS18, FSO18]. The
Injection checker can be instrumented with additional sources and sinks by adding specific Java
annotations to the analyzed code5.

CodeSonar is an advanced, whole program static analyzer developed by GrammaTech for C,
C++ and binary programs. Its analyses comprise a taint analysis engine [Gra19b] that performs
an automatic taint analysis propagation. CodeSonar also allows the user to inspect the complete
flow of the tainted data inside the program in order to guide him towards the problem detected by
the analysis. In addition, the taint analysis engine can be instrumented with additional sources
and sinks.
Results on the illustrative example: Taint analysis receives as input a set of sources (e.g.,
methods returning user input), sinks (e.g., safety critical methods), and sanitizers (e.g., methods
cleaning the user input). Therefore, we start by defining a set of sources and sinks for the
Java and C++ programs of our illustrative example. In particular, the C++ code contains one
source (the value returned by readAnalog) and one sink (the second parameter of method
softPwmWrite), while the Java code does not contain any source nor sink. In addition, we
need to further instrument the taint analysis in order to detect if tainted values are passed from
one program to the other. Starting from the Java Native Interface specification, we tag as a sink
(i) the value returned by Java_JoyCar_readUpDown in the C++ program, and (ii) the first
paramenter of JoyCar.runMotor in the Java program. In this way, we will detect if a tainted
value flows between the boundaries of these two applications, and we will further instrument and
iterate the taint analysis to propagate cross-programming language tainted values.

We instrumented Julia and CodeSonar taint analyses with these sources and sinks through
their standard instrumentation mechanism (Java annotations for Julia, and specific method calls
and stubs in CodeSonar). https://github.com/amitmandalnitdgp/IOTJoyCar contains the instru-
mented code. We then run the taint analysis with these sources and sinks on both the programs.
Since we do not have any source in the Java software, no tainted flow is propagated there. Instead,
the CodeSonar taint analysis on the C++ program produces the first warning in Figure 4 report-

5 https://static.juliasoft.com/docs/latest/Injection.html contains the detailed description of the Injection checker and
the annotations it understands.

5 / 8 Volume 77 (2019)

https://github.com/amitmandalnitdgp/IOTJoyCar
https://static.juliasoft.com/docs/latest/Injection.html


Cross-Programming Language Taint Analysis for the IoT Ecosystem

Figure 5: Julia warnings.

ing that method Java_JoyCar_readUpDown could return tainted data. Therefore, we taint
the value returned by JoyCar.read-UpDown as a source in the Java program to propagate it.

We run again the taint analysis on the C++ and Java programs. In the first case, we ob-
tain the same result of the previous run since no source or sink was added. Instead, Julia taint
analysis gets augmented with the new source, and it produces a warning at line 10 of the Java
program as reported in Figure 5, since a tainted value flows into the first parameter of method
JoyCar.runMotor. We add this parameter in the C++ program as a source to propagate the
warning reported in Figure 5. The C++ taint analysis produces an additional warning report-
ing that a tainted value might flow into softPwmWrite. Figure 4 reports this as the second
warning. This warning detects exactly the potential attack we discussed at the end of Section 2.
However, one might assume that the map method sanitizes the value passed to the motor, and
thus this is not a real problem. Therefore, we further instrumented our C++ program annotating
the map function at lines 6–8 of Figure 3 as a sanitizer. Then CodeSonar at the end produces
only the first warning in Figure 4 telling that Java_JoyCar_readUpDown returns a tainted
value.

4 Conclusion

This paper shows how existing taint analyses can be leveraged to detect IoT software vulnerabil-
ities where software components written in different programming languages interact. It shows
the feasibility of the extension of existing commercial taint analyses to a rather simple IoT case
study, but its automation and scalability to IoT industrial programs is still an open question, left
as future work.

Acknowledgments Work partially supported by CINI Cybersecurity National Laboratory within
the project FilieraSicura.

Bibliography

[BFS17] E. Burato, P. Ferrara, F. Spoto. Security Analysis of the OWASP Benchmark with
Julia. In Proceedings of ITASEC ’17. 2017.

[Bry92] R. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Computing Survey 24(3):293–318, 1992.

InterAVT 2019 6 / 8



ECEASST

[CC77] P. Cousot, R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings
of POPL ’77. ACM, 1977.

[CC79] P. Cousot, R. Cousot. Systematic design of program analysis frameworks. In Proceed-
ings of POPL ’79. ACM, 1979.

[CC95] C. Click, K. D. Cooper. Combining analyses, combining optimizations. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 17(2):181–196, 1995.

[CFP+18] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, P. McDaniel. Program Analysis of
Commodity IoT Applications for Security and Privacy: Challenges and Opportuni-
ties. arXiv preprint arXiv:1809.06962, 2018.

[DD77] D. E. Denning, P. J. Denning. Certification of Programs for Secure Information Flow.
Commun. ACM 20(7), July 1977.

[Ecl19] Eclipse IoT Working Group. The Three Software Stacks Required for IoT Archi-
tectures. https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%
20Paper%20-%20The%20Three%20Software%20Stacks%20Required%20for%
20IoT%20Architectures.pdf, Accessed On: 14-May-2019.

[ECM12] ECMA. Standard ECMA-335: Common Language Infrastructure (CLI). https:
//www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf, 2012.
Accessed On: 14-May-2019.

[ELM+15] M. D. Ernst, A. Lovato, D. Macedonio, C. Spiridon, F. Spoto. Boolean Formulas
for the Static Identification of Injection Attacks in Java. In Proceedings of LPAR ’15.
LNCS. Springer, 2015.

[FS18] P. Ferrara, F. Spoto. Static Analysis for GDPR Compliance. In Proceedings of ITASEC
’18. 2018.

[FSO18] P. Ferrara, F. Spoto, O. Olivieri. Tailoring Taint Analysis to GDPR. In Proceedings of
APF ’18. 2018.

[Gar15] Gartner. Gartner Says 6.4 Billion Connected “Things” Will Be in Use in 2016, Up 30
Percent From 2015. https://www.gartner.com/en/newsroom/press-releases/2015-11-
10-gartner-says-6-billion-connected-things-will-be-in-use-in-2016-up-30-percent-
from-2015, 2015. Accessed On: 14-May-2019.

[Gra19a] Grammatech. CodeSonar. https://www.grammatech.com/products/codesonar, Ac-
cessed On: 14-May-2019.

[Gra19b] Grammatech. Protecting against Tainted data in embedded apps with static analysis.
White paper available at http://go.grammatech.com/whitepapers/protecting-against-
tainted-data-with-static-analysis/, Accessed On: 14-May-2019.

7 / 8 Volume 77 (2019)

https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20The%20Three%20Software%20Stacks%20Required%20for%20IoT%20Architectures.pdf
https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20The%20Three%20Software%20Stacks%20Required%20for%20IoT%20Architectures.pdf
https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20The%20Three%20Software%20Stacks%20Required%20for%20IoT%20Architectures.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
https://www.gartner.com/en/newsroom/press-releases/2015-11-10-gartner-says-6-billion-connected-things-will-be-in-use-in-2016-up-30-percent-from-2015
https://www.gartner.com/en/newsroom/press-releases/2015-11-10-gartner-says-6-billion-connected-things-will-be-in-use-in-2016-up-30-percent-from-2015
https://www.gartner.com/en/newsroom/press-releases/2015-11-10-gartner-says-6-billion-connected-things-will-be-in-use-in-2016-up-30-percent-from-2015
https://www.grammatech.com/products/codesonar
http://go.grammatech.com/whitepapers/protecting-against-tainted-data-with-static-analysis/
http://go.grammatech.com/whitepapers/protecting-against-tainted-data-with-static-analysis/


Cross-Programming Language Taint Analysis for the IoT Ecosystem

[Huu15] R. Huuck. Iot: The internet of threats and static program analysis defense. In Embed-
dedWorld 2015: Exibition & Conferences. Pp. 493–495. 2015.

[Mat19] Mathworks. Polyspace. https://www.mathworks.com/products/polyspace.html, Ac-
cessed On: 14-May-2019.

[MCF+18] A. K. Mandal, A. Cortesi, P. Ferrara, F. Panarotto, F. Spoto. Vulnerability Analysis
of Android Auto Infotainment Apps. In Proceedings of CF ’18. ACM, 2018.

[MF07] J. Matthews, R. B. Findler. Operational semantics for multi-language programs. ACM
SIGPLAN Notices 42(1):3–10, 2007.

[MPC+19] A. K. Mandal, F. Panarotto, A. Cortesi, P. Ferrara, F. Spoto. Static Analysis of An-
droid Auto Infotainment and ODB-II Apps. Software: Practice and Experience, 2019.
To appear.

[Mye99] A. C. Myers. JFlow: Practical Mostly-static Information Flow Control. In Proceed-
ings of POPL ’99. ACM, 1999.

[Ora19] Oracle. Java Native Interface. https://docs.oracle.com/javase/8/docs/technotes/guides/
jni/, Accessed On: 14-May-2019.

[OWA18] OWASP. Top 10 Project 2017. March 2018. https://www.owasp.org/index.php/
Category:OWASP Top Ten Project.

[PCF+18] F. Panarotto, A. Cortesi, P. Ferrara, A. K. Mandal, F. Spoto. Static Analysis of An-
droid Apps Interaction with Automotive CAN. In Proceedings of SmartCom ’18.
LNCS. Springer, 2018.

[PH99] A. Pioli, M. Hind. Combining interprocedural pointer analysis and conditional con-
stant propagation. IBM Thomas J. Watson Research Division, 1999.

[SBE+19] F. Spoto, E. Burato, M. D. Ernst, P. Ferrara, A. Lovato, D. Macedonio, C. Spiridon.
Static Identification of Injection Attacks in Java. ACM Transactions on Programming
Languages and Systems (TOPLAS), 2019. To appear.

[Son] SonarQube. Analyzing with SonarQube Scanner. https://docs.sonarqube.org/display/
SCAN/Analyzing+with+SonarQube+Scanner.

[Spo16] F. Spoto. The Julia Static Analyzer for Java. In Proceedings of SAS ’16. LNCS.
Springer, 2016.

[Tan15] G. Tan. JNI Light: An operational model for the core JNI. Mathematical Structures
in Computer Science 25(4):805–840, 2015.

[TPF+09] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, O. Weisman. TAJ: Effective Taint
Analysis of Web Applications. In Proceedings of PLDI ’09. ACM, 2009.

InterAVT 2019 8 / 8

https://www.mathworks.com/products/polyspace.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner

	Introduction
	Related Work

	Illustrative Example
	Cross-Programming Language Taint Analysis
	Conclusion

