
Electronic Communications of the EASST
Volume 28 (2010)

Proceedings of the
Third International DisCoTec Workshop on
Context-Aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2010)

Testing self-adaptive applications with simulation of context events

Konstantinos Kakousis, Nearchos Paspallis, George A. Papadopoulos, Pedro Antonio Ruiz

12 pages

Guest Editors: Sonia Ben Mokhtar, Romain Rouvoy, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Testing self-adaptive applications with simulation of context events

Konstantinos Kakousis1, Nearchos Paspallis1, George A. Papadopoulos1, Pedro
Antonio Ruiz2

Department of Computer Science, University of Cyprus1

Integrasys S.A., Esquillo, Spain2

Abstract: Modern trends in mobile computing have raised the expectations of users
in terms of such features such as context-awareness and self-adaptiveness. With
such capabilities, applications can autonomously sense their context and automate a
number of tasks, effectively reducing the attention required by the end users. This
paper presents a custom simulation engine, designed to support the testing of ap-
plications developed using the MUSIC platform. The simulation tool consists of
a platform-independent server module, deployed along with the application, and
a client module which is responsible for interpreting and executing the simulation
script. The use of the tool is demonstrated in the scope of the SatMotion application,
which is designed to assist satellite antenna installers with specialized functionality.

Keywords: Context-awareness, self-adaptation, simulation, context plug-ins, OSGi

1 Introduction

With recent advances in hardware and software for mobile devices, the users have grown to
expect more from their smart-phones. In particular, with the widespread use of sensors and the
pervasiveness of network connectivity, many applications featuring advanced context-awareness
and self-adaptiveness are now possible. Nevertheless, the design, implementation and testing of
such applications remains a work-in-progress, posing significant challenges to their developers.

This paper presents a custom context simulation tool, designed to support the testing of appli-
cations developed using the MUSIC platform. The latter provides modeling tools for design-time
support, along with a middleware architecture used in run-time. The context simulation tool is
used to verify the operation of the designed applications and consists of a platform-independent
server module, deployed along with the application, and a client module which is responsible
for interpreting and executing the simulation script. The use of the tool is demonstrated in the
scope of the SatMotion application, which is designed to assist satellite antenna installers with
specialized functionality.

The rest of this paper is organized as follows: Chapter 2 presents the foundations of the MU-
SIC platform, which is the one targeted by the proposed simulation tool. Next, chapter 3 presents
the functionality and design of the context simulation tool, which is then demonstrated in the con-
text of testing a real application—the SatMotion—in section 4. The paper then discusses related
work in section 5 and closes with the conclusions in section 6.

1 / 12 Volume 28 (2010)



Testing self-adaptive applications with simulation of context events

2 The MUSIC platform

As part of a more general framework [RBD+09], the MUSIC context management middleware
provides developers with both a methodology for designing context-aware applications, as well
as a platform for deploying them [Pas09]. To enable context-aware, self-adaptive applications,
the developers specify their applications in terms of components and configuration plans. The
former are normal self-contained and reusable software entities, commonly termed as software
components [Szy97]. The latter are customized artifacts used to define the composition possibil-
ities for the application [FHS+06]. In this case, the composition variations are defined either in
terms of configurable parameters, or in terms of interchangeable components [MSKC04].

While the composition plans are sufficient to define the adaptation domain of an application
(i.e., the set of possible states it can be adapted to), additional adaptation reasoning mechanisms
are needed for autonomously selecting the optimal adaptation as needed. In the case of the
MUSIC platform, these mechanisms are based on the use of utility functions [AEP+07, PEHP09,
KRW+09]. These provide a means for selecting an adaptation by assigning a utility value to each
possible configuration, in a way that corresponds to their overall fitness to the context. In this
way, it is possible for the middleware to continuously evaluate the context in runtime, and pick a
configuration that optimizes utility, as measured by the utility functions [FHS+06].

An important component of the MUSIC middleware is the context manager, which is of partic-
ular interest to this paper. In MUSIC, context is dealt with as an individual aspect. In this regard,
context clients—including the adaptation reasoning module that evaluates the utility functions—
register with the context middleware for particular context types. In the used context model
[RWK+08a, RWK+08b], the context types are disambiguated via two concepts: the scope and
the entity. The former models the targeted context property (e.g., location, temperature, memory
use, etc) and the latter defines the entity which is described by the property (e.g., my car, the
room I am in, the device I am holding, etc). While the context needs of clients are explicitly
identified, so does the context provided in the middleware. For the latter, pluggable mechanism
is used which allows individual context plug-ins to be dynamically installed and deployed to pro-
vide the necessary context types (e.g., a location plug-in which uses an underlying GPS sensor,
a temperature sensor plug-in that uses a web-service, etc) [Pas09].

The context middleware, as well as the whole MUSIC middleware, are built on top of the
OSGi framework. The functionality of the MUSIC middleware architecture is illustrated in the
SatMotion application, presented throughout the paper.

2.1 The SatMotion application

SatMotion, developed by Integrasys, is an application that runs on PDAs and assists installers
during the process of alignment of satellite antennas that provide broadband access through bidi-
rectional satellite communications. SatMotion allows the control and command of a measure-
ment instrument, normally a spectrum analyzer, from a remote wireless handheld terminal in or-
der to obtain trace information representing electromagnetic signals acquired by the instrument.
Signal traces are retrieved from the measurement instrument by a software server module, then
transmitted wirelessly and finally displayed in real-time on the screen of the remote terminal.
The SatMotion runtime high-level architecture is illustrated in figure 1.

Proc. CAMPUS 2010 2 / 12



ECEASST

Figure 1: Using SatMotion to line-up a VSAT antenna Installation

SatMotion is the main application of a software suite called SatCom. Besides SatMotion, Sat-
Com contains two complementary applications that ease the installer in his daily tasks: First, the
PlaInstallation application is in charge of controlling the connection with the company server, as
well as for authenticating and retrieving the task schedule. The task schedule contains route in-
formation, installation sites and specific tasks to do. Second, the Adap2Nav application provides
navigation facilities to guide the user to the installation site, and provide different interfaces, such
as Graphical navigation mode, Text mode or Voice mode.

2.2 Variability in the SatMotion application

The SatMotion trial is a mobile application whose usability can be affected by several factors, and
therefore, can benefit from MUSIC. In order to maximize the usability, the application exhibits
context-aware behavior that is manifested through the self-reconfiguration of the application.
The selection of the optimal variant depends on the contextual information, as described in the
potential adaptations below:

• The PlaInstallation application connects to a remote service provider in order to download
the installation site/sites. The application uses the network interface available at the mo-
ment (Wi-Fi/GPRS). Depending on the economic cost of the attached network, the middle-
ware decides whether to download just the necessary or all of the information. Therefore,
the amount of downloaded data depends on the currently used network.

• When the installer accepts the tasks in her or his PDA, the platform automatically shows
the optimal route on PDA (Adapt2Nav application). If a Car GPS is detected, the platform
selects it as the optimal interface. Depending on the device type (i.e., PC, PDA or Car
GPS) different versions of the user interface are presented.

• When the installer is aligning the antenna, several applications modes are automatically
offered, depending on the context conditions. The network QoS is the most influential
context parameter during the alignment process:

– TwoWay communication: when there are plenty of network resources. The applica-
tion receives the signal information from the server. Also, it sends commands to the

3 / 12 Volume 28 (2010)



Testing self-adaptive applications with simulation of context events

server to change the setup of the spectrum analyser and consequently the setup of the
application.

– OneWay: When the network does not provide enough throughput for a usable TwoWay
mode, a unidirectional communication mode is selected. This application mode does
not allow neither control nor command of the Spectrum analyzer.

– Text mode: It only receives relevant data (Signal Noise Ratio and Cross Polarization
value) when the network QoS is extremely low.

– Adjust the trace resolution: The resolution of the received signal can also be adjusted
to the quality of the network.

– If the terminal provides signal traces through the satellite network, this service is
selected as the optimal one.

• If several installers are using the server at the same time to align antennas, the SatMotion
Server may not be able to serve all of them. The installer has to wait until a free slot
is available. The installation processes with the lowest priority is interrupted until the
resources become available. The priority of installation is given by the user profile and
client profile.

The main contextual information relevant to the adaptation of the SatMotion application are:

• Application status: A sensor that monitors specific information of the application, such as
the installation sites, alignment status, user profiles, etc.

• User preferred mode: The application provides an interface for the users to set their pref-
erences.

• Network throughput: It is simulated with a sensor plugin.

• Network availability: WiFi, 3G, or None Available.

• Device memory: The available memory of the device for applications.

• Location: The GPS coordinates of the installer.

3 Context Simulation Tool

This section presents the mechanism developed for simulating context events within the MUSIC
middleware. The implementation of this mechanism is provided as an independent application—
not part of the core middleware—allowing the developers to use it only as needed.

This mechanism is directly interfaced with the context middleware. The middleware provides
interfaces (in the form of OSGi services) that enable external components to:

• First, access information concerning the available and required context types (and option-
ally receive asynchronous notification upon their update);

Proc. CAMPUS 2010 4 / 12



ECEASST

• Second, use the simulation mode which allows for the interception of all context data while
blocking a subset of it as needed; and

• Third, create and publish arbitrary context events containing the simulated context values.

The simulation mode is an option, that when set can intercept the flow of all context events
from the providers (i.e., the context plug-ins) so that they do not reach the corresponding context
clients. With this option, it is possible to have complete control of the middleware, so that context
events (both real and simulated) are forwarded to the middleware and the context clients only as
intended by the testers.

The context simulation tool is organized in a client-server architecture. The two sides coor-
dinate via invocations of commands, as formalized by a predefined script (discussed in the next
subsection).

The server side consists of the scenario engine which interprets and executes the commands,
as defined in the script. The client side typically consists of a graphical frontend, that the tester
can use to load, edit, and execute simulation scripts.

3.1 Scenario Engine Dialect

The scenario engine consists of a simple parser that recognizes a set of predefined middleware
commands, and an execution engine that executes the commands on a local (or remote) MUSIC
host. The main purpose of the scenario engine is to enable application and middleware develop-
ers to introspect the context middleware reaction to specific context events. The dialect supported
by the scenario engine includes the following commands:

• logtime - Logs the current date and time. The logtime command has no arguments and
returns the current date and time in milliseconds precision in the format “yyyyy-MM-dd
HH:mm:ss.SSS”.

• sleep int duration - Halts the execution of the script for a predefined number of millisec-
onds. The sleep command accepts a single argument of the integer type.

• memory - Lists the available and the total memory. The memory command has no argu-
ments and returns the amount of free and total memory of the Java Virtual Machine (JVM)
that the MUSIC node is deployed on (in Bytes).

• contextEvent String #entity String #scope String #representation Object[] values - Exe-
cutes a simulated context event. This command generates a new context event as defined
by its four arguments. The first argument specifies the entity of the context event to be
generated, the second one its scope and the third argument its representation. The last
argument is a list of values of any type, enclosed in brackets and separated by commas.
An example is illustrated below.

Example 1:

contextEvent #...Entity.User|myself #...Scope.Location
#...Representation.Location [#Latitude=30.1, #Longitude=31.2]

5 / 12 Volume 28 (2010)



Testing self-adaptive applications with simulation of context events

• invocation String bundleName String serviceName String methodName Object[] argu-
ments - Invokes arbitrary services published by the installed OSGi bundles. The invo-
cation method accepts four arguments and can be used for invoking just any method, of
any service, provided by any resolved bundle. The first argument specifies the bundle’s
symbolic (full) name, the second argument the name of the selected provided service, the
third argument the name of one of the desired method and finally the last argument defines
the list of arguments that the defined method requires. The arguments must be enclosed in
brackets, separated by commas. An example is illustrated below.

Example 2:

invocation org.istmusic.mw.gui.context.viewer TestInvocation
testMethod [false,some string,5.555,5]

The above list contains the commands that are currently supported by the scenario engine.
However, this list can be easily extended to support additional commands, if needed.

As it was mentioned already, the scenario engine is accessed by a frontend graphical applica-
tion. In the current implementation, this frontend is simply a subsystem of a wider visualization
tool, used for monitoring and controlling many aspects of the MUSIC middleware. The simula-
tion script can be loaded from an external text file, or it can be directly typed in a text area inside
the frontend tool. After the simulation script has been loaded it can be executed. The output is
also displayed in a text area of the frontend tool, and is also written to the middleware log. If
needed the contents of the log area can be saved in a separate text file for further study and use.

In the simulation mode the context events are redirected to the visualization tool. The latter
intercepts the events and does not let them back to the system for normal execution. Thus, only
simulated events created in the simulator are delivered to the listeners. The interception mode is
especially useful for testing certain aspects (i.e., context-aware or self-adaptive behavior) of the
applications in isolation of the rest of the context events monitored.

3.2 Distributed simulation

An important feature of the MUSIC middleware is that it supports distributed applications which
involve adaptable components from multiple nodes. In practice, applications might include com-
ponents or services deployed in distributed nodes (which must also run an instance of the MUSIC
middleware). In effect, all the nodes that contribute to an application form a so-called adaptation
domain [AHPE07, AEP+07]. For this purpose, the simulation engine—and the corresponding
script—were enhanced to also facilitate such distributed environments.

As argued already, the scenario engine is organized in two complementary components: the
scenario engine client and the scenario engine server. The client can handle more than one server.
The client sends commands (as parsed from the script) to the server for execution. The server
executes the commands and returns a response which is received by the client. Communication
is initiated by the client side only.

The support for distribution implies some changes in the script as well. For the two com-
mands that is reasonable to expect distributed execution (i.e., contextEvent and invocation), the
[nodeX] prefix is introduced. In principle, when a prefix is not indicated, then the command is

Proc. CAMPUS 2010 6 / 12



ECEASST

Figure 2: Overview of communications in distributed simulation

always executed locally. When the [nodeX] prefix is used (where X can be a integer), then the
command is delegated to the corresponding node.

At this point, the only missing piece is which nodes do the [nodeX] prefixes correspond to.
This is assigned dynamically right before the execution of the script, as shown below.

The first step is the discovery of the available MUSIC nodes and, consequently, the available
instances of the scenario engine server. For this purpose, a service discovery agent is used
to dynamically discover the MUSIC nodes. At a lower level, this is done using the Service
Location Protocol (SLP). For example, in figure 2, the Master node and the two Slave nodes
(i.e., the Windows Mobile and the Android devices) discover and are aware of each other.

The next step is the association of each logical name (i.e., indicated by [nodeX]) with actual
nodes. It is possible during the launch of the script to check whether there are references to
distributed nodes (e.g., to [node1] and to [node2]) and ask the user to manually associate
the actual nodes with the corresponding logical names (e.g., the Windows Mobile and the Android
devices respectively in the example in figure 2). This approach has the important advantage that
the scripts remain agnostic to specific nodes (as indicated by their host names or IPs), and thus
can be reused in different situations with various devices deploying the MUSIC middleware.

4 Demonstrating the Context Simulation Tool in SatMotion

This section presents a scenario, encoded using the proposed scripting language, which is used
to evaluate the context-aware and self-adaptive behavior of the SatMotion application which was
presented in subsections 2.1 and 2.2. In principle, the script dictates specific context changes
which are expected to trigger certain adaptations by the middleware. These adaptations can be

7 / 12 Volume 28 (2010)



Testing self-adaptive applications with simulation of context events

eventually confirmed by examining the log messages.
The initial situation is that the PlaInstallation application is launched and the 3G connection

is available. The script is as follows (comments appear as text after the “%” character):

1. logtime % logs time

2. invocation satcom.plaInstall Authenticate authenticateClient
["login", "password"] % invocation of authentication method

3. sleep 10000 % sleeps 10 seconds

4. logtime

5. contextEvent #...Entity.Device|this #...Scope.WiFi.Signal
#...Representation.Network.Signal [#Strength=0.95] % change
% 3G to WiFi (by making a strong WiFi signal available)

6. memory % logs the available memory

7. sleep 10000 % sleeps another 10 seconds

8. invocation satcom.plaInstall TaskManager accept
% invocation of method that signals tasks acceptance - once,
% the tasks are downloaded and accepted, the navigation
% application is automatically selected by the middleware

9. contextEvent #...Entity.Device|this #...Scope.Location
#...Representation [#Longitude=35.1, #Latitude=33.4]
% changes location

10. memory

The script starts by printing out the time (step 1) and then proceeds by invoking the command
authenticateClient, using as arguments the login and password strings (step 2). At the
next step (3), the simulation sleeps for 10 seconds, and then it resumes with logging time again
(step 4). The next step includes a context change that signifies transition from 3G to WiFi
connection. This is modeled in terms of a context event that shows that the WiFi signal is now
95% strong (step 5). The script then proceeds with printing out details of the memory (step 6)
and then sleeping again for another 10 seconds (step 7). Following that, the TaskManager is
then explicitly asked to accept the assigned tasks through an appropriate invocation (step 8). At
that point, a new context event is triggered, encoding that the location of the user has changed
to a pair of designated longitude/latitude coordinates (step 9). The script ends with printing out
details of the memory (step 10).

11. logtime

12. [node1] invocation navigation NavigationService start

Proc. CAMPUS 2010 8 / 12



ECEASST

13. sleep 15000

14. logtime

15. [node1] invocation navigation NavigationService stop

At this point, the distribution capabilities of the simulation engine are shown. At the next step
(11), the time is logged and then the NavigationService is started on node1 (step 12). This slave
node offers the navigation service which allows the application to receive driving directions. By
making this service available (simply by starting it), the client side of the application is adapted
by binding to the service and start using it (the actual moment that this happens appears in the log
of the adaptation engine). After a small delay of fifteen seconds (step 13) to allow the service to
be started and discovered, and the adaptation engine to respond accordingly, the time is logged
(step 14) and the navigation service is stopped (step 15). This eventually causes the service
absence to be discovered again and the adaptation engine to respond accordingly (with all these
event being recorded in the log).

5 Discussion and related work

Over the last decade much research work has been conducted on self-adaptive software. Several
research groups and individuals have proposed middleware solutions for monitoring and reacting
to context changes [SG02, Hen03, MPF+06, Pas09]. However, only a few works provide appro-
priate tools that aim to simplify the task of testing context-aware applications and frameworks.
As already noted in [MSKC04], compositional adaptation is very powerful, but appropriate tools
are needed to fully exploit its power. The MUSIC Studio aims to provide a suite of tools and
methods that help MUSIC application developers creating applications based on the MUSIC
middleware. The proposed simulation tool has been developed as part of this suite and allows to
monitor and control context changes and visualize adaptation decisions and effects.

Similar to our work, Du and Wang [DW08] have proposed a programming model, an imple-
mentation framework and a development environment that facilitate the development of context-
aware applications. The development environment provides a series of tools to simplify the
development process. The environment is composed of three parts: program integrator, context
change simulator and an interpreter library. The program integrator reduces the users effort on
binding user-defined programs with the implementation framework, by automatically generating
the binding code. The context change simulator provides testability for developed applications.
The simulator can run in two different modes to support high-level application logic testing or
implementation level testing. Finally, the extensible interpreter library reduces the effort on
context conversion by providing a set of reusable and widely used context interpreters. When
compared to our tool, Du and Wang’s framework lack of support for simulating/testing system’s
behavior in the case of distributed adaptation.

In another work, Huebscher and McCan [HM04] have proposed a simulation framework for
context-aware applications targeting developers who want to test their applications’ context and
autonomic logic prior to real-life deployment. Their framework runs on top of another simulation
tool called TOSSIM [LLWC03], a simulator for TinyOS applications. The primary objective of

9 / 12 Volume 28 (2010)



Testing self-adaptive applications with simulation of context events

this work was to simulate the data produced from real sensors while in our case the focus is on
simulating and monitoring the behavior of the applications and context middleware.

Finally, the Rainbow approach [GCH+04] provides a framework for monitoring and managing
a target system throughout the adaptation cycle. Rainbow uses an external adaptation mechanism
based on the utilization of architectural models at runtime. This enables system administrators
to monitor a managed system and its runtime behavior and thus easier detect possible problems.
Cheng et al [CGS06] have proposed a specialized adaptation language for communicating with
the Rainbow framework. This language aims to improve adaptation decision making by cap-
turing more effectively several adaptation factors that are considered relevant to an adaptation
decision. A utility theory-based evaluation mechanism is then used for choosing the adaptation
variant that maximizes user’s utility.

6 Conclusions

This paper presented a context simulation engine developed in the scope of the MUSIC project
to support developers of context-aware, self-adaptive applications into testing their applications.
While many testing frameworks exist in terms of evaluating the functional properties of soft-
ware, little support is provided in terms of testing extra-functional properties such as context-
aware and self-adaptive behavior. The proposed framework achieves that in terms of reusable,
parseable scripts which can be designed to evaluate the correctness and performance of custom
applications. The proposed script format and the simulation framework are evaluated in terms
of describing their applicability in the test of the SatMotion application. For the future we aim
to enrich the scenario engine with more sophisticated commands and provide a graphical repre-
sentation of the middleware performance during the simulation. Finally, the effectiveness of the
tool will be evaluated in the scope of other MUSIC pilot applications as well.

Acknowledgements: The authors of this paper would like to thank their partners in the MUSIC-
IST project and especially Ultan Carrol for his valuable input on the details of the communication
aspects. We would also like to acknowledge the financial support given to this research by the
European Union (6th Framework Programme, contract number 35166).

Bibliography

[AEP+07] M. Alia, V. S. W. Eide, N. Paspallis, F. Eliassen, S. O. Hallsteinsen, G. A. Pa-
padopoulos. A utility-based adaptivity model for mobile applications. In Proceed-
ings of the 21st International Conference on Advanced Information Networking and
Applications Workshops (AINAW’07). Pp. 556–563. IEEE Computer Society Press,
Niagara Falls, Ontario, Canada, May 2007.

[AHPE07] Alia, Hallsteinsen, Paspallis, Eliassen. Managing distributed adaptation of mo-
bile applications. In Proceedings of the 7th IFIP International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS’07). LNCS 4531, pp. 104–
118. Springer Verlag, Paphos, Cyprus, 2007.

Proc. CAMPUS 2010 10 / 12



ECEASST

[CGS06] S.-W. Cheng, D. Garlan, B. Schmerl. Architecture-based self-adaptation in the pres-
ence of multiple objectives. In SEAMS ’06: Proceedings of the 2006 international
workshop on Self-adaptation and self-managing systems. Pp. 2–8. ACM, New York,
NY, USA, 2006.
doi:http://doi.acm.org/10.1145/1137677.1137679

[DW08] W. Du, L. Wang. Context-aware application programming for mobile devices. In
Proceedings of the 2008 C3S2E conference. Pp. 215–227. ACM, Montreal, Quebec,
Canada, 2008.

[FHS+06] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, E. Gjorven. Using architec-
ture models for runtime adaptability. IEEE Software 23(2):62–70, 2006.

[GCH+04] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste. Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure. Computer 37:46–
54, 2004.
doi:http://doi.ieeecomputersociety.org/10.1109/MC.2004.175

[Hen03] K. Henricksen. A framework for context-aware pervasive computing applications.
PhD thesis, The University of Queensland, Sept. 2003.

[HM04] M. C. Huebscher, J. A. McCann. Simulation Model for Self-Adaptive Applications
in Pervasive Computing. In Proceedings of the Database and Expert Systems Appli-
cations, 15th International Workshop. Pp. 694–698. IEEE Computer Society, 2004.

[KRW+09] M. U. Khan, R. Reichle, M. Wagner, K. Geihs, U. Scholz, C. Kakousis, G. A.
Papadopoulos. An Adaptation Reasoning Approach for Large Scale Component-
based Applications. Volume 19, p. 12. Electronic Communications of the EASST,
Amsterdam, Netherlands, 2009.

[LLWC03] P. Levis, N. Lee, M. Welsh, D. Culler. TOSSIM: accurate and scalable simulation
of entire TinyOS applications. In Proceedings of the 1st international conference on
Embedded networked sensor systems. Pp. 126–137. ACM, Los Angeles, California,
USA, 2003.

[MPF+06] M. Mikalsen, N. Paspallis, J. Floch, E. Stav, G. A. Papadopoulos, A. Chimaris. Dis-
tributed Context Management in a Mobility and Adaptation Enabling Middleware
(MADAM). In Proceedings of the 21st Annual ACM Symposium of Applied Com-
puting, Track of Dependable and Adaptive Systems (SAC’06). Pp. 733–734. ACM,
Dijon, France, 2006.

[MSKC04] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, B. H. C. Cheng. Composing Adaptive
Software. IEEE Computer 37(7):56–64, 2004.

[Pas09] N. Paspallis. Middleware-based development of context-aware applications with
reusable components. PhD thesis, University of Cyprus, Sept. 2009.
http://member.acm.org/∼nearchos/phd

11 / 12 Volume 28 (2010)

http://dx.doi.org/http://doi.acm.org/10.1145/1137677.1137679
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2004.175
http://member.acm.org/~nearchos/phd


Testing self-adaptive applications with simulation of context events

[PEHP09] N. Paspallis, F. Eliassen, S. Hallsteinsen, G. A. Papadopoulos. Developing self-
adaptive mobile applications and services with separation-of-concerns. In Nitto
et al. (eds.), At Your Service: Service-Oriented Computing from an EU Perspective.
Pp. 129–158. MIT Press, 2009.

[RBD+09] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli,
U. Scholz. MUSIC: Middleware support for self-adaptation in ubiquitous and
service-oriented environments. In Software Engineering for Self-Adaptive Systems.
Pp. 164–182. 2009.

[RWK+08a] R. Reichle, M. Wagner, M. Khan, K. Geihs, J. Lorenzo, M. Valla, C. Fra, N. Paspal-
lis, G. A. Papadopoulos. A Comprehensive Context Modeling Framework for Perva-
sive Computing Systems. In Proceedings of the 8th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS’08). LNCS 5053,
pp. 281–295. Springer Verlag, Oslo, Norway, 2008.

[RWK+08b] R. Reichle, M. Wagner, M. U. Khan, K. Geihs, M. Valla, C. Fra, N. Paspallis,
G. A. Papa. A Context Query Language for Pervasive Computing Environments. In
Proceedings of the 5th IEEE Workshop on Context Modeling and Reasoning (Co-
MoRea’08) in conjunction with the 6th IEEE International Conference on Pervasive
Computing and Communication (PerCom’08). Pp. 434–440. IEEE Computer Soci-
ety, Hong Kong, Mar. 2008.

[SG02] J. P. Sousa, D. Garlan. Aura: an Architectural Framework for User Mobility in
Ubiquitous Computing Environments. In Proceedings of the IFIP 17th World Com-
puter Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software Architecture:
System Design, Development and Maintenance. Pp. 29–43. Kluwer, B.V, Montreal,
Quebec, Canada, 2002.

[Szy97] C. Szyperski. Component software: beyond object-oriented programming. Addison-
Wesley Professional, Dec. 1997.

Proc. CAMPUS 2010 12 / 12


	Introduction
	The MUSIC platform
	The SatMotion application
	Variability in the SatMotion application

	Context Simulation Tool
	Scenario Engine Dialect
	Distributed simulation

	Demonstrating the Context Simulation Tool in SatMotion
	Discussion and related work
	Conclusions

