
Electronic Communications of the EASST
Volume 21 (2009)

Guest Editors: T. Levendovszky, L. Lengyel, G. Karsai, C. Hardebolle
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the
3rd International Workshop on

Multi-Paradigm Modeling
(MPM 2009)

A Pattern-Based Approach to Manage Model References

Juanjuan Jiang, and Tarja Systä

 10 Pages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ECEASST

2 / 11 Volume 21 (2009)

A Pattern-Based Approach to Manage Model References

Juanjuan Jiang and Tarja Systä

Tampere University of Technology
P.O.Box 553, FI-33101 Tampere, Finland

Abstract: Model references play an important role in model integration, especially when

models belonging to different domains are to be integrated. They are also needed in various
model transformation tasks. In some cases, they need to be instantiated systematically,
following certain rules. This calls for an instantiation specification of model references.

In this paper we propose a pattern-based approach for modeling, specifying, and finally
applying model references. We represent model references as so-called collaboration patterns,
modeled as UML collaborations. We further describe the instantiation rules of collaboration
patterns. A tool has been implemented for establishing the model references according to the
specification, allowing the designer to assist in the process of semi-automated model reference
instantiation. We demonstrate the usefulness of the approach and tools by applying them in
designing Web service orchestrations.

1 Introduction
Reuse of externally provided business assets, e.g. components or data, is common practice

in software development. This can be realized by invoking exposed interfaces or directly
operating external data. Integration of software components can, however, be challenging.
Therefore, support for software integration at both code and design level is desirable. In
addition, tools to guide the software engineer in this task are needed.

Modeling the contents of a software component at different abstraction layers is relevant for
several reasons. For instance, it can be used for guiding the development, especially in model-
driven software development approaches, for documentation, and for serving as a validation
criteria for the implementations.

For integrating different models, possibly belonging to different application domains, model
references [Gre04] that link the models according to the integration requirements are needed.
Such a model reference can be specified e.g. by an UML association. For ensuring that the
model references are instantiated in a desired way, the instantiation sometimes needs to be
done according to a certain order.

For example, let us consider a problem of designing a conference arrangement system. For
cases where a conference is organized in a hotel, the conference system needs to communicate
with the hotel management system. For instance, the organizer of a conference wants to
reserve rooms for meetings in a hotel. The conference may consist of several workshops,
which will take place in the previously reserved rooms. In addition, attendees need to register
to the conference and access the meeting rooms to give a presentation. In this scenario, we can
identify the following requirements for instantiation orders:

1. A workshop takes place in the reserved rooms and
2. Every attendee should register to workshop(s) before they give presentations and thus

access a meeting room reserved for the workshop.

A Pattern-Based Approach to Manage Model References

Proc. MPM 2009 3 / 11

 In this paper we propose a method and tool support for managing references among a set of
models, possibly belonging to different domains. The support covers both specifying the
model references as well as managing their instantiation orders. This is achieved by indicating
model references using UML’s CollaborationUses. We propose

1. A pattern, called Collaboration pattern, modeled as a UML Collaboration, to
characterize model reference between different entities.
2. Use of UML’s CollaborationUses to represent applications of collaboration patterns.
3. A prototype tool that guides the designer in model reference instantiation based on the
usage of collaboration patterns. The instantiation is carried out semi-automatically.

The proposed approach and tool support can be used e.g. for model integration purposes. In

this paper we demonstrate how the approach and tools are used to give semi-automated
support for composing Web service orchestrations that integrate a set of Web service models.

2 Our approach

2.1. Information Reference and Model References

Before introducing the details of our approach, we give a definition for information
references and model references. Let C be a set of UML classes and O a set of UML objects.
Information reference IR, indicating a data reference to another class or object, is defined as a
tuple:

In the above definition, <c1, c2> indicates a directed reference from class c1 to class c2,

while <o1,o2> indicates a directed reference from object o1 to object o2. A model reference is
an information reference that crosses model boundaries. It thus connects elements belonging to
different models.

2.2. UML Collaboration and CollaborationUse

UML Collaboration describes a structure of collaborating elements (roles), performing a
specialized function, which collectively accomplishes the desired functionality [OMG09].
Each role is linked to others by connectors. Collaboration is often used as a means for
specifying a pattern. CollaborationUse, in turn, represents application of the pattern described
by a Collaboration.

2.3. Collaboration pattern - A pattern for model references

We propose a specific pattern, called collaboration pattern to identify a model reference
between two model entities. Collaboration patterns can also be used to identify information
references inside one model. A collaboration pattern owns two roles, a Consumer role and a

o2o1 O,o2o1,,2,1

21c2c1,,c2 c1,

oo

ccC
IR

 ECEASST

4 / 11 Volume 21 (2009)

Provider role, denoted by Rconsumer and Rprovider, respectively. A collaboration pattern
CollP is defined by the following tuple:
CollP = <Rconsumer, Rprovider, <Rconsumer, Rprovider>>,
where <Rconsumer, Rprovider> indicates a model reference between a Consumer role and a Provider
role.

Figure 1. A collaboration pattern

According to the definition, a collaboration pattern is presented as a UML Collaboration

and rendered as a dashed ellipse icon, as shown in Figure 1, where Consumer and Provider
roles are depicted as rectangles. A directed association connecting the two roles indicates an
model reference, namely, a Consumer role refers to (a) Provider roles(s) for retrieving
information. A template parameter called provider_multiplicity identifies the number of
providers the consumer refers to. For example, provider_multiplicity assigned to one means
that a consumer only refers to information from one provider in each instantiation.

2.4. Applying collaboration patterns

Applying a collaboration pattern is a procedure of binding Consumer and Provider roles to
classes, or to the roles in another collaboration pattern, which has been already applied.
Consequently, an entity bound with a Consumer role can access the entity bounded with a
Provider role through the link defined in the collaboration pattern.

The operation of applying a collaboration pattern is defined as follows. Let C be the finite
set of classes the models contain, RO the set of roles that have been bound, and Rcp be the set
of roles contained by a collaboration pattern to be applied. Then the binding operation B of the

collaboration pattern is defined as cpRO ~RC)B(Rcp , which prevents bindings to the
roles of the pattern itself.

The result of applying a collaboration pattern is represented by UML CollaborationUses
with bindings. According to the definition of th binding operation, a CollaborationUse may be
linked to a class or to another CollaborationUse by binding its roles to the roles of the other
CollaborationUse.

Let us continue with the example conference arrangement system. The hotel system and the
conference system can now be integrated by collaborationUses as shown in Figure 2. Each
collaborationUse indicates an application of the collaboration pattern, in which the white box
presents the Consumer role, the grey one presents the Provider role, and the line between roles
indicate an information reference. The bindings of roles are shown by dashed directed lines.
Figure 2 shows four information references, namely, reserve, occupy, register, and access.

A Pattern-Based Approach to Manage Model References

Proc. MPM 2009 5 / 11

Figure 2. An integrated conference arrangement system, including added CollaborationUses

A binding to a class indicates that all instances of this class would be qualified candidates

for the model reference. A binding to a role, say A, however, allows only the instances bound
with the role A to be the valid candidates for the model reference. This feature reflects the first
instantiation condition. Furthermore, the role that casts the binding depends on the role
accepting the binding. The bindings, namely dependencies, among multiple roles of
CollaborationUses imply the instantiation order of model references, that is, the second
instantiation condition.

Figure 3. The instance model of the integrated conference arrangement system

Figure 3 illustrates the two instantiation conditions at the instance level. The ellipses show
the instances of collaborationUses. They are called collaborations hereafter in this paper.
Since the provider role of reserve collaboration is bound with meeting room class in Figure 2,
all the meeting rooms are valid candidates for creating the reserve collaboration. Let us now

 ECEASST

6 / 11 Volume 21 (2009)

assume that the user has chosen meetingroom1 and meetingroom2, which are reserved for the
conference. Again, because the provider role of occupy collaboration is bound to the provider
role of reserve collaboration at the model level as Figure 2 shows, only the objects bound to
the provider roles from reserve collaboration can be chosen at the instance level. As a result,
workshop is indirectly linked to either meetingroom1 or meetingroom2 via the provider role of
reserve collaboration, as Figure 3 shows.

By observing the binding relationships of collaborations in Figure 3, we can conclude the
following: (1) meetingroom1 and meetingroom2 have been reserved for the conference, and
(2) the workshops occupy the meeting rooms reserved for the conference. meetingroom3 is
thus not a valid place to accommodate the workshops, since it has not been reserved by the
conference. According to the binding relationships marked by yellow dots, the provider role of
access collaboration is indirectly bound to meetingroom2. In other words, attendee1 who has
been registered to workshop2 can only access the meetingroom2. From this example we can
notice that the bindings of roles represent the instantiation conditions.

From maintenance point of view, using collaboration patterns instead of associations to
manage model references has several benefits. For example, suppose that the binding marked
by a red dot (dark grey in black and white printouts) in Figure 3 is broken, and thus the
provider role of reserve is disconnected from meetingroom2. Then the bindings marked by
yellow dots (the light grey in black and white printouts), which are directly/indirectly linked to
the provider role of reserve, lead to the provider roles of occupy and access and are indirectly
disconnected from meetingroom2 also. Similarly, if the binding marked by a red dot is
changed to link with meetingroom3, the provider role of occupy and access are
correspondingly indirectly linked to meetingroom3 as well. In other words, if the meeting
rooms reserved for the conference are changed or cancelled, the meeting rooms occupied by
the workshops and accessed by the attendees are also changed or cancelled. Assume that
information references are described by associations or links. If an information reference is
now changed e.g. to cancel one of the reserved meeting rooms, the modelling tool should
generate an event to inform all the objects that are directly or indirectly affected, e.g.
workshop2 and attendee1. Otherwise, the instance model would become invalid. By using
collaboration patterns and with proper tool support, keeping model valid becomes thus much
easier.

A collaboration pattern is suitable for specifying and managing the instantiation conditions
of model references between two neighboring abstraction layers, e.g. between MOF[OMG09]
metamodel layer (M2 layer) and model layer (M1 layer), or between model layer (M1 layer)
and instance layer (M0 layer).

3. Tool support

We have implemented a prototype tool called ModelCollabration to support the use of

collaboration patterns. ModelCollaboration tool collaborates with and another prototype tool,
INARI [Ham04], to utilize its interactive pattern instantiation mechanism. INARI is a generic
tool platform for developing task-based model processing applications.

Usage of INARI and ModelCollaration tools proceeds as follows. First, INARI guides the
user to instantiate model elements, except model references defined in CollaborationUses.
After that, the user chooses a UML element, say A, i.e. an object or a class, created by INARI,
and asks ModelCollaboration tool to create an information reference related to it. After

A Pattern-Based Approach to Manage Model References

Proc. MPM 2009 7 / 11

receiving this request, ModelCollaboration tool searches for the information references in the
instance model, in which the selected element can play the Consumer role. If such an
information reference is found, ModelCollaboration tool continues to search for available
UML elements, e.g. objects in the instance model or roles in collaborations, that can play the
Provider role in this information reference. If any such UML elements are found,
ModelCollaboration tool provides them as suggested candidates for the information reference
to the user. After the user has chosen a pair of UML elements, ModelCollaboration tool
generates a collaboration between the two elements.

To clearly show an information reference, ModelCollaboration tool usually hides the
generated collaboration. Instead it generates an additional link directly between the UML
elements. However, these generated links are used for visualization purpose only. Essentially,
such links point to the links in the collaboration.

4. Example

Web services aim at making machine-to-machine interaction easy by providing a way to

integrate systems loosely and independently from the platforms and programming languages
used. A web services system is a composition of a number of standards that are related and
linked. Consequently, there are a number of collaborations among them. This example targets
at the collaborations of two standards, namely, WSDL [W3C08] and BPEL[OAS08].
Specifically, to generate a BPEL document, information is extracted from the WSDL
documents of cooperating Web services in a step by step fashion.

More specifically, an action in BPEL needs to use a service interface, so that the action can
invoke the operations contained in the linked interface. This action refers to variables in
BPEL, which are required to be typed as the messages contained in the linked operation.
These model references are related. Therefore, we have to instantiate them under certain
conditions based on their relationships. Thus, we add several CollaborationUses to present
model references between a BPEL model and a WSDL model as shown in Figure 4.

INARI is firstly applied to create the BPEL elements that are partly shown in Figure 5. We
have marked BPEL elements by grey colour to distinguish them from the WSDL elements. As
we have discussed, a BPEL document needs some information from a WSDL document. For
example, the user chooses a class, e.g. receive, and asks ModelCollaboration tool to create the
instances of information references related to it. ModelCollaboration tool suggests two
operations (see Figure 5) as the candidate providers of the model reference action2operation.
An information reference has been created between receive and partnerLink1 before
instantiating action2operation. As a result, receive has been indirectly linked to the hotel
service. Therefore, ModelCollaboration tool only returns the instances of the operation defined
in hotel service, namely, get_availaberoom and room_reserver, to the user.

 ECEASST

8 / 11 Volume 21 (2009)

Figure 4. Application of collaboration patterns to integrate BPEL and WSDL models

Figure 5. A screenshot of an instantiation of a model reference

A Pattern-Based Approach to Manage Model References

Proc. MPM 2009 9 / 11

In the BPEL design example, Collaboration patterns are applied to link two different
metamodels (WSDL and BPEL). ModelCollaboration tool was used during the metamodel
instantiation phase to ensure that model references were instantiated correctly based on the
instantiation conditions. Further, with the help of ModelCollaboration tool, the user does not
need to search the whole models and look for the corresponding entities to instantiate model
references. Instead, the entities associated with model references are automatically provided to
the user when requested.

5. Related works

The instantiation orders of model references can also be defined by a given a set of OCL
constraints. These OCL constraints can be evaluated by an OCL engine, which may provide a
true/false feedback or probably an exception report if the evaluation fails. According to the
evaluation results, what the user can do is to try different instantiation ways and re-evaluate the
instance model whether it is valid based on the OCL constraints. We now argue that even such
evaluation results help in instantiation, user still expects more helpful suggestions while doing
the instantiation rather than an evaluation report given afterwards. Furthermore, OCL
constraints are expressed by text and the instantiation order is indicated implicitly by the
evaluation results. From the comprehension point of view, it demands for a visualization to
explicitly specify these instantiation conditions of model references.

 In our solution, model references are specified by UML collaborations, which are in turn
analyzed and serialized into a sequence. In a case where a full specification of interaction
orders and other behavioral aspects are needed, using different diagram types, like UML
interaction and state diagrams, could be used for. That is, however, not our goal. Instead, we
are only interested in assuring the instantiation orders of model references between different
models. Also, we do not assume any global identifies, which would be required for matching
model elements when different diagram types are to be processed in collaboration. Another
important advantage over the use of interaction and state diagrams or OCL constraints is that
our approach can preserve model validity in cases where models are changed, e.g. when model
references have been removed or changed.

Lahtinen [Lah06] has argued that a tool support is needed to assist the creation of models
especially in the case of complex metamodels. Therefore, they propose an approach for task-
driven creation of models, assuming that the metamodel has been given as a UML class
diagram. In their approach, they describe the rules for instantiating metamodel by a so-called
instantiation plan, given in a form of a pattern. Lahtinen’s work can similarly be applied for
instantiations from the model layer to the instance layer. Comparing with Lahtinen’s work, our
approach concentrates on instantiating model references that link several models. Lahtinen’s
work, on the other hand, aims at an overall instantiation of a model. Moreover, our approach
gives the instantiation rules of model references at the model level, still using the form of
UML, whereas Lahtinen’s work describes the instantiation rules in a form of a INARI pattern.

Model weaving is a generic operation that establishes fine-grained links from different
models [Fab05]. It can be applied for several application domains, such as model integration.
The type of links may vary depending on the relationship of elements in the models explored.
A weaving model is not an executable entity. The model operations, e.g. model integration or
translation between data sources, are executed by model transformations that use the weaving

 ECEASST

10 / 11 Volume 21 (2009)

model as a specification [Bez03, Arg03]. A transformation rule might include the rules of
model references. The guards of transformation rules, which should be satisfied firstly to be
able to execute the actual transformation, implicitly indicate the execution orders of rules.
According to our experiences, those transformation approaches are powerful but rather
complicated in specifying the transformation rules. Learning the transformation mechanism
and composing a transformation rule can be a challenging task for a person who is not familiar
with model transformations. Supposed that a model reference is the only problem to be solved
e.g. in model integration, our approach can be a simple but useful option.

6. Conclusions

Software integration is an essential part in today’s software development projects. Quite
seldom software systems are built from scratch. Instead, the new systems reuse existing
components. On the other hand, model-driven software development has rapidly gained
popularity, not only in academic research but also in practice. These trends call for techniques
and tools that support model integration. This, however, is not a trivial task. It requires
techniques for managing model references between the integrated models.

In this paper we have proposed such an approach. More specifically, the approach and built
tool support ensures that the model references are instantiated according to a certain
instantiation order. In the proposed approach, UML CollaborationUses, by which the model
references are specified, are added to link the different models desired to be integrated. The
CollaborationUses might have relations among themselves, which implicitly indicate the
instantiation conditions of the model references. We also use breadth-first searching algorithm
to discover the relationships of CollaborationUses. We have implemented our approach as an
Eclipse plugin, and applied it to BPEL design. The experimental results have shown that the
approach and the tool indeed help the user in instantiating and understanding the model
references.

Our future plans include applying the approach also for other purposes besides model
integration. For instance, a model reference can indicate a correspondence between source and
target models in a model transformation or a relationship between different models to be
synchronized.

Acknowledgements

This research has been financially supported by TEKES, Nokia Research Center, Nokia
Siemens Networks, and Solita. The authors thank Kai Koskimies for his valuable comments.

References

[Gre04] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools, John Wiley & Sons, 2004.
[OMG09] Object Management Group (OMG), Unified Modeling Language (UML),
http://www.omg.org/technology/documents/formal/uml.htm, 2009.
[Ham04] I. Hammouda, J. Koskinen, M. Pussinen, M. Katara, and T. Mikkonen, Adaptable
Concern-based Framework Specialization in UML, In Proc. of the 19th IEEE

A Pattern-Based Approach to Manage Model References

Proc. MPM 2009 11 / 11

International Conference on Automated Software Engineering (ASE’04), 2004, pp. 78-87.
[W3C08] World Wide Web Consortium (W3C), Web Service Definition Language,
http://www.w3.org/TR/wsdl, Dec.2008.
[OAS08] Organization for the Advancement of Structured Information Standards (OASIS),
Business Process Execution Language, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
specification-draft.html, Dec. 2008.
[Lah06] S. Lahtinen, J. Peltonen, I. Hammouda, and K. Koskimies, Guided Model Creation: A
Task-Driven Approach, In Proc. of the IEEE Symposium of Visual Languages and Human-
Centric Computing, 2006, pp. 89-94
[Fab05] M. Didonet Del Fabro, J. Bezivin, F. Jouault, and P. Valduriez, Applying Generic
Model Management to Data Mapping, In Proc. of Base de Donnees Avancees (BDA), 2005,
pp. 17-20.
[Bez03] J. Bézivin, G. Dupé, F. Jouault, and J. E. Rougui, First experiments with the ATL
model transformation language: Transforming XSLT into XQuery, In Proc. of the OOPSLA'03
Workshop on Generative Techniques in the Context of MDA, 2003.
[Arg03] A. Agrawal, G. Karsai, and F. Shi, Graph Transformations on Domain-Specific
Models, Technical report, ISIS-03-403, Vanderbilt University, 2003.

