
Electronic Communications of the EASST
Volume 9 (2008)

Proceedings of the Workshop
Ocl4All: Modelling Systems with OCL

at MoDELS 2007

Specifying Executable Platform-Independent Models using OCL

Pierre Kelsen, Elke Pulvermueller and Christian Glodt

11 pages

Guest Editors: David H. Akehurst, Martin Gogolla, Steffen Zschaler
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Specifying Executable Platform-Independent Models using OCL

Pierre Kelsen, Elke Pulvermueller and Christian Glodt

University of Luxembourg
Faculty of Sciences, Technology and Communication

Luxembourg

Abstract: Model-driven architecture aims at describing a system using a platform-
independent model in sufficient detail so that the full implementation of the sys-
tem can be generated from this model and a platform model. This implies that the
platform-independent model must describe the static structure as well as the dy-
namic behavior of the system. We propose a declarative language for describing
the behavior of platform-independent models based on a hybrid notation that uses
graphical elements as well as textual elements in the form of OCL code snippets.
Compared to existing approaches based on action languages it is situated at a higher
level of abstraction and, through a clean separation of modifier operations and query
operations, simplifies the comprehension of the behavioral aspects of the platform-
independent system.

Keywords: model-driven architecture, platform-independent model, action language

1 Introduction

The vision of model-driven architecture - and more generally of model-driven software devel-
opment - is to enable automatic system generation from models, i.e. to produce software which
is automatically constructed by software based on abstract models. Generation is an industrially
applied practice nowadays. It eliminates some tedious tasks giving time for the more challenging
aspects of the software development process (e.g. the requirements and domain modeling).

Basic approaches underpinning model-driven development may be classified as follows:

• Generation for a limited and/or very specific domain (e.g., embedded systems). These
approaches are closely related to product-line development [2]. The domain determines
the realization details and generation refers to the configuration of pre-defined system
units.

• Generation of skeletons from higher-level models (often UML models). The skeletons
have to be augmented by source code. In general, this is performed manually.

• Generation based on semantic model enrichment. Instead of augmenting the generated
output with realization details, this approach adds additional semantics to the top-level
models. OMG’s action language semantics [16, 1] and the various notational realizations
on top of this standard (e.g., ASL [17], SMALL [13]) count as the most prominent repre-
sentatives for abstract languages used to describe model details.

1 / 11 Volume 9 (2008)



Specifying Executable Platform-Independent Models using OCL

In this paper we focus on the semantic model enrichment approach because it holds the
promise of full code generation and is applicable to a wide variety of systems. This approach
concerns mainly the description of the behavior of a system since UML provides sufficient fa-
cilities for structural modeling. Although UML provides some means of expressing the dynamic
aspects of a system, these are either incomplete (e.g., sequence diagrams) or apply only to certain
types of systems (e.g., systems with a finite number of states) thus restricting their use for full
code generation.

One way of supplementing dynamic information is via an Action Language based on Action
Semantics [1]. Action languages follow an imperative style: they are reminiscent (although more
abstract than) traditional programming languages such as Java or C++. Furthermore, while the
action semantics have been standardized by the OMG, the actual concrete syntax is not part of the
standardization. This brings about the prospect of a plethora of action languages being used for
describing systems, further complicating the task of understanding and sharing the underlying
models.

An alternative approach advocated in [10] is to use OCL for expressing the dynamic behavior
via pre- and post-conditions of operations at the platform-independent level. Unfortunately the
body of the corresponding operation needs to be written in the platform-specific model (using
a traditional programming language) to specify the dynamic behavior. Thus this approach does
not allow the full specification of the dynamics at the level of the platform-independent model.

In an attempt to overcome some of these shortcomings we have developed a small behavioral
modeling language, named EP [8, 9]. This language is based on two main types of elements:
events and properties. Additional related elements and OCL code snippets augment these basic
elements in order to provide an executable specification of the system.

The EP language is able to overcome some of the obstacles of the approaches outlined above:

1. The language is situated at a higher level of abstraction than action languages: much of
the dynamics of an operation can be expressed using a graphical notation. The code snip-
pets that are left are OCL expressions describing functions without side effects. Because
it cleanly separates modifier operations from query operations the EP language is more
declarative than action languages.

2. Unlike OCL-based approaches that specify only pre- and post-conditions, an executable
description of the dynamic behavior of the system can be expressed in the EP language,
thus enabling full code generation.

The remainder of this paper is structured as follows. In the next section we describe the EP
language. Section 3 considers the implications of using OCL and section 4 discusses related
work. In the final section we present concluding remarks.

2 The EP language

2.1 An Example: FlightFinder

To illustrate the declarative language, we will make use of an application called
FlightFinder that will be used as a running example. This application would typically be part of

Proc. Ocl4All 2007 2 / 11



ECEASST

a larger system for performing flight reservations. The application allows the user to enter the
data for his specific travel request, that is, which city he flies from and which city he flies to, the
departure and return dates as well as the number of passengers (adults/children). The user can
query the system for all flights that match the entered data. These flights will be presented in a
list on a separate screen. The system also allows an administrator to add new airports and new
flights.

Even though this example is quite simple it serves well to illustrate the main concepts by not
overburdening the description of the underlying diagrams.

2.2 Structural Modeling

Although our main focus is on behavioral modeling, we need to concern ourselves also with
structural modeling since structural elements will be reused in the behavioral model. For the
structural modeling we make use of standard UML class diagrams with the following modifica-
tions:

• We list as operations only query operations, i.e., operations that do not modify state.

• We add a fourth compartment named ”events” . We may think of events as modifying
operations whose semantics will be detailed in the behavioral model. We note here that
adding named compartments is a facility provided by UML.

• we define initial values of a property using an OCL ”init” constraint - essentially an OCL
expression that determines the initial value of the property

• we define the body of a query operation using an OCL ”body” constraint that describes,
using an OCL expression, what a query operation returns.

These modifications can be expressed more formally using an UML profile (omitted).
Figure 1 shows the static structure of the FlightFinder application: it comprises 8 classes par-

titioned into three packages - the main (unnamed) package containing the main business classes,
the ui package containing classes representing the user interface (three screens) and the system
package containing a single class Date. Note that we have left out the OCL init and body con-
straints (which could be attached as notes to the corresponding properties and query operations)
in order not to overburden the diagram.

2.3 Behavioral Modeling

For behavioral modeling we depart from UML by introducing a new executable language for
modeling the behavior of a system: this language expresses the dynamic behavior of the system
by using events and properties (from which we derive the name – EP – of the language) from the
class diagram as first-class entities. We shall define the EP language by giving its abstract and
concrete syntax as well as its static and dynamic semantics.

2.3.1 Abstract Syntax

In figure 2 we describe the abstract syntax of the language via its UML metamodel. From hereon
we shall use the name EP-model to denote an instance of this metamodel.

3 / 11 Volume 9 (2008)



Specifying Executable Platform-Independent Models using OCL

Figure 1: Class diagram of the FlightFinder application

Proc. Ocl4All 2007 4 / 11



ECEASST

Figure 2: Behavioral Metamodel

The main entities are events, properties and functions. An event can have parameters, each
parameter having a name and a type. An event link connects an event to a child event via a
link property and is labeled with a link property which is either a property or a parameterless
query operation (denoted by the QueryProperty class in the metamodel). Each event link carries
one parameter mapping per parameter of the child event. The parameter mapping is an OCL
code snippet (represented by a Function object) that expresses the value of the parameter of the
child event in terms of the parameters of the parent event and in terms of query operations and
properties of the model containing the parent event. An event can modify the state of the system
by impacting a property in its class: the impact link carries an OCL code snippet that expresses
the new value of the targeted property.

2.3.2 Concrete Syntax

In addition to the abstract syntax expressed by the metamodel we also need to define the concrete
syntax of EP-models. We use the following conventions:

• We represent events as boxes with the event name (prefixed by ”E”) at the top and the
parameters (name and type) listed below.

• We represent the event link by an arrow from the parent event to the child event labeled by
the link property (the property that the link uses) .

• We attach to the event link a note listing the parameter mappings: this is a list of items of

5 / 11 Volume 9 (2008)



Specifying Executable Platform-Independent Models using OCL

Figure 3: View of the EP-model for the addFlight event

Figure 4: View of the EP-model for the searchFlight event

the form <parametername>:<code-snippet> where the code snippet is an OCL expres-
sion.

• We denote a property by a box containing the name of the property and its type (prefixed
by ”P”).

• We denote an impact link using an arrow with an attached note containing the code snippet.

In figures 3 and 4 we show partial views of the EP-model of the FlightFinder system: figure
3 includes those events reachable from the searchFlight event while figure 4 shows the events
reachable from the addFlight event. We present these partial views because the full model would
be difficult to read.

Proc. Ocl4All 2007 6 / 11



ECEASST

2.3.3 Static semantics

The static semantics of an EP-model state the rules that determine whether an EP-model is well-
formed. We describe the rules using natural language:

1. Each event link must carry a parameter mapping for each parameter of the target event
and each such parameter mapping is an OCL expression returning a value whose type
corresponds to the type of the target parameter.

2. The graph induced by the event links on the set of events reachable from a given event is a
directed tree rooted at this event, i.e., each node other than the root event has in-degree 1
in this graph and the root has in-degree 0.
This rule is necessary to ensure that the triggering of an event will not lead to the same
event being triggered twice, possibly with different parameter values. It also ensures that
the graph induced on the events by the event links is acyclic. If we think of events as modi-
fiers (operations that modify state) and of event links as representing modifier invocations,
then this rule prevents an event from leading to an endless loop of modifier invocations.

2.3.4 Dynamic semantics

For the dynamic semantics we have to define the meaning of a well-formed EP-model. At run-
time the system state comprises a set of instances, essentially the object graph complying with the
class diagram describing the static structure of the system. We describe the dynamic semantics
by defining what happens to the system state when an event is triggered on an instance. Let the
old state denote the system state just before an event is triggered and let the new state stand for
the system state right after an event has occurred. The value of a query operation on an instance
is determined by computing the value of the OCL expression on the old state. When an event
is triggered, all properties impacted by this event are set to the values of the OCL expressions
attached to the impact links. For each event link leaving this event we evaluate the link property
(with respect to the old state) to determine the target instance referred to by this link property. We
also evaluate the value of each parameter of the child event by evaluating the OCL expressions
in the corresponding parameter mappings. We then recursively trigger the event on the target
instance with the computed arguments.

We illustrate the dynamic semantics using the example of the searchFlights event from figure 4
. Suppose that the searchFlights event is triggered on an instance of HomeScreen with arguments
departingFrom (code for departure airport) and goingTo (code for arrival airport). The event
link from searchFlights to homeScreenSearchFlights implies that the homeScreenSearchFlights
event will then be triggered on the Main instance that refers using its adminScreen property to
this instance. The value of the arguments of that event are calculated using the OCL expressions
attached to the event link: in this case the arguments from searchFlights are simply passed
on unchanged. The event links from homeScreenSearchFlights to setVisible and setResults in
the ResultScreen model indicate that these two events are now triggered (in arbitrary order) on
the ResultScreen instance referred to by the resultScreen property of the Main instance. The
setVisible event is triggered with argument true (see code snippet); this event impacts the visible
property by setting it to the value of the visible parameter, that is, to true (see code snippet on

7 / 11 Volume 9 (2008)



Specifying Executable Platform-Independent Models using OCL

the impact link). The setResults event is triggered with an argument given as a set of result
flights (indicated by the type - Set(Flight) - of the results parameter). The value of this argument
is given by invoking the searchFlights operation on the FlightStore instance referred to by the
Main instance via its flightStore property (see class diagram).

3 Use of OCL

In this section we discuss the use of OCL within the context of our behavioral modeling language.
Let us first summarize where OCL is used in our modeling approach:

1. At the class diagram level OCL constraints are used to express the initial values of prop-
erties and the body of query operations.

2. at the level of the EP-model, OCL expressions are attached to event links and to impact
links.

At the structural level we have separated query and modifier operations. While query oper-
ations are defined in the structural model via OCL expressions, the definition of the modifier
operations (the ”events”) is relegated to the EP-model. In the EP-model OCL expressions are
used for defining parameter mappings on event links and new property values on impact links.
The benefits of clearly separating query from modifier operations are well recognized [14, 3].
Indeed freely mixing calls to modifier operations and query functions, as is currently done in
action languages, makes it difficult to understand the effect an operation has on the system state
and thus negatively affects the effort needed to comprehend a system.

In a sense we are using OCL as a functional programming language that includes object nav-
igation facilities. The original intention for OCL is to express constraints on UML models. We
believe its use as a ”programming language” is justified in this context by the fact that the code
snippets are combined with UML models and EP-models: traditional functional programming
languages are not easily adapted for this purpose. Furthermore the abstract nature of OCL, i.e.,
the fact that it is quite independent of any platform makes it a good candidate for annotating ele-
ments of a platform-independent model. Since OCL expressions are side-effect free and modifier
operations are clearly separated from the query operations, this behavioral description of the sys-
tem should be easier to understand in the same way that a functional program is often easier to
understand than an object-oriented one.

One drawback of using OCL is the lack of certain features that are taken for granted in more
traditional programming languages. We give only two concrete examples: there are no built-in
type Date or Time and there is no operation on the String type that tests whether another string
is a substring of a string. If we want to use OCL for realistic examples we need to extend it so
that we can express the behavior of a large system.

More seriously OCL 2.0 does not seem to be Turing-complete in the sense that OCL expres-
sions only represent primitive recursive functions [12]. As pointed out in [18] the expressiveness
of OCL can be increased by adding recursive operation invocations. We allow this by permitting
the OCL expression for a query property with parameters to refer to itself. As explained in [18],
however, this results in a Turing-complete expression language, at the cost of not being able to
guarantee termination of an expression evaluation.

Proc. Ocl4All 2007 8 / 11



ECEASST

4 Related Work

We discuss some existing approaches for behavioral modeling of platform-independent mod-
els. The main approach advocated by the OMG group for model-driven architecture are action
languages that conform to the Action Semantics. The Action Semantics describes the abstract
syntax and semantics of action languages but does not propose a concrete syntax. Examples of
concrete action languages are the Action Specification Language (ASL) [17, 11], the Bridge-
Point Action Language (AL) [7], the Kabira Action Semantics (Kabira AS) [6], and the action
language subset of the Specification and Description Language (SDL), an international standard
widely used in the telecommunication industry [19]. The multitude of different action languages
is a first problem we encounter when using action languages.

A more fundamental problem is the intermixing of non-modifying actions and modifying ac-
tions. Indeed according to the Action Semantics an action can compute values, navigate and read
properties and call query operations but it can also write properties and call modifying operations.
In this sense a program written in an action language is similar to one written in a traditional im-
perative or object-oriented style. This intermingling of modifying and non-modifying actions
contributes much to software complexity; a clear separation is a definite argument in favor of our
approach. The following code snippet is written in the ASL action language and expresses the
setting of the results and the visible properties in the ResultScreen:

rs2:setVisible[TRUE] on resultScreen
{theSet} = fs1:searchFlights[leavingFrom,goingTo] on flightStore
rs1:setResults[{theSet}] on resultScreen

This example illustrates the mixing of calls to query operations (searchFlights ) with invoca-
tions of modifier operations (setResults and setVisible). It also shows that the sequential execu-
tion is fixed in the action language by the order in which the actions were written down. This is
an undesirable feature of imperative languages that is not present in our declarative approach.

We remark that there were attempts to align action languages with the OCL by embedding
OCL expressions into new syntax constructs for actions [5]. That result can be seen as an instance
of the more general problem of behavioral modeling with OCL, a problem to which we provide
a more declarative solution in the present paper.

Action languages are also used at higher levels of abstraction - such as in Kermeta [15] - itself
inspired from the UML action language Xion [15]. In Kermeta an action language is used to
define the behavior of MOF models. The action language itself is imperative and object-oriented
and thus suffers from the same shortcomings as traditional UML-based action languages.

5 Conclusion

In this paper we have presented a declarative language for behavioral modeling of platform-
independent models. Existing approaches are mainly based on textual action languages that
are imperative in style. The main advantage of our approach is a clear separation of modifier
operations and query operations that facilitates the comprehension of the behavior of a platform-
independent system.

Unlike traditional action languages our behavioral description language is composed of graph-
ical as well as textual elements, the latter being composed of code snippets representing side-

9 / 11 Volume 9 (2008)



Specifying Executable Platform-Independent Models using OCL

effect free OCL expressions. In this paper we have shown that OCL is well-suited in this context
since it is platform-independent and is Turing-complete, provided we allow recursive query calls
in expressions. Further work is needed to:

• investigate extensions of OCL for behavioral modeling of realistic systems (in combination
with a declarative language such as EP); these extensions will at the least require additional
OCL types and operations that are currently lacking

• provide tool support for modeling platform-independent models with the goal of fully au-
tomatic code generation. We have developed a first prototype supporting abstract model-
ing; it is based on the DEMOS tool [4] that supports platform-specific executable modeling

• analyze the scalability of our approach to large software systems; the availability of a
suitable tool is a precondition for this investigation

• investigate the application of our behavioral modeling approach to systems in which dif-
ferent aspects are expressed using different domain-specific languages

Bibliography

[1] Alcatel, I-Logix, Kennedy-Carter, Inc. Kabira Technologies, Inc. Project Technology, Ra-
tional Software Corporation, and Telelogic AB. Action semantics for the UML. In Docu-
ment ad/2001-03-01. OMG, 2000.

[2] K. Czarnecki and U.W. Eisenecker. Generative Programming - Methods, Tools, and Appli-
cations. Addison-Wesley, 2000.

[3] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley, 2004.

[4] Christian Glodt and Pierre Kelsen. Demos: a tool for declarative executable modeling of
object-based systems. In OOPSLA Companion, pages 716–717, 2006.

[5] Stefan Haustein and Jörg Pleumann. OCL as expression language in an action semantics
surface language. In Octavian Patrascoiu, editor, Workshop on OCL and Model Driven
Engineering, UML 2004 Conference, pages 99–113. University of Kent, 2004.

[6] Kabira Technologies Inc. Kabira Action Semantics. http://www.kabira.com.

[7] Project Technology Inc. BridgePoint Action Language (AL). http://www.projtech.com.

[8] Pierre Kelsen. A simple static model for understanding the dynamic behavior of programs.
In 12th IEEE International Workshop on Program Comprehension (IWPC’04), pages 46–
51, 2004.

[9] Pierre Kelsen. A declarative executable model for object-based systems based on func-
tional decomposition. In ICSOFT (1), pages 63–71, 2006. full version availble at
http://lassy.uni.lu/demos/documentation/TR LASSY 06 06.pdf.

Proc. Ocl4All 2007 10 / 11

http://www.kabira.com
http://www.projtech.com


ECEASST

[10] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

[11] Kennedy Carter Ltd. Action Specification Language (ASL). http://www.kc.com.

[12] Luis Mandel and Marı́a Victoria Cengarle. On the expressive power of OCL. In Proc.
FM’99 – Formal Methods, World Congress on Formal Methods in the Development of
Computing Systems, Toulouse, France, volume 1708 of Lecture Notes in Computer Science,
pages 854–874. spv, 1999.

[13] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled: Principles of
Model-Driven Architecture. Addison-Wesley, Boston, 2004.

[14] Bertrand Meyer. Object-oriented software construction (2nd ed.). Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1997.

[15] Pierre-Alain Muller, Philippe Studer, Frédéric Fondement, and Jean Bézivin. Platform in-
dependent Web application modeling and development with Netsilon. Software and System
Modeling, 4(4):424 – 442, 2005.

[16] OMG. OMG Unified Modeling Language Specification (Action Semantics)., January 2002.

[17] C. Raistrick, P. Francis, and J. Wright. Model Driven Architecture with Executable UML.
Cambridge University Press, 2004.

[18] Mark Richters. A Precise Approach to Validating UML Models and OCL Constraints. PhD
thesis, Universität Bremen, Logos Verlag, Berlin, BISS Monographs, No. 14, 2002.

[19] International Telecommunication Union. Specification and description language
(SDL),Technical Report Z.100, ITU-T, 1999.

11 / 11 Volume 9 (2008)

http://www.kc.com

	Introduction 
	The EP language
	An Example: FlightFinder
	Structural Modeling
	Behavioral Modeling 
	Abstract Syntax
	Concrete Syntax
	Static semantics
	Dynamic semantics


	Use of OCL 
	Related Work 
	Conclusion

