
Electronic Communications of the EASST
Volume 74 (2017)

7th International Symposium
on Leveraging Applications of Formal Methods, Verification

and Validation
-

Doctoral Symposium, 2016

Towards Reuse on the Meta-Level

Dominic Wirkner, Steve Boßelmann

11 pages

Guest Editors: Anna-Lena Lamprecht
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Towards Reuse on the Meta-Level

Dominic Wirkner1, Steve Boßelmann2

1 dominic.wirkner@udo.edu
2 steve.bosselmann@cs.tu-dortmund.de

Chair for Programming Systems, Department of Computer Science, TU Dortmund University,
44227 Dortmund, Germany

Abstract: Modern software development peaks in complex product lines and uti-
lizes features of programming languages to their full extend. On the other hand,
model driven development shines by abstraction from implementation details to ease
communication between programmers and domain experts. In this paper an exten-
sion to the language family of the CINCO Meta Tooling Suite is proposed, which
allows a more flexible and efficient way to reference elements between different
models. The definition of how representational elements reference their origins in
another model is shifted away from code-level to make it accessible to domain ex-
perts. It also enables the possibility to reuse such specification without the need
for code or model duplication. In addition, validation and needed updates between
referenced elements and their representation is supported by a centralized trans-
formation definition. This highly stretches reuse of implementation to overcome
reoccurring problems in the context of inter-model references and acts as one part
of a foundation for developing software product lines with the CINCO framework.

Keywords: model driven development, software product lines, cinco meta tooling
suite, graphical modeling

1 Research Motivation

Since the early days of programming developers tried to optimize development time and mainte-
nance costs to ensure a desired level of quality. One key part in this challenge is minimizing code
duplication. This is getting more and more difficult due to increase of complexity in modern soft-
ware systems. Nowadays this complexity is reflected by the emerging use of Software Product
Lines (SPLs). Classical SPLs consist of a core part and a collection of features, which some of
them are mutually exclusive and other ones are purely optional. The definition of rules for feature
combination builds its own scientific field [BPS04, LNS13, VV11] and achieving a desired level
of source code reuse requires an implementation language to have sufficient expressive power.

Typical continuous evolution of SPLs, which is supported by version control systems, faces the
problems of software variants. This leads to a variability problem in space and time [SSA14].
Finding a language that is capable of dealing with different variants and versions of software
components, which means definition (design-time) and execution (runtime) of behavior, is an-
other challenge to solve. General-purpose programming languages are capable to offer a solu-
tion for this problem, but they disadvantage application experts that typically lack programming
knowledge.

1 / 11 Volume 74 (2017)

mailto:dominic.wirkner@udo.edu
mailto:steve.bosselmann@cs.tu-dortmund.de


Towards Reuse on the Meta-Level

Through history, a major motivation in the design of programming languages has been the
strive for simplicity in terms of language features that enable definitions in a simple yet precise
manner. To achieve simplification for a specific domain the introduction of new language features
might even come along with the sacrifice of expressiveness. As an example, the replacement of
GOTO statements by means of various loop constructs means a reduction in expressive power.
On the other hand, this step made it possible to define what happens without the need to dictate
how it is performed. Such a shift from how to what has repeatedly been motivation for the
development of domain-specific languages that pursue a declarative approach instead of using
imperative instructions.

Within the last decade the paradigm of Model Driven Development (MDD) has become quite
popular because of its ability to narrow the gap between application experts and software de-
velopers [SM09]. Furthermore, providing a One-Thing Approach (OTA) i.e. a common and
corresponding software is key for reaching such goal [MS09]. Driven by the aspect of simplicity
[NNL+13] and full code generation [KT08] the CINCO Meta Tooling Suite has been developed
[NLKS17], which supports an application expert by generating a graphical model editor from
defined meta models. The analysis of the development process based on various applications of
CINCO [BNNS16, BFK+16] highlighted possibilities for improvements in reusing parts of meta
models to increase the benefits of OTA even further.

Up to this point, general-purpose languages are capable of defining SPLs, but application ex-
perts that rely on domain knowledge instead of source code can hardly access them. On the
other hand, modeling environments like those created with CINCO support application experts,
but lack the possibility to implement SPLs. There are some first concepts to enhance CINCO by
bootstrapping new features and reusing implemented effort [NNMS16]. However, achieving a
complete model driven SPL development with CINCO requires enhancements on the core lan-
guage concepts.

One major problem to overcome is a specification of meta model families and the linking
between their languages without redefinition and duplication. The first question to answer is
whether there are existing mechanisms, e.g. in programming languages which can be integrated
and advanced on a model level. Beyond that other aspects could be considered such like model
transformations. The goal is to establish an easy reuse of meta models, or parts of them, to enable
time-efficient and error-minimizing design of meta model families.

In the following Section 2 some related work is presented which served as inspiration to this
research and ideas for possible solutions. Section 3 gives a brief introduction to the CINCO Meta
Tooling Suite and how model reuse is implemented today. This leads to reoccurring problems
which are described in Section 4. In Section 5 we introduce a more potential solution for model
reuse in CINCO to overcome these problems. Finally Section 6 concludes presented results and
gives some outlook to our future work.

2 Related Work

A different but very related problem to reuse implementation effort is the famous expression
problem [Wad98], which addresses the question on ”how to extend a program?”. Usually an
efficient solution is requested and efficiency is understood in terms of source code complexity.

ISoLA DS 2016 2 / 11



ECEASST

The problem can be extended by limitation of recompiling or redeployment of old program parts.
Although the problem came up at the end of the last century, research for solutions never stopped
[Tor04, WO16, LH06].

Furthermore, pure::variants1 has to be mentioned as a software, which already provides devel-
opment of product lines in an integrated environment but only on a source code level.

Leaving the technical level of source code, some published results can be found in the sector
of MDD. The concept of archimedian points [SN16] addresses the aspect of transforming a
new variant of a meta model to an older version to enable reuse of meta model languages and
corresponding code generators. The idea of splitting the meta model up into fragments and
reusing them as extensions in other ones is proposed in [RVMS12].

Besides these general design concepts, there are at least two more practical approaches which
define and implement SPLs in MDD. [DSW14] covers a more declarative way to distinct vari-
able features by only describing their differences. In [GV09] the paradigm of aspect oriented
programming is applied on the model-level to propose not only a declaration, but also a model-
to-code transformation to implement software variants.

Development of product lines not only results in the question of extensibility as part of variant
management. The paradigm of higher-order process modeling in the context of MDD, which is
researched in [NSM13], can also provide mechanisms to improve the flexibility of meta model
declaration.

3 Meta Tooling with CINCO

The CINCO Meta Tooling Suite [NLKS17] offers a development environment for graphical mod-
eling tools. Based on textual specifications a complete Eclipse-RCP-based Integrated Modeling
Environment (IME) is created by full code generation. These textual specifications consist of the
Meta-Graph-Language (MGL) to define the meta model and a description of appearances in the
graphical editor by the Meta-Style-Language (MSL).

In addition, the IME can be enriched with model validation, which is either generated from
the meta model or manually implemented. To support development on tool level CINCO offers
integration of code generators for specified meta models. This allows to create domain-specific
graphical modeling environments only by a few lines of specification.

Listing 1 gives an example specification of a simple meta model for control flow. A model has
a name and can contain nodes of types Start, Activity and End of which Start nodes
are limited to exactly 1 and End nodes to at least one. All of these are connected by edges of
type Transition. The model elements Activity, End and Transition are labeled. A
sample model is shown in Figure 1.

A proper addition to the meta model would be a possibility for model hierarchy. This enables
a first level of model reuse similar to procedural programming on code level. To reuse a model a
”procedure call” has to be defined and used. Because models in general do not always represent
any sort of control flow these ”calls” are described by representational model elements.

From a graphical modeling perspective, the creation of a reference is initiated by dragging
a specific model or any of its inherent elements and dropping it on the active workbench. In

1 www.pure-systems.de

3 / 11 Volume 74 (2017)



Towards Reuse on the Meta-Level

1 graphmodel ControlFlow (
2 attr EString as name
3 containableElements(
4 Start(1,1),Activity(0,*),End(1,*)
5 )
6 node Activity (
7 attr EString as label
8 incoming(Transition(1,*))
9 outgoing(Transition(1,*))

10 )
11 node Start (
12 outgoing(Transition(1,1))
13 )
14 node End (
15 attr EString as label
16 incoming(Transition(1,*))
17 )
18 edge Transition (
19 attr EString as label
20 )
21 )

Listing 1: ControlFlow.mgl Figure 1: A sample ControlFlow

general, the reference to another model needs to be represented in the current model in some
way. The CINCO framework supports the automatic registration of a drop handler to be called
whenever such a drag-and-drop action is performed.

This drop handler represents the junction point between model references and defined seman-
tics as it typically triggers code for creation of the model elements that represent specific artifacts.
These may span the model itself, any of its inherent elements as well as any other artifact that is
somehow associated with any of these.

To model a switch into another model and handle possible outcomes the meta model is ex-
tended with an additional node and edge type. Listing 2 shows necessary additions on the meta
level. A new SubModel node is introduced which represents the switch of control to the start
node of another model. First, it inherits from Activity and therefore has a label and incoming
Transitions. Second, it overrides outgoing edges to type Branch. A new edge type is in-
troduced to represent possible outcomes of the underlying control flow model, which reference
to according End nodes in the submodel symbolically.

Third, a prime attribute is defined of which a model element can only have one. This is
the actual reference to another model element and establishes a link between these. In this case
the attribute submodel references the other ControlFlow model. Other specifications are
also imaginable: The prime reference could point directly to the Start node and additionally
Branch edges could have been referenced by a prime attribute to an End node.

In Figure 2 the control flow of Figure 1 is reused as follows: The SubModel node references
the reused ControlFlow model in the prime attribute. The possible multiple outcomes in
form of End nodes are represented by outgoing edges of type Branch and labeling them ac-
cordingly.

The simple example shown in Listing 2 and Figure 2 shows how references between model

ISoLA DS 2016 4 / 11



ECEASST

1 ...
2 node SubModel extends Activity (
3 prime ControlFlow as submodel
4 outgoing(Branch(1,*))
5 )
6

7 edge Branch extends Transition (
8 )
9 ...

Listing 2: Extending ControlFlow.mgl Figure 2: Sample of model hierarchy

elements can be defined in CINCO meta model specifications. Note that it is possible to even de-
fine references across instances of different meta models. Potential problems as well as possible
solutions in this context are presented in the following sections.

4 Solution Approaches and Recurring Problems

References to some artifact, e.g. to another model, need to be somehow represented in the
current model. This usually means presence of a set of specific model elements, each of which
representing the referenced artifact itself or another artifact that is somehow associated with the
referenced one. However, as these representational model elements share a common relation to
the referenced artifact they form associated components, as a whole referred to as a compound
throughout the following discussion. Handling these compounds on the model level comprises
the following aspects:

• Initialization: As soon as the respective reference has been created the compound needs
to be initialized by means of creating all associated model elements and setting up their
attributes.

• Updating: The compound is to be updated if the referenced artifact changes, i.e. refactor-
ing to rebuild structural integrity - be it automatically or in a manual manner.

• Validation: The structural integrity of the compound should be checkable to generate a
warning or error if incorrect.

• Deletion: The compound should be deletable by means of deleting all associated model
elements at once.

Before a structured approach to the realization of these aspects is described, it should be men-
tioned that in practice we found that the realization of these aspects often is not pursued in a
uniformly structured manner. One reason for this are developers that follow naive approaches

5 / 11 Volume 74 (2017)



Towards Reuse on the Meta-Level

without a view of the whole. Another reason is intentionally independent development effort
due to separation of concerns. As an example, the validation of models might be developed inde-
pendently from the structural logic or graphical representation of the model elements. However,
along with a potential lack of consultation between the developers in the worst case this might
lead to multiple separate implementations for each of these aspects with scattered semantics due
to distributed logic as well as a substantial amount of code duplication.

A structured approach to the realization of the compound-related aspects can be achieved with
written code that relies on a suitable data structure. The latter should reflect both the inherent
structure of a specific compound as well as the underlying reference to the respective artifact.
The logic that covers each of the compound-related aspects (initialization, updating, validation
and deletion) can build upon this data structure. This logic only slightly differs depending on
each respective aspect:

• Initialization means creating all necessary model elements associated to a compound ac-
cording to the current state of the referenced artifact.

• Updating first of all requires the identification of already existing compound-related model
elements. These need to be synchronized with the model elements that should exist ac-
cording to the current state of the referenced artifact. Obsolete elements need to be deleted
while missing elements need to be created. Note that it is not an efficient solution to
completely remove and re-insert the model elements associated with a compound because
existing ones might have been customized by the user and deletion as well as creation
might trigger additional model-transforming routines that probably should not (again) be
triggered.

• Validation - like updating - requires the identification of already existing compound-
related model elements. But instead of restoring structural integrity, it is only checked
by means of comparing the model elements that exist to those that really should exist
according to the current state of the referenced artifact.

• Deletion also rests upon the identification of existing compound-related model elements.

Altogether, the realization of each of these compound-related aspects in total makes up the
synchronization logic. It can be defined in a generic manner as it is independent of the type
of elements that actually are handled. In particular, it can be separated from the structural in-
formation about a specific compound as it all comes down to identifying and comparing model
elements related to a compound. However, the implementation requires the existence of routines
to compare, add and delete model elements as typically provided by the modeling framework,
e.g. by CINCO .

The focus lies on reusability of compounds, and as already mentioned above a suitable data
structure reflects the structural information about a compound, i.e. it defines the referenced arti-
facts for each compound-related element and provides a matching routine to determine whether
an existing model element represents a specific artifact. Applied to the example shown in List-
ing 2 and Figure 2, the data structure holds the information that the compound consists of a
SubModel node and various branches, i.e. edges of type Branch. Additionally, it holds
the information that each branch represents an End node of the referenced model whereas the

ISoLA DS 2016 6 / 11



ECEASST

SubModel node somehow represents the referenced model itself. A corresponding matching
routine would check whether a suitable Branch edge exists for each represented End node, i.e.
the edge exists and its label equals that of the respective End node.

In this example, the compound consists of a SubModel node and Branch edges. However,
the focus lies on reusability of compounds and the actual type of represented artifacts may de-
pend on the concrete reuse scenario. Hence, the fact that the artifacts represented by Branch
edges are the End nodes of a referenced model is characteristic of the implementation in terms
of the specific use case of this example. This circumstance can be reflected in code. Consider
an abstract data type SubModelCompound to hold abstract methods getSubModel that re-
trieves the referenced model as well as a method getBranchReferences that retrieves the
artifacts to be represented by Branch edges. The reuse of the compound would be achieved
via multiple concrete implementations of the abstract data type, each of which pointing towards
a specific type of model as well as specific type of branch references. This requirement can be
tackled by means of type parameters in the context of generic programming.

The depicted approach based on written code is scalable to an arbitrary number of model
elements that make up the actual compound. From an abstract point of view, the depicted so-
lution - though it is implemented in source code - already has a declarative tendency, because
in essence the concrete parts of an implementation link representational elements to those that
are actually represented. The logic regarding initialization, updating, validation and deletion can
be defined on abstract types and is independent of the concrete reuse scenario. This observation
leads to ideas for a realization on a higher level of abstraction to be described in the next section.

5 Language Improvements via Linking Model

In the previous section reoccurring problems were presented in managing model elements and
their representations and also a solution to this on source code level was introduced which made
use of a general description of the relation between original and representational elements. Al-
though this works fine for the moment this idea still has some essential drawbacks on a practical
level.

One is that the description of how something is represented with model elements is hidden
on source code level from the domain expert. Without programming knowledge, it is not pos-
sible for him to change the behavior of the modeling tool when creating such representational
elements. Instead, this could also be understood as a model transformation from original ele-
ments to some representation, which leads to the various different ways to describe such one and
some of them are likely known by domain experts. This gives them the possibility to specify
application semantics with more detail by themselves.

Another problem relates to the strict linking between origin and representation by the existent
prime attribute. The solution allows to reuse models or model elements, but some kind of
reuse for the representation is denied. The model transformation implemented on source code
level does only handle structural information. But because it creates a graphical representation
there are more aspects that need to be considered, like creating a desired layout for these model
elements.

An example to a more complex transformation in the context of the DyWA Integrated Model-

7 / 11 Volume 74 (2017)



Towards Reuse on the Meta-Level

(a) Process model (b) Process representation

Figure 3: Reuse of process models in DIME

ing Environment (DIME) [BFK+16] is given in Figure 3. DIME is a CINCO product for specifi-
cation and generation of web applications. On the left side a shortened Process model of DIME
[BFK+16] is shown. A Process in DIME is much like the control flow in Figure 1 but with
added support for data flow aspects. As only the start and ends of such model are relevant for
the discussion, the actual process logic in between is not show in the figure. It translates to its
representation shown on the right side. A Process not only has a start and multiple ends, but
these also have so called ports which represent input parameters and return values.

Besides application behavior the user interface has also to be modeled. Therefore, it offers
the meta model GUI which has to be integrated in process models to enable manipulation by
program control flow. By design, to have a somewhat consistent look of process models, the
representation of GUI models in a process is very similar to the one shown in Figure 3. Although
the transformation of a GUI model in a process on a structural level is very different, the graphical
layout for the representation should be reused both for Process and GUI models. Therefore, it
is necessary to decouple the strict linking of representational model elements by the prime
attribute in a MGL to their origins.

The solution proposed in this paper centers around expanding the CINCO language family by
a new meta model specialized on loose linking of model elements to replace the existing prime
attribute. To satisfy the needs the new meta model has to offer a minimum set of properties to
describe a reference:

Source It must be possible to define to which model or model element something is referenced
to. On tool level this describes which object can be dragged on the modeling canvas.

Container Possible areas need to be specified, where dragged objects can be dropped. In the
context of CINCO this means a set of container model elements.

Target The compound model element links to the source and can be reused in multiple scenar-
ios. The actual definition of such compound will still be done in the MGL model.

ISoLA DS 2016 8 / 11



ECEASST

Handler A description of how the source is translated to the target is needed. This basically
replaces the source code solution of Section 4 and extends to the possibility to use any
transformation language. The linking between model elements is decoded in the transfor-
mation and can be dynamically created on runtime.

Applied to the example of Listing 2 the prime attribute is removed and instead one descrip-
tion tuple of loose linking is created. Based upon this information the familiar tool behavior can
be maintained. CINCO uses the source and container information to call the appropriate handler
in the form of a transformation when a control flow is dropped on the canvas. The transfor-
mation outputs a structure of a SubModel node with connected Branch edges. Additional
functionality like layout-creation is separated from the transformation and could therefore be
reused whenever elements of the target compound are created.

With this model the translation semantic of model elements to their representation could possi-
bly be done by a domain expert. If then another meta model is integrated e.g. in this control flow
model, a second tuple of loose linking has to be created, which includes writing a specialized
transformation for that case. But this could purely be done again by the domain expert as it is
not hidden in the source code. Also representational element definitions and related layouts are
reused automatically and because the creation of representations and keeping them synchronized
with their origin is generalized the benefits of the solution discussed in Section 4 still apply.

6 Conclusion

In this article we proposed a solution for specification duplication in the context of inter-model
references. Exemplary shown for the CINCO Meta Tooling Suite the idea of a loose linking
model has been introduced, which supports domain experts in their specification of modeling
tool behavior and meta model description. The new model separates the concerns of model def-
inition and tool behavior by means of shifting the specification of references and corresponding
representations from the source code to a declarative language, hence making them accessible
for domain experts without programming knowledge. Additionally, it enables the reuse of rep-
resentational compound elements for different purposes. It facilitates syntactical correctness in
terms of valid references and thus reduces implementation effort. However, basic tool features
like layout-creation for now remain on code-level. Applying the same level of abstraction on
these aspects might be a topic of future work.

The depicted idea to enhance the CINCO Meta Tooling Suite towards optimizing development
time of software product lines is only one out of many. The next steps will address the implemen-
tation of an actual linking model as well as the evaluation of the benefits on a more sophisticated
product like DIME. Beyond that, more concepts of modern programming languages like poly-
morphic dispatching could be pushed up to the modeling level, especially in terms of connecting
and reusing models. The goal is to maximize the flexibility on all levels of modeling, from the
domain expert as a tool developer to the actual modeler, to enable the specification of products
and product variants without the need for a programming expert to be present.

9 / 11 Volume 74 (2017)



Towards Reuse on the Meta-Level

Bibliography

[BFK+16] S. Boßelmann, M. Frohme, D. Kopetzki, M. Lybecait, S. Naujokat, J. Neubauer,
D. Wirkner, P. Zweihoff, B. Steffen. DIME: A Programming-Less Modeling En-
vironment for Web Applications. Pp. 809–832. Springer International Publishing,
Cham, 2016.
doi:10.1007/978-3-319-47169-3 60

[BNNS16] S. Boßelmann, J. Neubauer, S. Naujokat, B. Steffen. Model-Driven Design of Se-
cure High Assurance Systems: An Introduction to the Open Platform from the User
Perspective. In T.Margaria and M.G.Solo (eds.), The 2016 International Confer-
ence on Security and Management (SAM 2016). Special Track ”End-to-end Security
and Cybersecurity: from the Hardware to Application”. Pp. 145–151. CREA Press,
2016.

[BPS04] D. Beuche, H. Papajewski, W. Schröder-Preikschat. Variability management with
feature models. Science of Computer Programming 53(3):333–352, 2004.
doi:10.1016/j.scico.2003.04.005

[DSW14] F. Damiani, I. Schaefer, T. Winkelmann. Delta-oriented multi software product
lines. Proceedings of the 18th International Software Product Line Conference on -
SPLC ’14, 2014.
doi:10.1145/2648511.2648536

[GV09] I. Groher, M. Voelter. Aspect-Oriented Model-Driven Software Product Line Engi-
neering. Lecture Notes in Computer Science Transactions on Aspect-Oriented Soft-
ware Development VI, p. 111–152, 2009.
doi:10.1007/978-3-642-03764-1 4

[KT08] S. Kelly, J.-P. Tolvanen. Domain-specific modeling: enabling full code generation.
John Wiley & Sons, 2008.

[LH06] A. Löh, R. Hinze. Open data types and open functions. Proceedings of the 8th
ACM SIGPLAN symposium on Principles and practice of declarative programming
- PPDP ’06, 2006.
doi:10.1145/1140335.1140352

[LNS13] A.-L. Lamprecht, S. Naujokat, I. Schaefer. Variability Management beyond Feature
Models. Computer 46(11):48–54, 2013.
doi:10.1109/mc.2013.299

[MS09] T. Margaria, B. Steffen. Business process modelling in the jABC: the one-thing-
approach. Handbook of research on business process modeling, pp. 1–26, 2009.

[NLKS17] S. Naujokat, M. Lybecait, D. Kopetzki, B. Steffen. CINCO: A Simplicity-Driven
Approach to Full Generation of Domain-Specific Graphical Modeling Tools. STTT,
2017. to appear.

ISoLA DS 2016 10 / 11

http://dx.doi.org/10.1007/978-3-319-47169-3_60
http://dx.doi.org/10.1016/j.scico.2003.04.005
http://dx.doi.org/10.1145/2648511.2648536
http://dx.doi.org/10.1007/978-3-642-03764-1_4
http://dx.doi.org/10.1145/1140335.1140352
http://dx.doi.org/10.1109/mc.2013.299


ECEASST

[NNL+13] S. Naujokat, J. Neubauer, A.-L. Lamprecht, B. Steffen, S. Jörges, T. Margaria.
Simplicity-first model-based plug-in development. Softw. Pract. Exper. Software:
Practice and Experience 44(3):277–297, 2013.
doi:10.1002/spe.2243

[NNMS16] S. Naujokat, J. Neubauer, T. Margaria, B. Steffen. Meta-Level Reuse for Master-
ing Domain Specialization. Pp. 218–237. Springer International Publishing, Cham,
2016.
doi:10.1007/978-3-319-47169-3 16

[NSM13] J. Neubauer, B. Steffen, T. Margaria. Higher-Order Process Modeling: Product-
Lining, Variability Modeling and Beyond. Electron. Proc. Theor. Comput. Sci. Elec-
tronic Proceedings in Theoretical Computer Science EPTCS 129:259–283, 2013.
doi:10.4204/eptcs.129.16

[RVMS12] D. Ratiu, M. Voelter, Z. Molotnikov, B. Schaetz. Implementing modular domain
specific languages and analyses. Proceedings of the Workshop on Model-Driven
Engineering, Verification and Validation - MoDeVVa ’12, 2012.
doi:10.1145/2427376.2427383

[SM09] B. Steffen, T. Margaria. Continuous Model Driven Engineering. 2009 14th IEEE
International Conference on Engineering of Complex Computer Systems, 2009.
doi:10.1109/iceccs.2009.58

[SN16] B. Steffen, S. Naujokat. Archimedean Points: The Essence for Mastering Change.
Pp. 22–46. Springer International Publishing, Cham, 2016.
doi:10.1007/978-3-319-46508-1 3

[SSA14] C. Seidl, I. Schaefer, U. Aßmann. Integrated management of variability in space and
time in software families. Proceedings of the 18th International Software Product
Line Conference on - SPLC ’14, 2014.
doi:10.1145/2648511.2648514

[Tor04] M. Torgersen. The Expression Problem Revisited. ECOOP 2004 – Object-Oriented
Programming Lecture Notes in Computer Science, p. 123–146, 2004.
doi:10.1007/978-3-540-24851-4 6

[VV11] M. Voelter, E. Visser. Product Line Engineering Using Domain-Specific Languages.
2011 15th International Software Product Line Conference, 2011.
doi:10.1109/splc.2011.25

[Wad98] P. Wadler. The Expression Problem. http://homepages.inf.ed.ac.uk/wadler/papers/
expression/expression.txt/, Nov 1998. [Online; accessed 13-July-2017].

[WO16] Y. Wang, B. C. D. S. Oliveira. The expression problem, trivially! Proceedings of the
15th International Conference on Modularity - MODULARITY 2016, 2016.
doi:10.1145/2889443.2889448

11 / 11 Volume 74 (2017)

http://dx.doi.org/10.1002/spe.2243
http://dx.doi.org/10.1007/978-3-319-47169-3_16
http://dx.doi.org/10.4204/eptcs.129.16
http://dx.doi.org/10.1145/2427376.2427383
http://dx.doi.org/10.1109/iceccs.2009.58
http://dx.doi.org/10.1007/978-3-319-46508-1_3
http://dx.doi.org/10.1145/2648511.2648514
http://dx.doi.org/10.1007/978-3-540-24851-4_6
http://dx.doi.org/10.1109/splc.2011.25
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt/
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt/
http://dx.doi.org/10.1145/2889443.2889448

	Research Motivation
	Related Work
	Meta Tooling with Cinco 
	Solution Approaches and Recurring Problems
	Language Improvements via Linking Model
	Conclusion

