
Electronic Communications of the EASST
Volume 36 (2010)

Proceedings of the
Workshop on OCL and Textual Modelling

(OCL 2010)

An Overview of F-OML:
An F-Logic Based Object Modeling Language

Mira Balaban and Michael Kifer

7 pages

Guest Editors: Jordi Cabot, Tony Clark, Manuel Clavel, Martin Gogolla
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Communications of the EASST (European Association of Software Science and Technology)

https://core.ac.uk/display/236422821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


An Overview of F-OML:
An F-Logic Based Object Modeling Language

Mira Balaban1 and Michael Kifer 2

1 mira@cs.bgu.ac.il,
Computer Science Department, Ben-Gurion University of theNegev

Beer-Sheva, Israel

2 kifer@cs.sunysb.edu,
Department of Computer Science, Stony Brook University

NY 11794-4400, USA

Abstract: F-OML is an F-Logic based Object Modeling Language. It can be used
for extendingUML diagrams, reasoningabout them,testing UML models, and
defining theirsyntax(meta-modeling) and semantics. This wide range of appli-
cations of F-OML stems from several language features, including polymorphism,
multi-level object modeling, and model instantiation. F-OML is layered on top of an
elegant formal language ofguarded path expressions, calledPathLP, which is used
to define objects and their types. PathLP is a logic programming language, inspired
by F-logic [KLW95]. It supportspath expressions, rules, constraints, andqueries,
and it is easy to implement by translation into a tabling Prolog engine, such as XSB.

In this short overview we informally describe the main constructs of PathLP and
F-OML, and provide examples that demonstrate the four modesof F-OML usage.
Formal definitions and additional details are found in the full paper. Finally, we
analyze how language features contribute to its expressiveness, and provide a brief
comparison with OCL [WK03, Obj06].

Keywords: UML class diagrams, F-Logic, objects, constraints, types,model trans-
formation, OCL, logic programming, model theory.

1 PathLP – the Underlying Logic of F-OML

In this section we will informally describe some of the key aspects of PathLP, the underlying
modeling language of F-OML.
Path expressions.Path expressions generalize path expressions in traditional imperative object-
oriented languages. They extend a similar notion in XSQL [KKS92] and more or less correspond
to path expressions in F-logic [KLW95] systems FLORID and FLORA-2 [FHL+98, Kif07].
Since PathLP path expressions contain variables, they alsogeneralize many aspects of XPath.

A path expression consists of constants and variables (symbols prefixed with “?”), and is
constructed with the operators “.” and “!”, and guards, written within square brackets. Examples
of PathLP path expressions are shown in Table1.
Facts, rules, queries, and constraints.Facts specify assertions, rules specify implications, and
constraints restrict the legal states. Queries trigger reasoning. Here are some examples.

1

mailto:mira@cs.bgu.ac.il
mailto:kifer@cs.sunysb.edu


Expression Informal meaning
Mary.spouse.age(2010) the age at 2010 of the spouse of

Mary
?C.student[?S].name given a bindingc for the vari-

able ?C, binds ?S to an object
who is a student of c, and returns
its name

John.child(Mary)[?C:Student,
?C.age(2010)<20].name

the name of a child ofJohn and
Mary, who is a student, whose
age in 2010 is less than 20

Person!spouse[Person]{0..1} defines the type of the spouse
property ofPerson, restricted
to bePerson (or its subclass),
and having the cardinality0..1

Table 1: Examples of path expressions

John.spouse[Mary].
John.children[Bob].
John.children[Bill].

Facts:John has a spouse represented by the objectMary, andMary has children
Bob andBill (and possibly others).

Bob:CS_teaching_committee.
CS_teaching_committee::Teaching_committee.
Teaching_committee:Committee.
Committee::Group.

Class hierarchy and membership assertions:Teaching_committee is a mem-
ber of Committee, which is a subclass of Group.Bob is a member of
CS_teaching_committee, which is a subclass ofTeaching_committee.

Person!spouse[Person]{0..1}.

A type assertion: the type of the spouse property of Person isPerson, or one of its
subclasses, and the cardinality constraint is{0..1}.

?A:advisor :-
?T:Thesis, ?T.author.advisor[?A,?A:Professor].read[?T].

A rule stating that?A is an advisor if?A has read a thesis?T of an author that?A
advises.

2



?A:good_advisor :- ?A:Professor, not ?A:mediocre_advisor.

A rule defining good advisors – using negation.

!- ?P:Professor, not ?P.degree[PhD].

A constraint that forbids states with a professor?P that does not have aPhD degree.

2 F-OML – The Semantic Layer

F-OML is a semantic layer on top of PathLP. It provides definitions for the various UML con-
cepts such asclassesandpropertiesas well as a library of class and propertyconstructorsand
definitions. The latter are characterized using the polymorphic expressions feature. Some of
these definitions are shown below.

1. Class construction usingSet operations – Class intersection.
intersection(?C1,?C2):Class :- ?C1:Class, ?C2:Class.
?o:intersection(?C1,?C2) :- ?o:?C1, ?o:?C2.
Class is a meta-class supported by F-OML;intersection is a polymorphic class
constructor. Different bindings for?C1,?C2 in ?o:intersection(?C1,?C2) de-
fine different classes. Note the multilevel modeling ofintersection(?C1,?C2): It
is, both, a member of the meta-classClass, and a class having its own members.

2. Property conjunction. Property is a meta-class supported by F-OML.
and(?p1,?p2):Property :- ?p1:Property, ?p2:Property.
?o.and(?p1,?p2)[?v] :- ?o.?p1[?v], ?o.?p2.[?v].

3. Inverse properties.
Example:child = or(inverse(father),inverse(mother)).
inverse(?p):Property :- ?p:Property.
?o1.inverse(?p)[?o2] :- ?o2.?p[?o1].

4. Binary composition.
compose(?p1,?p2):Property :- ?p1:Property,?p2:Property.
?o.compose(?p1,?p2)[?v] :- ?o.?p1.?p2[?v].

5. Transitive closure. Example:closure(flight).
closure(?p):Property :- ?p:Property.
?o.closure(?p)[?v] :- ?o.?p[?v].
?o.closure(?p)[?v] :- ?o.?p.closure(?p)[?v].

6. Property reification : reif(?p):Class :- ?p:Property.
(?o1,?o2):reif(?p) :- ?o1.?p[?o2].
?o1.?p[?o2] :- (?o1,?o2):reif(?p).

3



In addition, F-OML defines a wide variety of classes and properties, includinginjective, surjec-
tive, bijective[WBBK09], acyclicandunaryproperties, asubpropertyrelation,disjoint classes,
singleton classes, and more.

injective(?p) :-?p:Property,?p.target[?T],?T!inverse(?p){0..1}.
surjective(?p):-?p:Property,?p.target[?T],?T!inverse(?p){1..*}.

3 Using F-OML

We envision four modes of using F-OML: (1) Extending UML diagrams; (2) Reasoning about
UML diagrams; (3) Testing UML models; (4) UML definition – meta-modeling (including syn-
tax and semantics). The three language features that enablethis versatile usage are: (1)polymor-
phic expressions; (2) multiple levelobject modeling (3)model instantiation. Polymorphism is
enabled by parametrized expressions and by class hierarchy. Parametrized expressions function
like polymorphic types in functional languages and like Java generics or C++ templates. Class
hierarchy yields partial ordering over types. Multilevel modeling is enabled by the subclass par-
tial ordering “::” and the membership relation “:”. By modelinstantiation we mean the ability
to populate classes with objects, properties with appropriate binary relations, as well as giving
values to other relationships, such as subclass. Model instantiation is a key enabler ofreasoning
in F-OML, which includes model testing and querying.
Diagram extension:Figure1 is a class diagram for User-Table permissions in a database.

Figure 1: A Class Diagram Example

Example1 The owner of a table is automatically granted an access permission, and is the
grantor for that permission.

?t.grantee[?u] :- ?t:Table, ?t.owner[?u].
?p.grantor[?u] :- ?p:Permission,?p.grantee(Permission)[?u],

?p.Table(Permission).owner[?u].

The above rules define the relationshipsgrantee andgrantor of an access permission to
a table. The statement?t:Table says that?t represents some member of the classTable
and?t.owner[?u] says that?u is an object that is an owner of?t. In the second rule,

4



grantee(Permission) andTable(Permission) are F-OMLparametrized properties
(directed associations), defined for association classes.They map permissions to their user and
table components.

Example2 Only systems people are granted access to system tables, andthere must be at least
two grantees.

SystemTable!grantee[SystemPerson]{2..*}.

This is atyping fact. It consists of atype path expression, that imposes a type and cardinality
constraint on all members of theSystemTable class.

Example3 Tables with a common owner are linked viatableDependency, i.e., via the
parent-child relationship.

?t.or(closure(parent),closure(child))[?s] :-
?t:Table,?s:Table,?t.owner=?s.owner.

This example demonstrates the expressivity of the polymorphic property constructorsclosure
andor.

Reasoning: Model querying is a major form of reasoning that plays an essential role in the
process of software development, explanation, understanding, and validation. It relies on meta-
modeling and uses the multilevel modeling capability.

Example4 Find the classes related to classUser, and their relevant roles.

?- ?a:Association,?a.property[?p].source[User],?p.target[?C].

The symbol?- indicates that the above statement is a query. The answers tothis query are all
(and only) relevant properties (roles) and their classes.

Example5 Find all classes accessible fromUser, and the sequence of properties in the access
path: ?- ?User!path(?path)[?C].
path(list) is a parametrized F-OML property. An answer example:
?path=[ownedTable,grantee,permission], ?C=Permission.

Model testing: Testing is made possible due to the ability to instantiate F-OML models, i.e., to
construct model states (like object diagrams).

Example6 An illegal state: A non-owner access permission granted toself.

u:User. u.grantedTable[t].Permission(Table)[p].
t.owner[v]. u.Permission(grantee)[p].grantor[u].

The a test might indicate that a relevant constraint has beenoverlooked.

5



Meta-modeling:

Example7 A meta-level definition of a key attribute and a definition of an attribute named
“ID” as a key attribute.

key(?class,?id):-?class:Class,?class.attribute[?id].name["ID"].
!- key(?class,?att),?o1:?class,?o2:?class,

?o1.?att[?val1],?o2.?att[?val2],?val1 = ?val2.

Example8 An association having cardinality constraint 1 at one end, is an ownership associa-
tion for the other end. In Figure1 the propertiesowner andgrantor are ownership properties.

ownership(?p) :- ?p:Property, ?p.source!?p{1..1}.

?p.source is the source class of the property denoted by?p, the type path?p.source!?p
denotes its target class, and?p.source!?p{1..1} restricts the cardinality of?p to be {1..1}.

4 Evaluation

F-OML has a number of advantages over OCL. These include broader scope (bridging model
layers, pattern specification, reasoning) and applicability (testing). In particular: (1) F-OML
collection manipulation yields simpler expressions; (2) F-OML supports hierarchical data struc-
tures; (3) Polymorphic expressions can express patterns; (4) Multilevel modeling is enabled
by the subclass and membership relations. F-OML can expressUML diagrams and their con-
straints, yielding powerful meta-modeling, that includesspecification of syntax and semantics;
(5) F-OML supports reasoning, including model querying andtesting, through model instantia-
tion.

F-OML can be shielded from the naive user by a less technical syntactic layer—similarly to
how predicate logic is shielded from the user by SQL.

Bibliography

[FHL+98] J. Frohn, R. Himmer̈der, G. Lausen, W. May, C. Schlepphorst. Managing Semistruc-
tured Data with FLORID: A Deductive Object-Oriented Perspective. Information
Systems23(8):589–613, 1998.

[Kif07] M. Kifer. FLORA-2: An Object-Oriented Knowledge Base Language. The
FLORA-2 Web Site, 2007. http://flora.sourceforge.net.

[KKS92] M. Kifer, W. Kim, Y. Sagiv. Querying Object-Oriented Databases. InACM SIG-
MOD Conference on Management of Data. Pp. 393–402. ACM, New York, June
1992.

[KLW95] M. Kifer, G. Lausen, J. Wu. Logical Foundations of Object-Oriented and Frame-
Based Languages.Journal of ACM42:741–843, July 1995.

6



[Obj06] Object Management Group. UML 2.0 Object ConstraintLanguage Specification.
2006.

[WBBK09] M. Wahler, D. Basin, A. Brucker, J. Koehler. Efficient Analysis of Pattern-Based
Constraint Specification. InSoftware and Systems Modeling. 2009.

[WK03] J. Warmer, A. Kleppe.The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., 2003.

7


	PathLP – the Underlying Logic of F-OML
	F-OML – The Semantic Layer
	Using F-OML
	Evaluation

