
Electronic Communications of the EASST
Volume 47 (2012)

Proceedings of the
11th International Workshop on Graph Transformation and

Visual Modeling Techniques
(GTVMT 2012)

Towards Alternating Automata for Graph Languages

H.J. Sander Bruggink, Mathias Hülsbusch and Barbara König

14 pages

Guest Editors: Andrew Fish, Leen Lambers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Towards Alternating Automata for Graph Languages

H.J. Sander Bruggink, Mathias Hülsbusch and Barbara König ∗

University of Duisburg-Essen, Germany
sander.bruggink@uni-due.de, mathias.huelsbusch@uni-due.de, barbara koenig@uni-due.de

Abstract: In this paper we introduce alternating automata for languages of arrows
of an arbitrary category, and as an instantiation thereof alternating automata for graph
languages. We study some of their closure properties and compare them, with respect
to expressiveness, to other methods for describing graph languages. We show, by
providing several examples, that many graph properties (of graphs of bounded path
width) can be naturally expressed as alternating automata.

Keywords: alternating automata, graph automata

1 Introduction

Alternating variants of Turing machines, finite automata and pushdown automata were introduced
in [7]. They are a generalization of the non-deterministic variants of the automata in which each
state has either a universal or an existential quantifier associated with it. A universal state accepts
a word when all outgoing transitions are accepting, while an existential state accepts when one
or more outgoing transitions are accepting. In this paper we study alternating graph automata,
by first defining a kind of alternating finite automaton which operates on arrows of an arbitrary
category, and then instantiating it to the category of (cospans of) graphs.

The main motivation of the work is the following. In [5] automaton functors were introduced
as an automaton model for recognizable graph languages. Automaton functors have nice closure
and decidability properties, which were used, among others, to automatically verify invariants of
graph transformation systems [2]. However, the main disadvantages of automaton functors are:

(a) They tend to be quite large (and tend to grow exponentially when extended to graphs of
larger path width).

(b) Proving that a construct actually is an automaton functor is often non-trivial.
(c) They inherit certain disadvantages from finite automata. Constructing an automaton which

accepts the complement of the language of a given automaton functor, for example, requires
determinization, resulting in an exponential blowup of an already large state space.

The alternating automata that we present in this paper emerged as a way to tackle all three of
these problems, at the cost of losing decidability of some decision problems, such as deciding
whether the language of an automaton is empty:

(a) They make automata smaller and easier to construct.
(b) They do not need to satisfy the functor property.
(c) Constructing an alternating automaton for the complement of a language of an alternating

automaton, as well as for the union and intersection of two languages, is possible in linear
time.

∗ This work was supported by the DFG-project GaReV.

1 / 14 Volume 47 (2012)

mailto:sander.bruggink@uni-due.de, mathias.huelsbusch@uni-due.de, barbara_koenig@uni-due.de

Towards Alternating Automata for Graph Languages

This paper is a first survey of alternating graph automata and their properties and expressive
power.

The paper is organized as follows: In Section 2 we recapitulate some notions from category
theory and graph theory. In Section 3 we define alternating automata which accept arrows of an
arbitrary category. Then, in Section 4, we instantiate this definition to the category of cospans of
graphs, obtaining alternating graph automata, and study their properties. Specifically, we give
examples in Subsection 4.2, study their membership problem in Subsection 4.3 and compare their
expressive power to other mechanism for describing graph languages in Section 5. Finally, in
Section 6 we conclude and give pointers for further research.

2 Preliminaries

Orders and relations. A quasi-order (also called preorder) is a reflexive, transitive relation;
a strict order is an irreflexive, transitive relation. A relation < on A is well-founded if it does
not have infinite descending chains, that is, if there do not exists a1,a2,a3 . . . ∈ A such that
a1 > a2 > a3 > · · · .

Categories. We presuppose a basic knowledge of category theory. For arrows f : A→ B and
g : B→ C, the composition of f and g is denoted (f ;g) : A→ C. The category Rel has sets
as objects and relations as arrows. Its subcategory Set has only the total, functional relations
(functions) as arrows.

Let C be a category in which all pushouts exist. A concrete cospan α in C is a pair 〈`α ,rα〉 of
C-arrows such that J−`α�G�rα−K. In such a cospan, J will be called the left or inner interface,
while K will be called the right or outer interface and G the center object.

Concrete cospans are isomorphic if their middle objects are (such that the isomorphism com-
mutes with the component morphisms of the cospan). A cospan is an isomorphism class of
concrete cospans. In the following we will confuse cospans and concrete representatives thereof.

Cospans are the arrows of so-called cospan categories. That is, for a category C with pushouts,
the cospan category of C, denoted Cospan(C), has the same objects as C. The isomorphism class
of a cospan α : J−`α�G�rα−K in C is an arrow from J to K in Cospan(C). Composition of two
cospans α = 〈`α ,rα〉 and β = 〈`β ,rβ 〉 is computed by taking the pushout of the arrows rα and
`β ; this is well-defined because taking a pushout is unique up to isomorphism.

In cospan categories, we will use lowercase Greek letters to refer to cospans (arrows in the
cospan category), while we will use lowercase roman letters to refer to arrows in the base category.

Graphs. Let Σ be a set of possible labels. Each label m of Σ is associated with an arity ar(m).
A hypergraph over Σ (in the following also simply called graph) is a structure G = 〈V,E, lab,att〉,
where V is a finite set of nodes, E is a finite set of edges, lab : E → Σ assigns a label to each
edge and att : E → V ∗ maps each edge to a finite sequence of nodes attached to it, such that
|att(e)|= ar(lab(e)), for all e. A discrete graph is a graph without edges; the discrete graph with
node set {1, . . . ,k} is denoted by Dk. A graph morphism is a structure preserving map between
two graphs. The category of graphs and graph morphisms is denoted by Graph.

Proc. GTVMT 2012 2 / 14

ECEASST

Graphically, nodes are represented by black circles. In examples, we will only use binary edges.
That is, ar(m) = 2 for all m ∈ Σ. Such edges will be denoted by an arrow with label besides it, as
usual. In examples, where the signature contains only a single label, the label will not be shown.

A cospan α : J−`α�G�rα−K in Graph can be viewed as a graph (G) with two interfaces (J
and K). Informally said, only elements of G which are in the image of one of the interfaces can
be “touched”, in the sense that they can be connected to or fused with other elements. By [G] we
denote the trivial cospan ∅→ G←∅, the graph G with two empty interfaces.

Cospans of graphs are intimately connected with the double pushout approach to graph rewriting
[11]. A rewriting rule p can be defined as a pair of cospans λ : ∅→ L← I and ρ : ∅→ R← I
with the same outer interface. A graph G rewrites to H by applying rule p if and only if [G] = λ ;κ

and [H] = ρ ;κ for some cospan κ : I→ K←∅ (where K is an arbitrary graph). This approach
to graph transformation is easily seen to be equivalent to the double pushout approach.

A path decomposition of a graph G is a sequence X1, . . . ,Xn of sets of nodes of G (called bags),
such that
• each node v of G is contained in at least one bag Xi;
• for each edge e of G, there is a bag Xi which contains all nodes adjacent to e; and
• for each node v of G, the bags which contains v form a (connected) subsequence of

X1, . . . ,Xn.
The width of a path decomposition is |X |−1, where X is the largest bag of the decomposition.
The path width of a graph is the width of its smallest path decomposition. Path width is tightly
connected to cospan decompositions [1]: if α is a cospan and ϕ1, . . . ,ϕn are cospans with discrete
interfaces such that ϕ1 ; · · · ;ϕn = α , the path width of the center graph of α is bounded by the
maximum of the path widths of the center graphs of the ϕi.

3 Alternating Automata on Arrows in a Category

In this section we define alternating automata on an arbitrary category, and derive some general re-
sults about them. In the next section we instantiate the definition on the category Cospan(Graph)
to obtain alternating graph automata.

Define the following quasi-order on arrows of a category C: a≤ b if b = f ;a for some arrow f .
Note that, for a≤ b to hold, a and b do not need to have the same domain (but they do need to
have the same codomain).

Definition 1 Let C be a category.

(i) Let @ be a (partial) strict order on arrows of C. The relation @ is called progressing, if
it is a subrelation of ≤ (that is, if a @ b implies a ≤ b) and for each infinite descending
sequence a1 ≥ a2 ≥ a3 · · · there are only finitely many indices i such that ai A ai+1 holds.1

(ii) Let @ be an progressing relation. A C-arrow f : A→ B is @-productive, if a @ f ;a for all
arrows a : B→C (where C is arbitrary).

1 Note, that this condition is stronger than just requiring @ to be a well-founded subrelation of ≤. Let, for example,
@= {〈2x−1,2x〉 | x ∈ Z}. Then @ is a well-founded subrelation of ≤, but −1,−2,−3, . . . is an infinite descending
sequence with infinitely many indices where ai > ai+1.

3 / 14 Volume 47 (2012)

Towards Alternating Automata for Graph Languages

Definition 2 Let C be a category and @ a progressing strict order. An alternating (C,@)-
automaton is a structure A= 〈U,Q, inf ,quant,S,δ 〉, where

• U is a finite set of C-objects, called the interfaces,

• Q is a finite set of states,

• inf : Q→U is a function which assigns an interface to each state,

• quant : Q→{∀,∃} assigns a quantifier to each state,

• S⊆ Q is the set of initial states, and

• δ ⊆ Q×Arr(C)×Q is the transition relation, where Arr(C) denotes the arrows of C and
we require that inf (q) = dom(a) and inf (q′) = cod(a) if 〈q,a,q′〉 ∈ δ .

• Let a cycle be a finite sequence q0,a0, . . . ,an−1,qn, where qi ∈Q for each 0≤ i≤ n, q0 = qn

and 〈qi,ai,qi+1〉 ∈ δ for 0 ≤ i < n. For each cycle q0,a0, . . . ,an−1,qn in the automaton it
must hold that at least one of the ai is @-productive.

Alternating automata do not have final states: universally quantified states without succes-
sors play the role of accepting states, while, conversely, existentially quantified states without
successors play the role of rejecting states.

The last condition of the definition ensures that we can use induction to define the language
accepted by an alternating automaton (see Definition 3), and prove correctness of the constructions
on alternating automata (see Theorem 1). Without the condition, an automaton could get caught in
an endless loop, in which no part of the arrow is effectively “read in”. Now we can define, given
an alternating automaton A = 〈U,Q, inf ,quant,S,δ 〉, a well-founded order on pairs consisting
of an arrow a and a state q as follows: 〈a,q〉< 〈a′,q′〉 if there is a C-arrow f such that a′ = f ;a
and 〈q, f ,q′〉 ∈ δ . This ordering is well-founded: If an infinite descending sequence 〈a1,q1〉>
〈a2,q2〉 > · · · would exist, one state q must occur infinitely many times. Since, by definition,
a1 ≥ a2 ≥ ·· · , there must, by the last condition of Definition 2, be infinitely many indices i where
ai A ai+1, which cannot happen.

Definition 3 Let A= 〈U,Q, inf ,quant,s,δ 〉 be an alternating (C,@)-automaton.

(i) A state q ∈ Q accepts a C-arrow c : inf (q)→ K (where K is a C-object), written A,q |= c,
if:

• quant(q) = ∃ and there exist C-arrows f : inf (q)→ J and c′ : J→K and a state q′ ∈Q
such that c = f ;c′, 〈q, f ,q′〉 ∈ δ and A,q′ |= c′.

• quant(q) = ∀ and for all C-arrows f : inf (q)→ J and c′ : J→ K and states q′ ∈ Q
such that c = f ;c′ and 〈q, f ,q′〉 ∈ δ , it holds that A,q′ |= c′.

(ii) The language of A, written L(A), is defined as

L(A) =
⋃
s∈S

{
c
∣∣A,s |= c

}
.

Proc. GTVMT 2012 4 / 14

ECEASST

(iii) A language L is called an alternating (C,@)-language if there exists an alternating (C,@)-
automaton A such that L = L(A).

The conditions from [3], which can be seen as a generalization of nested application conditions
[10] from graphs to arbitrary categories, are a special case of alternating automata, namely the
alternating automata without loops.

For constructions on automata it is often convenient to assume that an automaton has exactly
one initial state for each of its interfaces. We can impose this condition without restricting the
expressive power, as is shown in the following proposition.

Proposition 1 For each alternating (C,@)-automaton A= 〈U,Q, inf ,quant,S,δ 〉, there exists
an alternating (C,@)-automaton A′ = 〈U ′,Q′, inf ′,quant′,S′,δ ′〉 such that L(A) = L(A′) and
|{q ∈ S′ | inf ′(q) = K}|= 1 for each C-object K ∈U.

Proof. We buildA′, by modifyingA as follows: The old start states are no longer start states. For
each interface K we add a new existentially quantified start state sK with id-labeled transitions to
the old start states. This new automaton clearly accepts the same language and is of the desired
form.

Theorem 1 Let C be a category and @ a progressing relation. The class of alternating languages
is closed under union, intersection and complement. In fact, for alternating (C,@)-automata A
and B, alternating (C,@)-automata that accept L(A)∪L(B), L(A)∩L(B) and C\L(A) can be
efficiently constructed.

Proof. LetA= 〈UA,QA, infA,quantA,SA,δA〉 and B= 〈UB,QB, infB,quantB,SB,δB〉. Without
loss of generality, we assume that QA ∩QB = ∅. In all cases, we construct a new automaton
C = 〈QC , inf C ,quantC ,SC ,δC〉.

Union. The disjoint union of the alternating automata A and B accepts the union of L(A) and
L(B).

Intersection. Assume, without loss of generality, that A and B are of the form proposed in
Proposition 1. We construct the alternating automaton C by taking the disjoint union of A
and B and adding a new (universal) start state sK for each interface object K and idK-labeled
transitions from sK to the start states of A and B with the same interface. Formally, we take

SC := {sK | K ∈UA∩UB} and QC := QA∪QB ∪SC

where the states of SC are assumed to be new, that is SC ∩ (QA∪QB) =∅. We define

inf C(q) :=

infA(q) if q ∈ QA

infB(q) if q ∈ QB

K if q = sK ∈ SC

and quantC(q) :=

quantA(q) if q ∈ QA

quantB(q) if q ∈ QB

∀ if q ∈ SC .

5 / 14 Volume 47 (2012)

Towards Alternating Automata for Graph Languages

Finally, the transition relation δC is defined as

δC := δA∪δB ∪
{〈sK , idK ,s〉 | s ∈ SA∧ infA(s) = K}∪
{〈sK , idK ,s〉 | s ∈ SB ∧ infB(s) = K}

The new automaton trivially satisfies the cycle condition, because it contains no cycles
which were not also in either A or B. Also, it is now easily seen that L(C) = L(A)∩L(B).

Complement. Assume, without loss of generality, that A and B are of the form proposed in
Proposition 1. We build an automaton which accepts the complement of L(A) by making
all existential states universal and vice versa. That is, QC := QA, inf C := infA, SC := SA,
δC := δA. Furthermore,

quantC(q) =

{
∀ if quantA(q) = ∃
∃ if quantA(q) = ∀.

Now we show, by induction, that for any C-arrow c and state q ∈QA it holds, that A,q |= c
if and only if C,q 6|= c. The required result follows then from the fact that this holds in
particular for the start states, and that the start states are unique for each interface object.

(⇒): Assume A,q |= c. We proceed by induction on q and c. There are two cases to
consider.

If quantA(q) = ∃, then, by definition, there are a state q′ and arrows f ,c′ such that c = f ;c′,
〈q, f ,q′〉 ∈ δA and A,q′ |= c′. By the induction hypothesis C,q′ 6|= c′. However, this means
that is not the case that it holds for all states q′ and arrows f ,c′ such that c = f ;c′ and
〈q, f ,q′〉 ∈ δA that C,q′ |= c′, and thus C,q 6|= c.

If quantA(q) = ∀, then, by definition, for all states q′ and all arrows f ,c′ such that c = f ;c′

and 〈q, f ,q′〉 ∈ δA it holds that A,q′ |= c′. By the induction hypothesis, C,q′ 6|= c′ for all
q′, f ,c′ satisfying the conditions. But this means, that there are no q′, f ,c′ satisfying the
conditions such that C,q′ |= c′, and therefore C,q 6|= c.

(⇐): Since the construction is symmetric, this case follows from (⇒).

4 Alternating Graph Automata

In this section we instantiate alternating automata from Definition 2 to the category of cospans of
graphs (see Section 2). We will restrict our attention to cospans which have discrete interfaces
(that is the interfaces of the cospans consist of nodes only) and injective right morphisms.

4.1 Definition of Alternating Graph Automata

In order to instantiate the definition, we need to define a progressing (see Definition 1) relation. In
the rest of the paper, we use the following one: Call a cospan ϕ : J−`ϕ�G�rϕ−K cancellable if
rϕ is surjective (since we restrict to discrete interfaces, this means that G does not contain edges
either). We now define α ≺ β if β = ϕ ;α for some non-cancellable cospan ϕ .

Proc. GTVMT 2012 6 / 14

ECEASST

Proposition 2 The order ≺ on cospans of graphs is progressing on cospans with injective right
morphisms.

Proof. By definition, ≺ is a sub-order of ≤. It remains to show that for each infinite descending
sequence γ1 ≥ γ2 ≥ ·· · there are only finitely many indices i where γi � γi+1.

Let α and β be cospans such that β ≺ α , that is there is a cospan ϕ such that α = ϕ ;β . The
situation is depicted below:

I H

J

G

G′ K
`ϕ

rϕ

`α
rα

`β

`′
β r′ϕ

rβ

ϕ β

α

(PO)

Because the rϕ is injective and the middle square of the diagram is a pushout, r′ϕ is injective.
Thus, the number of nodes in G′ is less or equal than the number of nodes in G, and the number
of edges in G′ is less or equal than the number of edges in G. However, if ϕ is non-cancellable,
then rϕ is not surjective, and thus, because the middle square is a pushout, r′ϕ is not surjective.
This means that either the number of edges or the number of nodes strictly decreases. This shows
that ≺ is progressing.

Note that, by construction and Definition 1, the non-cancellable cospans are exactly the ≺-
productive ones.

Definition 4

(i) An alternating graph automaton is an alternating (Cospan(Graph),≺)-automaton which
has only discrete graphs as interfaces, and for each transition 〈q,ϕ,q′〉, where ϕ = J−`ϕ�
G�rϕ−K, it holds that rϕ is injective.

(ii) The graph language of an alternating graph automaton A is defined as:

G(A) = {H | [H] ∈ L(A)}

Note that, for an alternating graph automaton A, there is a difference between L(A) and G(A):
the first contains cospans while the second contains graphs.

Paths through alternating graph automata correspond to cospan decompositions of the graph.
Although alternating graph languages are not bounded by path width (for example, the language
of all graphs is accepted by an alternating automaton consisting of a single universally quantified
initial state without successors), the fact that each automaton has only finitely many interfaces
implies that the part that the automaton actually “looked at” in each state has a bounded path
width. How the interface size of an alternating graph automaton relates exactly to a path width
bound of the accepted language, remains a topic for further research.

7 / 14 Volume 47 (2012)

Towards Alternating Automata for Graph Languages

4.2 Examples

Below, we give some examples of automata which accept various graph languages. We represent
the automata graphically. A state is depicted as a circle with its interface written inside it and its
quantifier written beside it. As interfaces we always take a discrete graph with node set {1, . . . ,n},
called Dn. The transitions are given as arrows, labeled with cospans. The cospans are given by
drawing its central graph; the two graph morphisms are implied by the node labels. If (and only
if) it is not the case that the nth interface node maps to the nth central graph node, an explicit
mapping is given. That is, a transition from state q0 to q1 labeled by the cospan α given below,
will be represented as follows:

α =
1 1

2 1
Representation: D1q0 D1 q1

1

2
1 7→ 2

Note that the 1 7→ 2 label means, that node 1 of the interface of q1 is mapped to node 2 of the
center graph of the cospan; this is the direction of the right morphism of the cospan, not the
direction of the transition in the automaton.

Example 1 (Subgraph automaton) Let G be a graph (over an arbitrary signature). The alternating
graph automaton SGG which accepts all cospans ∅→ H ← K such that H contains G as a
subgraph is:

∅
∃

DG

∀
G

where DG is the discrete graph with the same node set as G.

Example 2 (Empty graph) Assume the signature contains no 0-ary labels. The following
alternating graph automaton E accepts only the empty graph:

∅
∀

D1

∃
1

The automaton works as follows: if the target graph (with empty interfaces) can be decomposed
into a cospan which has the effect of adding a node and another cospan, then the automaton moves
to an existentially quantified state without outgoing transitions, which means that the graph will
not be accepted. If not, the acceptance condition for the universally quantified initial state is
trivially satisfied.

Example 3 (Circle graphs) Let Σ contain a single binary edge label. The following alternating
automaton accepts circle graphs, that is graphs whose edges form a single circle.

Proc. GTVMT 2012 8 / 14

ECEASST

∅
∃

D2

∃
1 2

1 2 3

2 7→ 3

∅
∀

1

1 2 D1

∃
1

The automaton works as follows. In the right we see the automaton from Example 2 as a
subautomaton. It is there to make sure that in the end the entire graph is processed. In the initial
state, there are two cases. Either there is a loop, in which the case the automaton immediately
checks whether the entire graph was processed, or there is an edge between two different nodes
which needs to be completed to a full circle: in each traversal of the loop the circle is extended by
one edge, until an edge is found to the starting node, in which case the circle is completed.

Example 4 (anbncn) To show that alternating automata can accept non-recognizable graph
languages, we give an alternating automaton which accepts string graphs of the form anbncn,
where n≥ 1 (cf. Example I.3.6 of [9]).

∅
∃

D5

∃
3a

1 4b

2 5c
1

2

3 6a

4 7b

5 8c

3 7→ 6
4 7→ 7
5 7→ 8

∅
∀1 3 2 4 5

D1

∃
1

Example 5 (Reachability) Let G be a graph of path width smaller than k, and let f : D2→ G
be a graph morphism which picks two nodes of G. The alternating graph automaton Pk accepts
the cospan D2− f�G←∅ if and only if there is a path from f (2) to f (1) in G. We present the
automaton for k = 2:

P2 = D2

∃

q0

D3
∃q1

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3
4

3 7→ 4

1
2
3
4

2 7→ 4

D3

∀

q2

1
2
3

D1∀ q3

12

9 / 14 Volume 47 (2012)

Towards Alternating Automata for Graph Languages

The automaton works as follows. First, in state q0, if the two nodes of the interface are the same,
the automaton may move directly to the accepting state q3. Otherwise, an auxiliary node is taken
from the graph non-deterministically, and the automaton moves to q1. There, the path is searched.
At all times, node 1 of the interface points to the target of the path, node 2 is the current end of the
path, and node 3 is an auxiliary node. This auxiliary node is needed to read in parts of the graph
which are not part of the path.

The four loops above state q1 read in edges which do not lie on the path. The bottom left loop
replaces the auxiliary node in the interface by a new node. The bottom right loop extends the
path by a single edge. Finally, if the path can be finished the automaton moves to the accepting
state q2.

The path automaton can be easily extended to larger k by including more auxiliary nodes (and
adding more transitions). It can be used as a component in other alternating automata; for example,
the following automaton expresses that a graph is strongly connected (works only for graph up to
path width k):

SCk = ∅
∀

Pk1
2

4.3 Membership Problem

The membership problem is defined as follows: given an alternating graph automaton A and a
cospan α : J→ G← K, does it hold that α ∈ L(A)? In this section we present some insights into
a naive algorithm to decide the membership problem for alternating graph automata.

An important step in solving the membership problem is computing cospan complements, that is,
given cospans ϕ : I−`ϕ�G�rϕ−J and α : I−`α�H �rα−K, finding all cospans α ′ : J→H ′← K
such that ϕ ;α ′ = α .

First of all, it is clear that the membership problem is decidable if computing cospan comple-
ments is possible. Because of the condition that all loops in the automaton contain at least one
non-cancellable cospan, it is not possible that the automaton gets caught in one loop indefinitely:
at some point the cospan which has been built by composing the cospans on the transitions
previously in the path cannot be extended anymore to the sought-after cospan. Thus, we can
traverse the automaton recursively, and test the acceptance condition.

I H

J

G

G′ K
`ϕ

rϕ

`α
rα

m′

m r′ϕ

g

ϕ

α

Finally, computing cospan complements is possible
because computing pushout complements is. Given
cospans ϕ and α as above, we first find all matches
m : H→ G such that `α = `ϕ ;m. For each such match,
we subsequently find all pushout complements G′ of rϕ

and m (see the diagram to the right). Finally, for each
pushout complement we check if there exists a g such
that g ;r′ϕ = rα , and add the cospan α ′ : J−m′�G′�g−K
to the set of cospan complements if it exists. Note that,
since we restrict to cospans with injective right morphisms, there is at most one cospan complement
per match m, because there is at most one pushout complement per match m [8].

Proc. GTVMT 2012 10 / 14

ECEASST

5 Comparison

In this subsection we compare alternating graph automata with automaton functors and hyperedge
replacement systems with respect to expressive power. First we compare alternating automata
with hyperedge replacement grammars.

Definition 5 Assume the label set Σ is partitioned into a set N of non-terminals and a set T of
terminals. A handle of a non-terminal A∈N is a cospan γA : ∅−`�EA �r−J, where J is a discrete
graph, EA = 〈V,E,att, lab〉 is a graph where |V |= ar(A), E = {e}, lab(e) = A, the elements of
att(e) are pairwise distinct, and the morphism r is injective and surjective on nodes.

A hyperedge replacement grammar (HRG) is a set of rules in which the left-hand side is a
handle, together with a start symbol S ∈ N. A HRG is linear, if all rules contain at most one
non-terminal edge in the right-hand side.

The language generated by an HRG G is defined as the reachable graphs containing only
terminals: L(G) = {G = 〈V,E,att, lab〉 | ES⇒∗ G and for all e ∈ E : lab(e) ∈ T}.2

To show that alternating graph automata are more expressive than linear HRGs, we need the
following auxiliary lemma:

Lemma 1 For fixed J and K, the number of cancellable cospans ϕ : J−`ϕ�G�rϕ−K is finite.

Proof. Since rϕ must be surjective, there are finitely many possible G (up to isomorphism). The
number of graph morphisms from one finite graph (J) into another (G) is finite, so for each of the
finitely many possible G there are only finitely many possible `ϕ .

Theorem 2 The class of languages generated by linear HRGs is a strict subclass of the class of
languages accepted by alternating graph automata.

Proof. The fact that the two language classes are not equal follows from the observation that
the language of all graphs is accepted by an alternating graph automaton (take the automaton
consisting of a single state, which is initial and universally quantified, and an empty transition
relation), but not generated by an HRG.

It remains to show that each language generated by an HRG is also accepted by an alternating
graph automaton. For a graph G and hyperedge e of G, let d(G,e) : D|att(e)|→ G be a morphism
whose image consists of the nodes adjacent to e. Furthermore, let d′(G,e) be the corresponding
morphism from D|att(e)| to G′, where G′ is G without e.

Let p = L→ R be a linear hyperedge replacement rule. Let el be the non-terminal hyperedge
from L and let er be the non-terminal hyperedge from R, if there is one. (Since p is assumed
to be linear, there is at most one.) Let R′ be R without er. The rule p induces a morphism
` : D|att(el)|→ R′. The rule p can now be translated into the cospan ϕp = 〈`,r〉, where r is d′(R,er)
if R contains a non-terminal, or the unique morphism ∅→ R′ otherwise.

For a linear HRG with non-terminals V , rule set R and initial non-terminal s, we can now
construct an alternating pseudo-automaton A with state set S = V ∪{∅}. (We call it pseudo-

2 See [9] for a different (but equivalent with respect to expressive power) definition of HRGs.

11 / 14 Volume 47 (2012)

Towards Alternating Automata for Graph Languages

automaton, because it may contain cycles without productive cospans.) The pseudo-automaton
has a transition from state x to state y, whenever there is a rule p with x in the left-hand side and
y in the right-hand side. Each such transition is labeled with the cospan ϕp. For rules with no
non-terminal on the right-hand side, the transitions have the state ∅ as target. The initial state is s.
In addition, we add the automaton from example 2 and fuse its initial state with the state ∅. All
states but ∅ are labeled with the ∃ quantifier. Now each derivation of a graph in P corresponds to
a path A from s to ∅ and vice versa.

Call a path through A cancellable if it contains only transitions labeled with cancellable
cospans. From the pseudo-automaton A we build an alternating automaton B which satisfies the
condition that each loop must contain at least one productive cospan. The automaton B contains
the same states as A. Furthermore, for each transition v−ϕ� v′ of A and each cancellable path
~x = x1−ψ1�x2 · · ·xn−1−ψn−1�xn from an arbitrary state x1 to v (that is, xn = v), a transition labeled
with ψ1 ; · · · ;ψn−1 ;ϕ from x1 to w is added to B. Note that there are possibly infinitely many
paths (because of loops), however Lemma 1 ensures that only finitely many transitions will be
added to B. Finally, for each cancellable path~x = x1−ψ1� x2 · · ·xn−1−ψn−1� xn from some state
x1 to ∅, a transition labeled with ψ1 ; · · · ;ψn−1 from x1 to ∅ is added to B. By this construction,
the only transitions labeled with cancellable cospans lead to ∅, which lies on no cycle. Also, for
each path in A from s to ∅ there is an equivalent path in B and vice versa.

Non-linear HRGs are strictly stronger than linear ones. Still, they are not more expressive than
alternating graph automata, because they cannot generate the language of all graphs. Because
of the following conjecture, it is probably also not the case that alternating graph automata are
stronger than HRGs.

Conjecture 1. There does not exist an alternating graph automaton which accepts the language
of binary trees.

The intuition behind the conjecture is, that the part of a graph an alternating graph automaton
looks at has a bounded path width. To recognize a tree, one must process the entire graph, and
trees have an unbounded path width. We need to formalize these ideas in order to prove the
conjecture, which is future work.

Now we compare alternating automata with automaton functors, which were introduced in [5].

Definition 6 (Automaton functor) A graph automaton functor is a structure A = 〈A0, I,F〉,
where

• A0 : Cospan(Graph)→ Rel is a functor which maps every (discrete) graph J to a finite
set A0(J) (the state set of J) and every cospan α : J → G← K to a relation A0(α) ⊆
A0(G)×A0(H) (the transition function of c),

• I ⊆A0(∅) is the set of initial states and

• F ⊆A0(∅) is the set of final states.

A cospan α : ∅→ G←∅ is accepted by A, if 〈q,q′〉 ∈ A0(α) for some q ∈ I and q′ ∈ F . The
language accepted by A, denoted by L(A), contains exactly the cospans accepted by A. The

Proc. GTVMT 2012 12 / 14

ECEASST

graph language accepted by A is defined as

G(A) =
{

G | [G] ∈ L(A)
}
.

A bounded automaton functor is an automaton functor on the subcategory of Cospan(Graph)
which contain only the (discrete) graphs of size ≤ k as object, where k ∈ N is the bound of the
automaton.

Corollary 1 The class of languages accepted by bounded automaton functors is a strict subclass
of the class of languages accepted by alternating graph automata.

Proof. In [4] it was shown, that the class of languages accepted by bounded automaton functor is
a strict subset of the class of languages generated by linear HRGs. The proposition follows by
combining this result with Theorem 2.

General automaton functors, the language class of which are the recognizable graph languages,
are not strictly more expressive than alternating graph automata. In particular, automaton functors
cannot “count”, so there exists no automaton functor which accepts string graphs of the form
anbncn. There exists an alternating graph automaton which accepts this language, however (see
Example 4). Conversely, Conjecture 1 implies that alternating graph automata are not strictly
more expressive than general automaton functors, either, because binary trees can be expressed in
monadic second-order logic, and therefore form a recognizable graph language.

AA
AF

HRG

LHRG
BAF

ALL

{anbncn}

TREES

To sum up the results of this section, the ex-
pressive power of alternating graph automata
(denoted by AA) is compared to that of linear
and general HRGs (denoted by LHRG and HRG,
respectively) and bounded and general automa-
ton functors (denoted by BAF and AF, respec-
tively) are represented in the Venn diagram on
the right; additionally the position of three lan-
guages within the diagram is shown. Note that
the fact that trees are not accepted by an alternat-
ing graph automaton is only a conjecture.

6 Conclusion and Further Research

We defined alternating automata that operate on arrows of an arbitrary category, and as a special
case obtained alternating graph automata. We have shown by example that alternating graph
automata can elegantly express various graph properties, and have compared their expressive
power to other mechanisms for describing graph languages. It turns out that they are strictly
more expressive than bounded automaton functors and linear hyperedge replacement grammars,
while we conjecture that they are incomparable with respect language class inclusion with general
hyperedge replacement grammars and recognizable graph languages.

A first direction for further research, is to generalize the results to larger classes of cospans (for
example, cospans with non-injective right morphisms or non-discrete interfaces). Also, we would

13 / 14 Volume 47 (2012)

Towards Alternating Automata for Graph Languages

like a clearer understanding of the exact relationship between path width and graphs which are
accepted by alternating graph automata, and techniques for showing that an alternating graph
automaton which accepts a certain language does not exist.

Second, on a more applied level, we need to study more decision problems. Since alternating
automata contain conditions as a special case, which are more expressive than first-order logic
[3], the emptiness problem (deciding whether or not the language of an alternating automaton is
empty) is not decidable. It is an open problem if the emptiness problem is also undecidable for
graphs of bounded path width. Note that, because complementation can be done in linear time,
the emptiness and universality problems are equivalent with respect of computational complexity.

Third, as mentioned in Section 3, alternating automata can be seen as the conditions of [3] with
loops, which have the same expressive power as the first-order fragment of the logic on subobjects
[6]. It is interesting to see if there exists a logic which describes the same languages as alternating
graph automata, for example a first-order logic with a fixed-point operator.

Bibliography

[1] C. Blume, H. J. S. Bruggink, M. Friedrich, and B. König. Treewidth, pathwidth and cospan
decompositions. In Proceedings of GT-VMT 2011, 2011.

[2] C. Blume, H. J. S. Bruggink, and B. König. Recognizable graph languages for checking
invariants. In Proc. of GT-VMT ’10, Electronic Communications of the EASST, 2010.

[3] H. J. S. Bruggink, R. Chauderlier, M. Hülsbusch, and B. König. Conditional reactive systems.
In Proceedings of FSTTCS 2011, 2011.

[4] H. J. S. Bruggink and M. Hülsbusch. Decidability and expressiveness of finitely representable
recognizable graph languages. In Proceedings of GT-VMT 2011, 2011.

[5] H. J. S. Bruggink and B. König. On the recognizability of arrow and graph languages. In
Proceedings of ICGT ’08, 2008.

[6] H. J. S. Bruggink and B. König. A logic on subobjects and recognizability. In Proceedings
of IFIP-TCS ’10, volume 323 of IFIP-AICT, pages 197–212. Springer, 2010.

[7] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM, 21(1), 1981.

[8] H. Ehrig. Introduction to the algebraic theory of graph grammars. In Proceedigns of the 1st
International Workshop on Graph Grammars and Their Applications to Computer Science
and Biology, 1979.

[9] A. Habel. Hyperedge Replacement: Grammars and Languages. Springer, 1992.

[10] A. Habel and K.-H. Pennemann. Correctness of high-level transformation systems relative
to nested conditions. Mathematical Stuctures in Computer Science, 19:245–296, 2009.

[11] V. Sassone and P. Sobociński. Reactive systems over cospans. In Proceedings of LICS 2005,
2005.

Proc. GTVMT 2012 14 / 14

	Introduction
	Preliminaries
	Alternating Automata on Arrows in a Category
	Alternating Graph Automata
	Definition of Alternating Graph Automata
	Examples
	Membership Problem

	Comparison
	Conclusion and Further Research

