
Electronic Communications of the EASST
Volume 67 (2014)

Proceedings of the
13th International Workshop on Graph Transformation

and Visual Modeling Techniques
(GTVMT 2014)

ScenarioTools Real-Time Play-Out for
Test Sequence Validation in an Automotive Case Study

Christian Brenner, Joel Greenyer, Jörg Holtmann,
Grischa Liebel, Gerald Stieglbauer, Matthias Tichy

14 pages

Guest Editors: Frank Hermann, Stefan Sauer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

ScenarioTools Real-Time Play-Out for
Test Sequence Validation in an Automotive Case Study

Christian Brenner1∗, Joel Greenyer2, Jörg Holtmann3,
Grischa Liebel4, Gerald Stieglbauer5, Matthias Tichy4

1 cbr@uni-paderborn.de
Software Engineering Group, Heinz Nixdorf Institute,

University of Paderborn, Zukunftsmeile 1, 33102 Paderborn, Germany.

2 greenyer@inf.uni-hannover.de
Software Engineering Group,

Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany.

3 joerg.holtmann@ipt.fraunhofer.de
Software Engineering, Project Group Mechatronic Systems Design, Fraunhofer

Institute for Production Technology IPT, Zukunftsmeile 1, 33102 Paderborn, Germany.

4 grischa@chalmers.se, matthias.tichy@cse.gu.se
Software Engineering Division, Department of Computer Science and Engineering,

Chalmers | University of Gothenburg, 412 96 Gothenburg, Sweden.

5 gerald.stieglbauer@avl.com
AVL List GmbH, Hans-List-Platz 1, 8020 Graz, Austria

Abstract:

In many areas, such as automotive, healthcare, or production, we find software-
intensive systems with complex real-time requirements. To efficiently ensure the
quality of these systems, engineers require automated tools for the validation of the
requirements throughout the development. This, however, requires that the require-
ments are specified in an analyzable way. We propose modeling the specification
using Modal Sequence Diagrams (MSDs), which express what a system may, must,
or must not do in certain situations. MSDs can be executed via the play-out algo-
rithm to investigate the behavior emerging from the interplay of multiple scenarios;
we can also test if traces of the final product satisfy all scenarios. In this paper, we
present the first tool supporting the play-out of MSDs with real-time constraints.
As a case study, we modeled the requirements on gear shifts in an upcoming stan-
dard on vehicle testing and use our tool to validate externally generated gear shift
sequences.

Keywords: scenario-based specification, reactive systems, embedded systems, au-
tomotive, simulation, validation, testing

∗ supported by the International Graduate School “Dynamic Intelligent Systems”

1 / 14 Volume 67 (2014)

mailto:{cbr}@uni-paderborn.de
mailto:greenyer@inf.uni-hannover.de
mailto:joerg.holtmann@ipt.fraunhofer.de
mailto:grischa@chalmers.se, matthias.tichy@cse.gu.se
mailto:gerald.stieglbauer@avl.com

ScenarioTools Real-Time Play-Out for Test Sequence Validation

1 Introduction

In many areas, such as automotive, healthcare, or production, we find software-intensive systems
that consist of interacting components and must fulfill complex requirements. These systems
must often control complex physical/mechanical processes with critical real-time requirements.

To efficiently ensure the quality of these systems, engineers require automated tools to validate
that the final product meets the requirements. Ideally, the engineers should be able to validate
already during the design phase whether the design meets the requirements, or—even before
attempting to explore possible solutions—to check whether the requirements are inconsistent.

Such automated validation techniques, however, imply that the real-time requirements are
rigorously formalized. We advertise a scenario-based approach that allows engineers to specify
what a system may, must, or must not do in a certain situation. This approach is in line with how
engineers typically specify use cases with positive/negative scenarios. In particular, we propose
to use Modal Sequence Diagrams (MSDs) [HM08], a recent variant of Live Sequence Charts
(LSCs) [DH01] to model the specification. MSDs/LSCs are sequence diagrams that, by different
modalities assigned to messages and conditions, allow us to precisely describe scenarios with
liveness (something good must happen) and safety (something bad must not happen) properties.

One key advantage of MSDs/LSCs is that they can be executed with the play-out algorithm,
which allows engineers and other stakeholders to understand the behavior emerging from the
interplay of the scenarios [HM03]. An MSD/LSC specification can also be used in the testing
of an implementation, be it the final product or a previous software-/hardware-in-the-loop setup.
Traces of tests runs can be executed together with the scenarios to check if all safety and liveness
requirements are met, i.e., the specifications can be operationalized to act as a test oracle.

Timed play-out, along with LSCs extensions to express time constraints, were already pro-
posed by Harel and Marelly [HM02b]. However, this approach supports only discrete time,
which is inconvenient when modeling critical real-time systems. There are other approaches,
which support validation of traces and model-checking against real-time scenario specifica-
tions [LK01, LLNP09]. These approaches, however, do not support interactive play-out.

The contribution of this paper is twofold. First, we present the first tool realization of a real-
time play-out tool environment, based on the SCENARIOTOOLS tool suite [BGP13]. We rep-
resent time constraints in MSDs through resets of and conditions regarding real-valued clock
variables, as proposed in [LLNP09]. The tool internally represents the time in the form of zones,
which represent possible intervals for clock values. From the perspective of a user performing
a step-by-step play-out, this is also convenient: if at certain points during play-out, choices of
waiting different amounts of time influence how the execution progresses, e.g., because time
conditions will evaluate differently, then we only show these relevant waiting times to the user.

As our second contribution, we show the practical applicability of the approach: First, we
show how we could successfully model the requirements on gear shifts in an upcoming standard
on vehicle test procedures. Second, we show how we then use SCENARIOTOOLS to validate
gear shift sequences that can be derived from test cycles generated by a third-party tool that
implements this standard.

This paper is structured as follows. In Sect. 2, we explain our case study and give background
on MSDs in Sect. 3. In Sect. 4 we present our realization of timed play-out. Last, we summarize
the implementation of SCENARIOTOOLS in Sect. 5 and present related work in Sect. 6.

Proc. GTVMT 2014 2 / 14

ECEASST

2 Example: WLTP

In the course of this paper, we use the Worldwide harmonized Light vehicles Test Procedures
(WLTP) [Uni14] as a practical example for the application of SCENARIOTOOLS with real-time
constraints. The WLTP are currently developed by the United Nations Economic Division and
aim at “providing a worldwide harmonized method to determine the levels of gaseous and par-
ticulate emissions, CO2 emissions, fuel consumption, electric energy consumption and electric
range from light-duty vehicles in a repeatable and reproducible manner designed to be represen-
tative of real world vehicle operation.” [Uni14].

Among other things, the WLTP define different test cycles for light vehicles. A test cycle is
defined as the vehicle speed at every point in time during the test. Annex II of the WLTP draft
describes requirements for the gear selection during these test cycles. For a particular vehicle,
there exist tools such as AVL CRUISE [avl] that support optimizing gear-shift sequences over
the test cycle time. These, however, have to be validated to conform to the upcoming WLTP.

Our approach is to model the WLTP requirements for gear shifts using MSDs. We then vali-
date the generated gear-shift sequences against the modeled MSD specification. To do this, we
parse the generated timed gear shift sequences and create an event sequence where, in addition
to gear shifts, we derive events from the speed information that mark the beginning and end of
acceleration and deceleration phases in the test cycle. The resulting timed event sequence is then
fed into SCENARIOTOOLS and validated against the MSD specification. The overall tool chain
for validation of gear shift sequences according to the WLTP is depicted in Fig. 1. In this paper,
we focus on the lower part of the figure with respect to the modeled MSDs, ScenarioTools and
the validation of message sequences; the integration with AVL Cruise is future work.

AVL CRUISE
Tool-specific

Parser

1. setCurrentGear(int: 1), t=0
2. beginAcceleration(), t=4
3. ...

Message Sequence

Time
Gear
Speed

Gear sequence

0 4 6 12162533374556

1 2 3 4 5 6 7 8 9 10

0 1 2 3 41 2 3 3 4

V

m()

V
n()

WLTP Test Cycle

Figure 1: Possible Tool Chain for Validation of WLTP Gear Shift Sequences

While we have modeled all but one of the gear selection requirements consisting of seven
requirements, we only consider two of the requirements for illustration in this paper:
“(b) Gears shall not be skipped during acceleration phases. Gears used during accelerations
and decelerations must be used for a period of at least three seconds.
(e) If a gear i is used for a time sequence of 1 to 5 s and the gear before this sequence is the same
as the gear after this sequence, e.g. i− 1, the gear use for this sequence shall be corrected to
i−1.”

3 / 14 Volume 67 (2014)

ScenarioTools Real-Time Play-Out for Test Sequence Validation

3 Foundations

An MSD specification consists of a set of MSDs. An MSD can be existential or universal
[HM03]. Existential MSDs describe sequences of events that must be possible to occur in a
system; universal MSDs describe properties that must hold for executions of the system. We
focus on universal MSDs in this paper, since all requirements in our case study can be formalized
by universal MSDs.

Each lifeline in an MSD represents an object in an object system; an object can be an en-
vironment object or a system object. The set of system objects is called the system; the set of
environment objects is called the environment.

3.1 Basic MSD semantics

The objects can interchange messages. A message has one sending and one receiving object
and refers to an operation of the receiving object. The name of the operation is also that of the
message. Here we consider only synchronous messages where the sending and the receiving of
the message together form a single event, which we call message event or simply event.

A message in an MSD, also called a diagram message, has a name and a sending and a receiv-
ing lifeline. A lifeline represents exactly one object in the object system. The messages in an
MSD have a temperature and an execution kind. The temperature can be either hot or cold; the
execution kind can be either monitored or executed. In our figures, we label the messages accord-
ingly with (c/m), (c/e), (h/m), and (h/e). Also, hot messages are colored red; cold messages are
colored blue. Executed messages have a solid arrow, monitored messages have a dashed arrow.

Intuitively, an MSD progresses as messages occur in the system as described in the MSD.
If the progress reaches a message that is monitored, this message may or may not occur. If
the message is executed, the message must eventually occur (liveness). If the message is hot,
no message must occur (safety) that the scenario specifies to occur only earlier or later. If the
message is cold and a message occurs that is specified to occur earlier or later, this “aborts” the
progress of the MSD. Messages that are not specified in the MSD are ignored, i.e., they do not
influence the progress of the MSD and the MSD does not impose requirements on them.

More specifically, the semantics of the messages is as follows: An event can be unified with
a message in an MSD iff the event name equals the message name and the sending and the
receiving objects are represented by the sending resp. receiving lifelines of the message. When
an event occurs in the system that can be unified with the first message in an MSD, an active
MSD is created. As further events occur that can be unified with the subsequent messages in
the diagram, the active MSD progresses. This progress is captured by the cut, which marks for
every lifeline the locations of the messages that were unified with the message events. If the cut
reaches the end of an active MSD, the active MSD is terminated.

If the cut is in front of a message on its sending and receiving lifeline, the message is enabled.
If a hot message is enabled, the cut is also hot. Otherwise the cut is cold. If an executed message
is enabled, the cut is also executed. Otherwise the cut is monitored. An enabled executed message
is called an active message. A violation occurs if a message event occurs that can be unified with
a message in the MSD that is not currently enabled. If the cut is hot, it is a safety violation;
if the cut is cold, it is called a cold violation. Safety violations must never happen, while cold

Proc. GTVMT 2014 4 / 14

ECEASST

violations may occur and result in terminating the active MSD. If the cut is executed, this means
that the active MSD must progress and it is a liveness violation if it does not. Instead, an active
MSD is not required to progress in a monitored cut.

We consider reactive systems that can, in principle, run infinitely long. We call an infinite
sequence of message events a run. A run satisfies an MSD specification if it leads to no safety
nor liveness violations in any MSD of the specification. In our case study, we consider only finite
traces and define that a finite trace satisfies an MSD specification if there is no safety violation
in any MSD. We discuss examples in Sect. 5.

3.2 Parametrized messages, assignments, conditions, and other constructs

An MSD can also contain parametrized assignments, conditions over variables, and constructs
for expressing alternative continuations of scenarios or forbidden events. In the following, we
will describe these constructs in a by-example fashion.

The two WLTP gear shift requirements depicted in the previous section can be modeled using
MSDs. The first sentence of Requirement (b), “Gears shall not be skipped during acceleration
phases”, is modeled using the two MSDs depicted in Figure 2. Roughly, the MSD NextGear-
AfterAccPhaseBegins specifies that after beginning an acceleration phase, the next gear must be
one gear lower or higher than the gear selected at the beginning of the acceleration phase, unless
the acceleration phase ends before selecting another gear. The MSD NextGearDuringAcc says
that if a new gear was selected during an acceleration phase, the next gear must be one gear lower
or higher than that gear, again unless the acceleration phase ends before selecting another gear.

We modeled an underlying object system with the objects gs:GearSelector, gc:GearController
and env:Environment. The gear selector gs is responsible for choosing an appropriate gear by
sending setActiveGear-messages to the gear controller gc. (In practice, this would be a
component of a test stand or it could even be a human driver.) Allowed gears depend, among
other things, on events from the environment env object, which informs the gear selector about
the beginning of acceleration and deceleration phases.

env:Env

MSD NextGearAfterAccPhaseBegins

gs:GearSelector gc:GearController

setAccPhase(true)

neg setAccPhase(false)

cur = gc.activeGear

alt setActiveGear(cur+1)

setActiveGear(cur-1) (h/m)

(h/m)

(c)

(c/m)

env:Env

MSD NextGearDuringAcc

gs:GearSelector gc:GearController

neg setAccPhase(false)

alt setActiveGear(cur+1)

setActiveGear(cur-1) (h/m)

(h/m)

(c)

(c/m)
setActiveGear(cur)

gs.accPhase (c)

0

1

2

0

1
assignment

alternative-
fragment

negative fragment
contains forbidden

messages

cold condition

Figure 2: The MSDs NextGearAfterAccPhaseBegins and NextGearDuringAcc (Requirement (b))

The MSD NextGearAfterAccPhaseBegins is activated when the acceleration phase begins
setAccPhase(true). As we see, messages can also have parameters of certain types (here:
Boolean). Message events then always carry corresponding parameter values. In an MSD, ei-
ther concrete literal values can be specified for message parameters, as for the first message
setActiveGear(true). Alternatively, we can specify a variable that, if unbound, does not

5 / 14 Volume 67 (2014)

ScenarioTools Real-Time Play-Out for Test Sequence Validation

prescribe any concrete value. If bound, however, we can use the variable in OCL expressions to
specify concrete values.

A parametrized message event can be unified with a diagram message either if the value carried
by the message event matches the value specified for the diagram message or if the diagram
message specifies an unbound variable. In the latter case, the unbound variable is bound to the
parameter value carried by the message event it was unified with. For example, the MSD Next-
GearDuringAcc is activated if a message setActiveGear occurs with an arbitrary parameter
value. The value (here: number of the activated gear) is then bound to the variable cur. As then
the variable is bound, it can be used to specify that the next gear must be one gear higher or lower
(setActiveGear(cur-1) or setActiveGear(cur+1)).

Variables can also be bound using assignments. Assignments are represented in MSDs by
rectangles that cover one or multiple lifelines and contain expressions in the form <var> =
<expr> where <var> is a variable name and <expr> is an OCL expression. The MSD Next-
GearAfterAccPhaseBegins for example contains such an assignment. An assignment is enabled
if the cut is in front of the assignment on all lifelines it covers. If enabled, the expression is
immediately evaluated and the value is assigned to the variable. This variable can again be used
to specify that the next gear must be one gear higher or lower. Parametrized messages of the
form set<attr> assign a value to the attribute <attr> of the receiving object, provided
the parameter and attribute types match. Here, the gear controller object gc has an attribute
activeGear that stores the active gear.

In addition to assignments, MSDs can contain hot or cold conditions, which are represented
as hexagons that cover one or more lifelines. In our figures, we label the temperature (c) or (h);
in addition, cold conditions are colored blue and hot conditions are colored red. Conditions can
contain OCL expressions that evaluate to a Boolean value, possibly involving bound variables.
Conditions, if enabled, are evaluated immediately. If the expression of a hot or cold condition
evaluates to true, the cut progresses beyond the condition. If the expression evaluates to false and
the condition is cold, the active MSD terminates (cold violation). If a hot condition evaluates to
false, this is a safety violation.

Both MSDs in Fig. 2 contain an alternative fragment, which specifies two alternative con-
tinuations of the scenario. In this case, the alternative is a non-deterministic choice, allowing
either shifting to a gear one lower or higher than the gear selected before. A cut in front of the
alternative fragment means that both first messages in the nested fragments are enabled. If a
corresponding event occurs, the cut progresses only inside the respective nested fragment.

Furthermore, an MSD can contain forbidden messages. In SCENARIOTOOLS, forbidden mes-
sage are specified in a negate fragment at the end of an MSD. The negate fragment is not part of
the MSD that is reachable by the cut, i.e., an active MSD terminates if the cut reaches a negate
fragment. It is a cold or safety violation if a message event occurs that cannot be unified with
an enabled message, but can be unified with a cold resp. hot forbidden message. If a negate
fragment contains multiple messages, they are all considered individual forbidden messages.

3.3 Real-time constraints

Time constraints can be modeled in MSDs by referring to clock variables. Clock variables
are a concept adopted from timed automata [AD94]; they are real-value variables that increase

Proc. GTVMT 2014 6 / 14

ECEASST

synchronously and linearly with time. In MSDs, clocks can be reset to zero in assignments and
we can also formulate conditions over clock variables.

As shown in Fig. 3, clock resets and conditions over clock variables, called time conditions,
have an additional hour-glass icon. Intuitively, the MSD MinimumGearUsePeriod models the
second sentence in Requirement (b), “Gears used during accelerations and decelerations must
be used for a period of at least three seconds.”. The MSD becomes active whenever a gear shift
message occurs. If the gear shift occurs during an acceleration or deceleration phase, a clock is
reset. A hot time condition says that every gear shift during the following three seconds is not
allowed. Similarly to the previous MSDs, ending the acceleration or deceleration phase will also
cause a cold violation.

Timed conditions can contain expressions of the form x ./ expr where x is a clock variable,
expr is an expression evaluating to an integer value, and ./ is an operator <,≤,>,≥. Cold time
conditions are treated like cold untimed conditions. For hot timed conditions, we distinguish
minimal delays (./ ∈ {>,≥}) and maximal delays (./ ∈ {<,≤}). If a minimal delay is enabled,
but evaluates to false, the cut progresses as soon as it becomes true. Meanwhile the cut is hot,
i.e., no message that is not currently enabled in the active MSD is allowed to occur. If a maximal
delay is enabled and evaluates to false, this is a liveness violation of the MSD (because the MSD
cannot progress).

env:Env

MSD MinimumGearUsePeriod

gs:GearSelector gc:GearController

setAccPhase(false) (c)

(c/m)
setActiveGear(cur)

gs.accPhase or gs.decPhase

setActiveGear(new)

c = 0

c ≥ 3

setDecPhase(false)

neg

(c)

(c/m)

(c)

(h)

MSD GearUseBetweenOneAndFiveSec

gs:GearSelector gc:GearController

cur = gc.activeGear

setActiveGear(g2)

(c/m)setActiveGear(g1)

(c/m)

cur <> g2

c = 0

setActiveGear(cur)
(c/m)

c ≥ 1 (c)

c ≤ 5 (c)

false (h)

(c)

0

1

2

3

0

1

2

3

4

5

6

clock reset

minimal delay

cold time
condition

Figure 3: The MSDs MinimumGearUsePeriod and GearUseBetweenOneAndFiveSec (Req. (e))

The MSD GearUseBetweenOneAndFiveSec models our interpretation of Requirement (e).
Note that Requirement (e) describes a requirement on valid gear sequences, but also suggests
how to fix an invalid gear sequence. In MSD GearUseBetweenOneAndFiveSec, we only model
the requirement. The MSD becomes active whenever a gear shift occurs. If the gear is shifted to
a different gear and then back, a safety violation occurs if the gear in between was active one to
five seconds. (In that case, the cut will progress to the hot false condition.)

3.4 The Play-Out Algorithm

Harel and Marelly defined an executable semantics for the LSCs, called the play-out algo-
rithm [HM02a], that was later also defined for MSDs [MH06]. The basic principle is that if

7 / 14 Volume 67 (2014)

ScenarioTools Real-Time Play-Out for Test Sequence Validation

an environment event occurs and this results in one or more active MSDs with active system
messages, then the algorithm non-deterministically (or by user interaction) chooses to send a
corresponding message if that will not lead to a safety violation. The algorithm will repeat
sending system messages until no active MSDs with active system messages remain. Then the
algorithm will wait for the next environment event, and this process continues. (It is assumed
that the system is always fast enough to send any finite number of messages before the next
environment event occurs.) If the play-out algorithm reaches a state where there are active sys-
tem messages, but they all lead to safety violations, the algorithm terminates unsuccessfully. If
such a state is encountered, this shows engineers that the specification is either unrealizable or
under-specified.

The play-out algorithm is implemented in the PLAY ENGINE [HM03] and the PLAYGO tool
[Pla]. For more information on the SCENARIOTOOLS implementation of play-out, we refer to
last year’s GT-VMT publication [BGP13].

SCENARIOTOOLS supports the play-out and also the step-by-step simulation of message
events and an automated validation of given event sequences against an MSD specification. We
use the latter feature in our case study as explained in Sect. 2. The functionality is based on a
common runtime package. In the next section, we provide details of how this runtime is extended
to support real-time MSDs.

4 Timed Simulation

Real-time systems can behave differently depending on the passing of time. In the context of
MSDs, this means that different sets of messages can be allowed, forbidden, or mandatory. How-
ever, the systems we consider do not change their behavior arbitrarily, but rather define the same
behavior for some interval of time. This allows us to represent time symbolically instead of con-
sidering concrete clock values individually. For this, we use the concept of clock zones [Dil90]
as known from timed automata [AD94].

The task of the SCENARIOTOOLS runtime is, on the one hand, to determine the currently
possible events that can change the state of the MSD specification. On the other hand, the
runtime computes the successor state for the event selected by the user (or by an algorithm) to be
executed. In case of the untimed SCENARIOTOOLS runtime, the events are message events. In
the timed SCENARIOTOOLS runtime, there can also be events that correspond to time conditions.

The state during the execution of an untimed MSD specification is defined by the current cuts
in all active MSDs and the values of all variables. To support real-time behavior, the notion
of a state must be extended. In a real-time setting, a state is also defined by its clock zone,
which models the possible values of clocks within the state. There can also be several states
that only differ in their clock zone. A state, therefore, can actually be the symbolic represen-
tation of infinitely many states with concrete clock values (since we assume a continuous time
domain). This is analogous to the definition of symbolic states in the zone graph of a timed
automaton [Dil90, BY04].

Figure 4 depicts an excerpt of the timed runtime state space induced by the MSDs Minimum-
GearUsePeriod and GearUseBetweenOneAndFiveSec (cf. Fig. 3) in a notation similar to zone
graphs. Each state either lists the active MSDs including their current cuts or declares the occur-

Proc. GTVMT 2014 8 / 14

ECEASST

rence of a safety violation. The corresponding clock zone for each state is visualized by means
of time axes of the clocks of MinimumGearUsePeriod and GearUseBetweenOneAndFiveSec,
respectively. Initially (in state 1), no active MSDs and no clocks exist. When the message setAc-
tiveGear is sent, both MSDs are activated. On activation, the clocks of both MSDs are initialized
with 0 (cf. clock zone of state 2). We will explain further steps of the example along with the
following explanation of the timed runtime.

2

MinimumGearUsePeriod (Cut 2)

GearUseBetweenOneAndFiveSec (Cut 1)

3a

MinimumGearUsePeriod (Cut 3)

GearUseBetweenOneAndFiveSec (Cut 1)

MinimumGear-

UsePeriod.c ≥ 3

setActiveGear [gs -> gc]

setActiveGear [gs -> gc]
 GearUseBetweenOneAndFiveSec.c ≥ 1
 MinimumGearUsePeriod.c = 0

6

MinimumGearUsePeriod (Cut 2)

GearUseBetweenOneAndFiveSec (Cut 5)

7a

Safety Violation

GearUseBetween-

OneAndFiveSec.c ≤ 5

GearUseBetween-

OneAndFiveSec.c > 5

setActiveGear [gs -> gc]

...

MinimumGear
UsePeriod.c = 0

&&
GearUseBetween

OneAndFiveSec.c = 0

0

MinimumGear-

UsePeriod.c

GearUseBetween-

OneAndFiveSec.c

GearUseBetween-

OneAndFiveSec.c

MinimumGear
UsePeriod.c = 0

&&
GearUseBetween

OneAndFiveSec.c ≥ 1

3

MinimumGear-

UsePeriod.c

3b

Safety Violation

7b

MinimumGearUsePeriod (Cut 2)

setActiveGear [gs -> gc]
 GearUseBetweenOneAndFiveSec.c = 0
 MinimumGearUsePeriod.c = 0

1

...

MinimumGear
UsePeriod.c < 3

&&
GearUseBetween

OneAndFiveSec.c < 3
3

MinimumGear-

UsePeriod.c

GearUseBetween-

OneAndFiveSec.c

3

MinimumGear
UsePeriod.c ≥ 3

&&
GearUseBetween

OneAndFiveSec.c ≥ 3

3

MinimumGear-

UsePeriod.c

GearUseBetween-

OneAndFiveSec.c

3

0

0 0

5

MinimumGearUsePeriod (Cut 3)

GearUseBetweenOneAndFiveSec (Cut 3)

MinimumGearUsePeriod.c ≥ 3MinimumGear
UsePeriod.c ≥ 3

&&
GearUseBetween

OneAndFiveSec.c ≥ 3

3

MinimumGear-

UsePeriod.c

GearUseBetween-

OneAndFiveSec.c

3

GearUseBetween-

OneAndFiveSec.c

MinimumGear
UsePeriod.c = 0

&&
GearUseBetween

OneAndFiveSec.c > 5

5

MinimumGear-

UsePeriod.c

05

GearUseBetween-

OneAndFiveSec.c

MinimumGear
UsePeriod.c = 0

&&
1 ≥ GearUseBetween

OneAndFiveSec.c ≤ 5

3

MinimumGear-

UsePeriod.c

0

Figure 4: Zone Graph Excerpt for State Space of the MSDs in Fig. 3

Transitions in a timed setting can be labeled with message events, just like in the untimed
setting. However, the progressing of enabled messages in active MSDs can be followed by
the immediate execution of subsequently enabled clock resets, the evaluation of subsequently
enabled time conditions, or a combination thereof. These resets and conditions thus influence
the shape of the clock zone of the successor state. Moreover, if, following a message event,
conditions are enabled that in the current clock zone can evaluate to either true or false, then
there can be also multiple different successor states, with different zones, following the same
message event. This corresponds to the notion of sending a message before or after a certain
condition holds.

9 / 14 Volume 67 (2014)

ScenarioTools Real-Time Play-Out for Test Sequence Validation

All these cases occur in our example and we explain them in the following:
In state 2: The MSD MinimumGearUsePeriod (cf. Fig. 3) is in cut 2 before the hot time

condition c ≥ 3. The clocks in this state have both been newly created and are initially zero.
Therefore, the condition is not yet fulfilled. Waiting until c ≥ 3 will make the MSD progress to
cut 3. This corresponds to the transition from state 2 to state 3a (see Fig. 4).

For minimal delays (hot conditions with lower bounds), like in this case, we compute the
zone of the successor state (here: state 3a) based on the zone of the current state (here: state
2) as follows. First, we model the passing of time by removing the upper bounds of all clocks.
Then, we intersect the resulting zone with the condition (here: c ≥ 3). As both clocks have been
created at the same time and progress uniformly, their value is equal. Therefore, although c ≥ 3
only refers to MinimumGearUsePeriod.c, both clocks are ≥ 3 now.

Alternatively, the message event setActiveGear can occur in state 2 before c≥ 3 becomes
true. As cut 2 is hot, this causes a safety violation (state 3b). We compute the zone of this state
as for state 3a, except that we intersect the current zone with the negated condition, i.e. c < 3.

In state 5: In both MSDs in Fig. 3, the message setActiveGear is enabled, corresponding to the
transition to state 6. When the corresponding message event occurs, the MSD MinimumGearUse-
Period is terminated and created again (in cut 1), because setActiveGear is both the final
and the initial message of the MSD. The MSD GearUseBetweenOneAndFiveSec progresses to
cut 4. As time may pass arbitrarily before message events, the upper bounds of all clocks are
removed for computing the clock zone of the successor state (here they are already unbounded).

After handling the message event, any subsequent clock resets and untimed conditions are
immediately processed. Now we have to distinguish two kinds of time conditions. There can
be conditions that will be either true or false for all clock values in the current clock zone, and
there can be time conditions that evaluate to true for some clock values of the clock zone and
to false for others. We call the former decided time conditions and the latter undecided time
conditions. In state 5, the cold condition c ≥ 1 in GearUseBetweenOneAndFiveSec is a decided
time condition, while the cold condition c ≤ 5 is an undecided time condition.

The condition c ≥ 1 is decided, because in the current clock zone we have GearUseBetween-
OneAndFiveSec.c ≥ 3. The condition c ≤ 5 is undecided, because it is fulfilled for 3 ≤ Gear-
UseBetweenOneAndFiveSec.c ≤ 5, but unfulfilled for GearUseBetweenOneAndFiveSec.c > 5.

The runtime processes decided time conditions immediately, but does not process undecided
time conditions. Therefore, from state 5 to state 6, the cut of MSD GearUseBetweenOneAndFive-
Sec advances to cut 5, but not yet any further. If there are undecided time conditions, different
decisions can be made—either by the user or by another component. The decision to be made
is whether the condition should evaluate to true or false, which implies retrospectively when the
message setActiveGear was sent.

In state 6: The runtime creates two outgoing transitions representing the choice mentioned
above. The clock zone of the successor state is created based on this decision and the current
clock zone. For the case of a fulfilled condition, the clock zone is intersected with the condition,
here resulting in 3 ≤ GearUseBetweenOneAndFiveSec.c ≤ 5 in state 7a. For the opposite case,
the clock zone is intersected with the negation of the condition, here resulting in GearUse-
BetweenOneAndFiveSec.c > 5 in state 7b. In both cases, the cut is progressed accordingly.
In state 7a, the condition is now always fulfilled and the MSD GearUseBetweenOneAndFiveSec
advances to cut 6, yielding a safety violation. In state 7b, the condition is always unfulfilled

Proc. GTVMT 2014 10 / 14

ECEASST

which results in a cold violation, terminating the MSD GearUseBetweenOneAndFiveSec.
The runtime handles clock resets by setting the value of the affected clock to zero in the zone

of the successor state. This is done, for example, when processing the transition from state 5 to
state 6 in MinimumGearUsePeriod, where MinimumGearUsePeriod.c is reset.

5 Implementation

SCENARIOTOOLS consists of several Eclipse plug-ins that are based on a common runtime
logic [BGP13]. We implemented our timed extension as presented in Sect. 4 by creating a
specialized timed version of this runtime plug-in. Furthermore, we created a timed simulation
plug-in and added an option to automatically play back a number of message events specified
in a csv file in which every message event is supplied with a time stamp. Using this play-back,
we can validate the gear sequences against the MSDs formalizing the WLTP requirements as
explained in Sect. 2.

For efficiently representing the clock zones in the timed runtime and for performing basic
operations on them, we are using a Java implementation of the DBM library described in [BY04].
This implementation is an extension of the framework described in [EH11].

Figure 5: A Screenshot of the Timed Simulation in SCENARIOTOOLS

Fig. 5 shows a screenshot of the timed simulation’s user interface in the SCENARIOTOOLS

perspective in Eclipse. It shows the currently active MSDs and the objects in the system (Debug
view), the equations that define the current clock zone (Variables view), and the possible next
events to evaluate, including time events (Timed MessageEvent Selection View). On the right
hand side, a view of the UML editor Papyrus shows one of the MSDs involved in the simulation.
We extended Papyrus for visualizing message temperatures and execution kinds.

The following example message sequence can be successfully simulated and is thus a valid
gear sequence according to the WLTP:

1. gs, gc.setActiveGear(int: 1),t=1
2. env, gs.setAccPhase(boolean: true),t=2
3. gs, gc.setActiveGear(int: 2),t=5
4. gs, gc.setActiveGear(int: 3),t=9
5. env, gs.setAccPhase(boolean: false), t=10

Requirement (b) is not violated as no gear is skipped during the acceleration phase and as

11 / 14 Volume 67 (2014)

ScenarioTools Real-Time Play-Out for Test Sequence Validation

gear two is used for a period of four seconds. As no gear sequence in the example matches the
sequence in Requirement (e), this requirement is fulfilled as well.

Changing the gear sequence to the following would lead to a safety violation, as the sequence
does not conform to Requirement (b):

1. env: gs.setAccPhase(boolean: true),t=2
2. gs: gc.setActiveGear(int: 2),t=5
3. gs: gc.setActiveGear(int: 3),t=7

In detail, message 2 leads to an activation of MSD MinimumGearUsePeriod, progressing to
cut 1. The cold condition in this MSD becomes enabled and is directly evaluated to true, followed
by a clock reset at t = 5. The cut progresses to cut 2, leading to the minimal delay c≤ 3 becoming
enabled and the cut being hot. Message 3 arrives two seconds (t = 7) after the previous message,
while the cut is still hot. This situation corresponds to the transition between the states 2 and 3b
in the zone graph of Fig. 4 and leads to a safety violation.

Note that in order to interpret the trace, end users will not have to understand the MSD rep-
resentation of the WLTP requirements. We imagine mapping the violating event back to AVL
CRUISE tool, where a violation in the gear shift sequence is highlighted, in combination with an
informal description of the violated requirement.

For this example, we only considered Requirements (b) and (e). The actual WLTP Annex
II contains further requirements which leads to further Modal Sequence Diagrams and more
messages. We only present a limited set here in order to make the example easier to understand.
Out of the complete requirements set, we are able to model all but one, in which we need to be
able to count how often a certain scenario occurs. We are currently evaluating how to do this and
plan to use the simulation in a joint project between academia and industry.

6 Related Work

Timed play-out, along with LSCs extensions to express time constraints, were already proposed
by Harel and Marelly [HM02b]. However, their approach supports only discrete time and the
user is required to execute clock ticks to represent the passage of time. SCENARIOTOOLS in-
stead shows users exactly the decisions on the progress of time which are relevant for different
continuations of the execution.

The idea of validating traces against an LSC specification were already explored in the Tracer
project [MKH07]. The Tracer tool visualizes concurrent activations and progress of scenarios
and allowed and forbidden violations, but no time constraints were considered.

Lettrari and Klose propose an approach for monitoring and testing real-time systems against
high-level Message Sequence Charts (hMSCs) [LK01]. hMSCs are less convenient for scenario-
based specification than LSCs/MSDs because the concurrent progress of scenarios must be mod-
eled explicitly, using a notation similar to activity diagrams. Also, hMSCs have no support for
modeling cold (allowed) violations of scenarios; our example heavily relies on that concept.

MSDs/LSCs with real-time requirements were already proposed by Larsen et al. [LLNP09];
they describe a model-checking approach for verify real-time system designs against real-time
LSC specifications. The approach is based on a mapping from real-time LSCs to timed automata
and the analysis is performed by the UPPAAL model checker. The UPPAAL model checker also

Proc. GTVMT 2014 12 / 14

ECEASST

supports the simulation of the generated timed automata, but this simulation does not resemble
an interactive play-out of of the LSC specifications. Moreover, the approaches only supports
core LSC language features; parametrized messages, for example, are not supported.

7 Conclusion and Outlook

Embedded systems must often fulfill complex and critical real-time requirements that, to be able
to apply automated validation and verification techniques, must be rigorously formalized. We
propose to use a scenario-based approach, in particular using real-time MSDs. These MSDs can
be used throughout the system and software development process, as we outlined in this paper:
from analyzing real-time specifications by early play-out simulations to the validation of test
traces, where MSDs act as a test oracle.

In this paper, we have presented our extension of SCENARIOTOOLS to support real-time
MSDs and we have demonstrated the applicability of real-time MSDs and the tool in a prac-
tical case study.

We pursue different directions for future work. First, we plan a controlled experiment to
compare scenario-based specification of requirements with MSDs and state-based specification
of requirements with timed automata with respect to understandability as well as quality of the
developed models. Second, based on the SCENARIOTOOLS runtime, we now want to investigate
how to efficiently synthesize controllers from real-time MSD specifications.

Acknowledgements: We thank Nadja Marko, Alfred Wallner, and Christian Webel for dis-
cussions on the WLTP standard. This research is partially funded by the German Federal Min-
istry of Education and Research (BMBF) within the Leading-Edge Cluster “Intelligent Technical
Systems OstWestfalenLippe” (it’s OWL) and is managed by the Project Management Agency
Karlsruhe (PTKA). The research leading to these results has received partial funding from the
European Union’s Seventh Framework Program (FP7/2007-2013) for CRYSTAL – Critical Sys-
tem Engineering Acceleration Joint Undertaking under grant agreement No 332830 and from
Vinnova under DIARIENR 2012-04304.

References

[AD94] R. Alur, D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science
126(2):183–235, 1994.

[avl] AVL CRUISE. last accessed Jan. 2014.
https://www.avl.com/cruise1

[BGP13] C. Brenner, J. Greenyer, V. Panzica La Manna. The ScenarioTools Play-Out of Modal
Sequence Diagram Specifications with Environment Assumptions. In Proc. 12th Int.
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2013).
Volume 58. EASST, 2013.

13 / 14 Volume 67 (2014)

https://www.avl.com/cruise1

ScenarioTools Real-Time Play-Out for Test Sequence Validation

[BY04] J. Bengtsson, W. Yi. Timed Automata: Semantics, Algorithms and Tools. In Lectures
on Concurrency and Petri Nets. LNCS 3098, pp. 87–124. Springer, 2004.

[DH01] W. Damm, D. Harel. LSCs: Breathing Life into Message Sequence Charts. In Formal
Methods in System Design. Volume 19, pp. 45–80. Kluwer Academic, 2001.

[Dil90] D. L. Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems.
In Sifakis (ed.), Automatic Verification Methods for Finite State Systems. LNCS 407,
pp. 197–212. Springer, 1990.

[EH11] T. Eckardt, C. Heinzemann. Providing Timing Computations for FUJABA. In Proc.
8th Int. Fujaba Days. 2011.

[HM02a] D. Harel, R. Marelly. Specifying and Executing Behavioral Requirements: The Play-
In/Play-Out Approach. Software and System Modeling (SoSyM) 2:2003, 2002.

[HM02b] D. Harel, R. Marelly. Playing with Time: On the Specification and Execution of Time-
Enriched LSCs. In Proc. Int. Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS’02). Pp. 193–202. 2002.

[HM03] D. Harel, R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, August 2003.

[HM08] D. Harel, S. Maoz. Assert and negate revisited: Modal semantics for UML sequence
diagrams. Software and Systems Modeling (SoSyM) 7(2):237–252, May 2008.

[LK01] M. Lettrari, J. Klose. Scenario-Based Monitoring and Testing of Real-Time UML
Models. In Gogolla and Kobryn (eds.), UML 2001 – The Unified Modeling Language.
Modeling Languages, Concepts, and Tools. LNCS 2185, pp. 317–328. Springer, 2001.

[LLNP09] K. Larsen, S. Li, B. Nielsen, S. Pusinskas. Verifying Real-Time Systems against
Scenario-Based Requirements. In Cavalcanti and Dams (eds.), FM 2009: Formal
Methods. LNCS 5850, pp. 676–691. Springer, 2009.

[MH06] S. Maoz, D. Harel. From Multi-Modal Scenarios to Code: Compiling LSCs into
AspectJ. In Proc. 14th Int. Symp. on Foundations of Software Engineering. SIG-
SOFT ’06/FSE-14, pp. 219–230. ACM, New York, NY, USA, 2006.

[MKH07] S. Maoz, A. Kleinbort, D. Harel. Towards Trace Visualization and Exploration for Re-
active Systems. In Visual Languages and Human-Centric Computing, 2007. VL/HCC
2007. IEEE Symposium on. Pp. 153–156. Sept 2007.

[Pla] PlayGo Tool. last accessed Jan. 2014.
http://www.weizmann.ac.il/mediawiki/playgo/

[Uni14] United Nations Economic Comission for Europe. Worldwide Harmonised Light
Vehicle Test Procedures. Draft 26.08.2013, 2014. last accessed Jan. 2014.
https://www2.unece.org/wiki/download/attachments/5801176/26.08.2013%20Draft.
pdf?api=v2

Proc. GTVMT 2014 14 / 14

http://www.weizmann.ac.il/mediawiki/playgo/
https://www2.unece.org/wiki/download/attachments/5801176/26.08.2013%20Draft.pdf?api=v2
https://www2.unece.org/wiki/download/attachments/5801176/26.08.2013%20Draft.pdf?api=v2

	Introduction
	Example: WLTP
	Foundations
	Basic MSD semantics
	Parametrized messages, assignments, conditions, and other constructs
	Real-time constraints
	The Play-Out Algorithm

	Timed Simulation
	Implementation
	Related Work
	Conclusion and Outlook

