
Electronic Communications of the EASST
Volume 47 (2012)

Proceedings of the
11th International Workshop on Graph Transformation and

Visual Modeling Techniques
(GTVMT 2012)

A Flattening Approach for Attributed Type Graphs with Inheritance in
Algebraic Graph Transformation

Christine Natschläger and Klaus-Dieter Schewe

14 pages

Guest Editors: Andrew Fish, Leen Lambers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

A Flattening Approach for Attributed Type Graphs with
Inheritance in Algebraic Graph Transformation

Christine Natschläger1 and Klaus-Dieter Schewe2

1 christine.natschlaeger@scch.at
Software Competence Center Hagenberg GmbH

Hagenberg, Austria

2 kd.schewe@scch.at, kd.schewe@cdcc.faw.jku.at
Software Competence Center Hagenberg GmbH

Hagenberg, Austria and
Research Institute for Applied Knowledge Processing

Johannes Kepler University Linz, Linz, Austria

Abstract: The algebraic graph transformation approach was initiated in 1973 and
supports the rule-based modification of graphs based on pushout constructions. The
vertex and edge types used within the rules (or productions) as well as possible in-
heritance relationships defined between them are specified in the type graph. How-
ever, the termination proof can only be accomplished for graph transformation sys-
tems without inheritance relationships. Thus, all graph transformation systems with
inheritance relationships in the type graph must be flattened. To this end, the alge-
braic graph transformation approach provides a formal description for how to flatten
the type graph as well as a definition of abstract and concrete productions.

In this paper, we will extend the definitions to also consider vertices in negative ap-
plication conditions with finer node types and positive application conditions. Fur-
thermore, we will prove the semantic equivalence of the original and the flattened
graph transformation system. The whole flattening algorithm is then implemented
in a prototype which supports an abstract or concrete flattening of a given graph
transformation system. The prototype is finally evaluated within a case study.

Keywords: Graph Transformation, Inheritance, Flattening

1 Introduction

The main idea of graph transformation is the rule-based modification of graphs from a source to
a target graph. The application of a production p (or rule) consisting of a graph L (left-hand side
(LHS)) and a graph R (right-hand side (RHS)) (p = (L,R)) means finding a match of L in the
source graph and replacing L by R leading to the target graph [EEPT06, p. 6]. The algebraic graph
transformation approach was initiated by Ehrig, Pfender and Schneider in 1973 (see [EPS73])
and is based on pushout constructions, which are used to model the gluing of graphs (detailed
description in [EEPT06]).

In order to show that a graph transformation system (GTS) is confluent and globally determin-
istic, it is necessary to prove local confluence and termination. A graph transformation G ∗⇒H is

1 / 14 Volume 47 (2012)

mailto:christine.natschlaeger@scch.at
mailto:kd.schewe@scch.at
mailto:kd.schewe@cdcc.faw.jku.at

A Flattening Approach for ATGIs in Algebraic Graph Transformation

called terminating if no further production is applicable to H anymore, so that there is no infinite
sequence of graph transformations [EEPT06, p. 59f]. Termination of a GTS can be concluded
if the criteria described in the termination theorem in [EEPT06, p. 63f] are met. However, the
termination theorem can only be used for GTSs without inheritance in the type graph. If a type
graph includes inheritance relationships or abstract nodes, then the graph transformation system
must be flattened.

The algebraic graph transformation approach describes the flattening of the type graph and
provides a definition for abstract and concrete productions. In our research, we further con-
sider vertices in negative application conditions with finer node types and positive application
conditions. Moreover, we prove the semantic equivalence of the original and the flattened GTS.

The application of the algebraic graph transformation approach is supported by the tool AGG
(see [AGG11]). AGG was introduced by Löwe and Beyer in 1993 (see [LB93]) and later re-
designed and extended by Taentzer (see [Tae04]). In December 2010, AGG was updated to
version 2.0 [AGG11]. AGG provides a graphical editor and can be used for specifying graph
grammars with a start graph or for typed attributed graph transformations. Furthermore, AGG
offers analysis techniques as for consistency checking, critical pair analysis and termination
evaluation. Since AGG does not support the flattening of GTSs with inheritance, we further
implement the extended flattening algorithm within a prototype.

2 Motivation

In [Nat11], we extended BPMN with deontic logic to explicitly highlight the modality of tasks
(obligatory, permissible or alternative) and reduce the structural complexity of the process flow.
We called this extension Deontic BPMN and further defined an algebraic graph transformation
from BPMN to Deontic BPMN named DeonticBpmnGTS. DeonticBpmnGTS specifies an at-
tributed type graph with inheritance as shown in Fig. 1.

Figure 1: Type Graph of DeonticBpmnGTS

The type graph of DeonticBpmnGTS comprises five abstract node types (Node, Gateway,
DeonticTask, BpmnTask, and Event), several concrete node types (e.g., O(Task) (obligatory task),
P(Task) (permissible task), X(Task) (alternative task), ...), and inheritance relationships defined

Proc. GTVMT 2012 2 / 14

ECEASST

between them. The node type MeasuredValues is used to store meta-information like the number
of gateways and sequence flows in order to study the reduction of structural complexity. In
addition, DeonticBpmnGTS provides one edge label called SF for sequence flows representing
several edge types.

The goal of DeonticBpmnGTS is to transform BPMN diagrams to Deontic BPMN diagrams
thereby replacing all BpmnTasks with DeonticTasks. For this purpose, DeonticBpmnGTS defines
18 productions with 27 application conditions (21 negative application conditions (NACs) and
6 positive application conditions (PACs)). The productions cover sequences, gateways (paral-
lel, exclusive and inclusive) and iterations and are distributed across four layers. For example,
the production SeveralPhiReductionRule addresses duplicate empty (or Phi) paths between two
gateways by removing one of them (see Fig. 2). Since both sequence flows are unconditional,
they are semantically equivalent and nothing (Φ) has to be done if a token traverses a path. The
element MeasuredValues shows that the transformation leads to a reduction of one sequence flow.

(a) LHS (b) RHS

Figure 2: SeveralPhiReductionRule

Afterwards, a typed graph can be created for a concrete BPMN model and is then transformed
to Deontic BPMN. This is demonstrated by an example whose BPMN model is shown in Fig. 3
in the image view. According to the MeasuredValues element, the BPMN model consists of eight
gateways and twenty-nine sequence flows.

Figure 3: Example: BPMN Model

The resulting Deontic BPMN model is shown in Fig. 4. This model consists of six gateways
and twenty-four sequence flows. Thus, the transformation leads to a reduction of two gateways
and five sequence flows. In addition, the obligatory (O), alternative (X) and permissible (P) tasks
can be distinguished on first sight based on their prefix and color.

Figure 4: Example: Deontic BPMN Model

3 / 14 Volume 47 (2012)

A Flattening Approach for ATGIs in Algebraic Graph Transformation

Our next goal was then to prove that DeonticBpmnGTS is a trusted model transformation.
According to [VVE+06], the most important correctness properties of a trusted model transfor-
mation are termination, uniqueness (confluence), and behavior preservation. In a first step, we
proved that the transformation from BPMN to Deontic BPMN is unique and behavior preserv-
ing. However, since DeonticBpmnGTS specifies an attributed type graph with inheritance, it is
necessary to flatten the GTS in order to prove termination.

3 Related Work

The fundamentals of the algebraic graph transformation approach are presented in [EEPT06].
According to the authors, supporting node type inheritance leads to a denser form of graph
transformation systems, since several similar productions can be abstracted into one. However,
in order to benefit from the well-founded theory of typed attributed graph transformation, it
is in some cases recommended to flatten graph transformations with an attributed type graph
with inheritance (ATGI) to equivalent typed attributed graph transformations without inheri-
tance (see [EEPT06, p. 260ff] and [LBE+07]). For example, the termination theorem provided
in [EEPT06, p. 63f] can only be used for GTSs without inheritance in the type graph. Since a
termination analysis has to consider all possible replacements of an abstract node to correctly
calculate the creation and deletion layers, a kind of flattening (either explicitly or implicitly)
is necessary. An implicit flattening implies an adaptation of the termination theorem to also
consider derived nodes. For example, Golas et al. adapted the critical pair analysis and intro-
duced abstract critical pairs to also cope with abstract productions (see [GLEO12]). In contrast,
an explicit flattening requires the flattening of the entire graph transformation system. In the
following, explicit flattening is used for the termination analysis, since the flattening approach
can be based on already existing definitions and the flattening results can be validated. Three
definitions that are relevant for the flattening algorithm are presented in subsequent paragraphs.

The first definition defines an attributed type graph with inheritance (ATGI) (see [EEPT06,
p. 260f, Definition 13.1]). An ATGI (AT GI = (T G,Z, I,A)) consists of an attributed type graph
(AT G = (T G,Z)), an inheritance graph (I = (IV , IE ,s, t)) and a set of abstract nodes (A ⊆ IV).
Furthermore, the inheritance clan of a node (clanI(n)) represents all its subnodes.

The second definition defines the closure (or flattening) of ATGIs (see [EEPT06, p. 262f,
Definition 13.4]). In a first step, all inheritance relationships are removed from the type graph
and the edges and attributes of a parent node are copied for every child node. Thus, additional
graph-, node attribute-, and edge attribute edges may be inserted in the type graph. The result is
called the abstract closure (or abstract flattening) of the type graph. In a second step, all abstract
nodes together with adjacent edges are removed from the type graph. This is called the concrete
closure (or concrete flattening) of the type graph.

The third definition defines abstract and concrete productions (see [EEPT06, p. 272f, Defini-
tion 13.16]). An abstract production typed over ATGI is given by p = (L l← K r→ R, type,NAC),
where type is a triple of typing morphisms, e.g. typeL : L→ AT GI, and NAC is a set of triples
(nac = (N,n, typeN)) with an attributed graph N, a morphism n : L→ N and a typing ATGI-clan
morphism typeN : N→ AT GI, such that the following conditions hold: (I) types in K are equal
with the morphism image types in L and R, (II) all nodes that only exist in R must not be of an

Proc. GTVMT 2012 4 / 14

ECEASST

abstract type, and (III) all nodes in a NAC with a morphism image in L have the same or a finer
type as the morphism image. In a concrete production (pt = (L l← K r→ R, t,NAC)) again (I) the
types in K are equal with the morphism image types in L and R, but (II) the types can be equal or
finer than in the abstract production. Furthermore, (III) all nodes that only exist in R must remain
of the same type and (IV) all nodes in a NAC with a morphism image in L are flattened to the
same type whereas nodes without a morphism image are flattened to all subtypes. Considering
the last aspect, we suggest that a node in a NAC should only be set to the same morphism image
type, if the original node types in L and NAC were equal (node type in a NAC might be finer).

The flattening approach was extended in [LBE+07]. The main results of this publication
show the equivalence of the abstract and the corresponding concrete transformation as well as
the equivalence of attributed graph grammars with and without inheritance. Open issues of the
flattening approach are changed attributes, dependency relationships with multiplicity and edge
inheritance (cf. [LBE+07]). The last two aspects were defined for graph transformations without
attributes in [TR05].

However, we identified open issues in the definition of abstract and concrete productions.
Thus, we will extend the definition to also consider vertices in negative application conditions
with finer types as well as positive application conditions. The extensions are generic and can
be used to flatten any graph transformation system with inheritance. Furthermore, we will prove
the semantic equivalence of the original and the flattened graph transformation system.

4 Flattening Algorithm

First of all, we provide some suggestions and extensions concerning the definition of abstract
and concrete productions (see [EEPT06, p. 272f, Definition 13.16]). The fourth condition of
concrete productions is adapted from:

• “for each (N,n, typeN) ∈ NAC, we have all (N,n, tN) ∈ NAC for concrete ATGI-clan mor-
phisms tN satisfying tN ◦n = tL and tN ≤ typeN .”

to:

• for each (N,n, typeN) ∈ NAC, we have all (N,n, tN) ∈ NAC for concrete ATGI-clan mor-
phisms tN satisfying tN ≤ typeN and ∀x ∈ LVG :

– if (typeN ◦n)(x) = typeL(x) or (typeN ◦n)(x)> tL(x) then (tN ◦n)(x) = tL(x)

– else if (typeN ◦n)(x)< typeL(x) and (typeN ◦n)(x)≤ tL(x) then tN(x) = typeN(x)

– else (N,n, tN) /∈ NAC

This definition also supports a stepwise flattening as required for the prototype implementation.
The stepwise flattening flattens one production after the other before removing the inheritance
relationships from the type graph. In the first case, typeN and typeL are equal or the flattened tL
is finer than typeN , thus the node in N is flattened to the same type as the node in L. This case is
also addressed by the original definition. In the second case, typeN is finer than typeL and also
finer or equal than the flattened tL, so typeN is not flattened. This case need not be considered

5 / 14 Volume 47 (2012)

A Flattening Approach for ATGIs in Algebraic Graph Transformation

in the original definition, because all inheritance relationships are removed from the type graph
during the flattening and, thus, a NAC with a finer node type is not applicable. However, this
case is necessary for a stepwise flattening, since a NAC with a finer node type of, e.g., a concrete
production is relevant for the further flattening of the production. In the third case, however, the
NAC is removed from the set of NAC of this production. For example, if typeL defines a Node,
typeN a Gateway and the node in L is flattened to an Event (tL), then the NAC can be removed,
because it is neither applicable nor relevant for a further flattening, since an Event cannot be
replaced by a Gateway.

Furthermore, we also consider PACs. The flattening of PACs is similar to that of NACs de-
scribed in [EEPT06, p. 272f, Definition 13.16] and extended above. However, if a PAC comprises
a refined node and this node is still finer than the flattened tL (case 2) or the morphism image in L
is flattened to a sibling (case 3), then the PAC must remain to ensure that the production is never
applied (so case 2 is mandatory for PACs). Alternatively, the whole production can be deleted.

In addition, there is a difference between flattening of NACs and PACs concerning nodes
without morphism image in L. If a NAC has an abstract node without morphism image, then this
node is flattened to all concrete nodes resulting in several flattened NACs for one production. All
NACs must be fulfilled in order to apply the production. However, if such a node is part of a PAC,
then the semantics of the original definition is that only one instance with a concrete node must
be fulfilled. However, if the PAC is flattened, then all flattened PACs must be satisfied in order
to apply the production. For example, if the original PAC defines that a node X must address an
abstract node Y , and Y has no morphism image in L, then flattening this PAC means that node
X must address all subnodes of Y , whereas the original definition states that only one subnode
must be addressed. Thus, it is necessary to convert all flattened PACs to general application
conditions (GACs) and to specify a formula. The formula defines which GACs must be fulfilled
under which circumstances. For example, all flattened GACs of one abstract PAC are defined to
be disjunctive (concatenated with ∨) and, thus, only one of the GACs must be fulfilled.

All other PACs which only comprise abstract nodes that have a morphism image in L are
flattened together with the production. These PACs can either remain as positive application
condition (PAC) or can be transformed to a GAC. GACs that originate from different former
PACs are defined to be conjunctive (concatenated with ∧). The two approaches are semantically
equivalent. In the following, we will transform these PACs to GACs to be consistent with PACs
that have abstract nodes without morphism image. Then we can generally define:

• PAC(x)→ GAC(x);

• PAC(x)≡ GAC1(x)∨ ...∨GACn(x);

• PAC(x)∧PAC(y)≡ GAC(x)∧GAC(y)

Summing up, we provided two extensions concerning the definition of concrete productions.
So we now have to prove that, despite of the extensions, the original and the flattened graph
transformation system are still semantically equivalent. As already mentioned in the related
work, the equivalence of abstract and corresponding concrete transformations as well as the
equivalence of attributed graph grammars with and without inheritance is shown in [LBE+07].
The theorem for equivalence of attributed graph grammars as well as the corresponding proof is

Proc. GTVMT 2012 6 / 14

ECEASST

not affected by the extensions (see Theorem 3 in [LBE+07]). However, Theorem 2 and Lemma
3 of [LBE+07] must be adapted to also cover the proposed extensions.

Theorem 1 Equivalence of Transformations (based on [LBE+07] Theorem 2, adapted): Given
an abstract production p = (L l← K r→ R, type,AC) over an attributed type graph ATGI with
inheritance, a concrete typed attributed graph (G, typeG) and a match morphism m : L→ G
(which satisfies the gluing condition w.r.t. the untyped production L← K → R). Then the fol-
lowing statements are equivalent, where (H, typeH) is the same concrete typed graph in both
cases:

1. m : L→G is a consistent match w.r.t. the abstract production p yielding an abstract direct
transformation (G, typeG)

p,m⇒ (H, typeH).

2. m : L→ G is a consistent match w.r.t. the concrete production pt = (L← K → R, t,AC)
with pt ∈ p̂ (set of concrete productions) and tL = typeG ◦m (where tK , tR and AC are
uniquely defined by Lemma 1(1)) yielding a concrete direct transformation (G, typeG)

pt ,m⇒
(H, typeH).

Lemma 1 Construction of Concrete and Abstract Transformations (based on [LBE+07] Lem-
ma 3, extended): Given an abstract production p = (L l← K r→ R, type,AC) with AC = (NAC ∪
PAC) (NAC = {(Ni,ni, typeNi)|i ∈ I} and PAC = {(Pi, pi, typePi)|i ∈ I}), a concrete typed at-
tributed graph (G, typeG : G→ ATGI) and a consistent match morphism m : L→ G w.r.t. p and
(G, typeG), we have [...]:

1. There is a unique concrete production pt ∈ p̂ with pt = (L l← K r→ R, t,AC) and tL =
typeG ◦m. In this case, tK , tR and AC are defined by:

• tK = tL ◦ l;

• tR,VG(x) = if x = rVG(x
′) then tK,VG(x

′) else typeR,VG(x) for x ∈ RVG;

• tR,X = typeR,X for X ∈ {VD,EG,ENA,EEA,D};
• AC = (NAC ∪ GAC);

• NAC =
⋃

i∈I{(Ni,ni, tNi)|tNi is a concrete ATGI-clan morphism with tNi ≤ typeNi and
∀x ∈ LVG:

– if (typeNi ◦ni)(x) = typeL(x) or (typeNi ◦ni)(x)> tL(x) then (tNi ◦ni)(x) = tL(x)
– else if (typeNi ◦ni)(x)< typeL(x) and (typeNi ◦ni)(x)≤ tL(x)

then tNi(x) = typeNi(x)
– else (Ni,ni, tNi) /∈ NAC};

• PAC =
⋃

i∈I{(Pi, pi, tPi)|tPi is a concrete ATGI-clan morphism with tPi ≤ typePi and
∀x ∈ LVG:

– if (typePi ◦ pi)(x) = typeL(x) or (typePi ◦ pi)(x)> tL(x) then (tPi ◦ pi)(x) = tL(x)
– else if (typePi ◦ pi)(x)< typeL(x) then tPi(x) = typePi(x)};

• PAC(x)→ GAC(x);

7 / 14 Volume 47 (2012)

A Flattening Approach for ATGIs in Algebraic Graph Transformation

In addition, all GAC are concatenated by a formula as follows:

• PAC(x)≡ GAC1(x)∨ ...∨GACn(x);

• PAC(x)∧PAC(y)≡ GAC(x)∧GAC(y)

[...]

The proof for Theorem 2 is provided in [LBE+07] and can be extended from NAC to AC.
Thus, it can be concluded that the original and the flattened graph transformation system are
semantically equivalent and every concrete graph in a confluent graph transformation system is
transformed to the same resulting graph independent of whether the GTS is flattened or not.

5 Implementation

Based on the flattening algorithm a concrete prototype was developed using the programming
language C#. The prototype flattens the inheritance of a GTS in order to execute the termination
analysis. It thereby considers abstract nodes, inheritance relationships, multiple inheritance,
attributes and dependency relationships. An overview of the Flattening Prototype is given below:

ReadXmlFile();
ReadNodeTypes();
FindAndOrderInheritancesBetweenNodes();
foreach (Inheritance in Inheritances)

foreach (Rule in Rules)
foreach (AC in Rule.ACs)

foreach (Node in AC.Nodes)
if (Node.Type == ParentType)

if (!HasMorphismNodeInLHS())
CloneAC();
ReplaceParentWithChildNodeInAC();
ChangeIds();
InsertACInDict();

FindCombinationsOfNodeReplacementsInAC();
RemoveDuplicateACs();
InsertACs();
foreach (Inheritance in Inheritances)

foreach (Rule in Rules)
foreach (Node in Rule.LHS.Nodes)

if (Node.Type == ParentType)
CloneRule();
ReplaceParentWithChildNodeInLHS();
if (HasMorphismNodeInRHS())

rhsNode = GetMorphismNodeInRHS();
ReplaceParentWithChildNodeInRHS(rhsNode);

Proc. GTVMT 2012 8 / 14

ECEASST

foreach (AC in Rule.ACs)
acNode = GetMorphismNodeInAC();
ReplaceParentWithChildNodeInAC(acNode);

ChangeIds();
InsertRuleInDict();

FindCombinationsOfNodeReplacementsInRule();
RemoveInheritanceBetweenNodes();

RemoveDuplicateRules();
InsertRules();
RemoveAbstractNodes();
SaveXmlFile();

First of all, the user provides the AGG-file (XML) and a boolean parameter, which defines
whether an abstract or concrete flattening should be executed. The Flattening Prototype starts
with reading in the XML-file and the node types together with their hierarchy. Then, all inheri-
tance relationships are identified and ordered starting with those relationships where the parent
node is not derived from any further node. The ordering is necessary, since a node Z may be
derived from a node Y which is in turn derived from a node X that defines an attribute name. If
the inheritance relationship between Z and Y is considered first, then no attribute is taken over
from Y to Z. Thus, it is necessary to first flatten the inheritance relationship between Y and X
thereby taking the attribute name over to Y , followed by the flattening of Z and Y .

Then, all inheritance relationships are iterated and the ACs of all productions are taken into
account. For every node that has the same type as the parent node type and no morphism image
in L, the AC is duplicated and the parent node type is replaced by the child node type. If the child
node type has an additional attribute, then this attribute remains unspecified due to the missing
value. Attributes do not affect the termination analysis, but default values may be considered
within further work. Then the IDs within the new AC are changed and the AC is inserted in a
dictionary. Afterwards, possible combinations of replacements are identified. This is necessary
in case an AC comprises two or more abstract nodes. For every combination a new AC is created,
the nodes are replaced, IDs changed and the AC is inserted in the dictionary. Since the calculation
of combinations may also lead to duplicate ACs, all generated ACs are iterated and the duplicate
ACs are removed. Afterwards the remaining ACs are inserted in the XML-structure.

Similarly, all inheritance relationships are iterated again to consider the productions. When-
ever a node in L corresponds with the parent node type, the production is duplicated and the node
is replaced by the child node type. Morphism nodes in R or within ACs (except finer types) are
replaced by the same child node type. Further nodes in R that are equivalent with the parent node
type but not a morphism image are not replaced, since exactly this node type should be created.
Then the IDs within the production are changed and the production is inserted in a dictionary.
Again all combinations of replacements are identified and further productions generated.

Afterwards, all attributes as well as the dependency and inheritance relationships of the parent
node type are copied for the child node type and the inheritance relationship between the two of
them is deleted from the type graph (abstract closure). Then the duplicate productions within the
dictionary are removed and the remaining productions are inserted in the XML-structure.

9 / 14 Volume 47 (2012)

A Flattening Approach for ATGIs in Algebraic Graph Transformation

Depending on the user’s choice, the abstract node types together with adjacent edges as well
as all productions and ACs with abstract nodes are deleted afterwards (concrete closure). Finally,
the XML-file with the flattened hierarchy is saved and can be opened with AGG.

6 Evaluation

The flattening prototype is evaluated within a case study in which the graph transformation sys-
tem DeonticBpmnGTS is flattened. DeonticBpmnGTS defines a type graph (see Fig. 1) as well
as 18 productions with 27 application conditions (6 PACs and 21 NACs). The abstract flatten-
ing of DeonticBpmnGTS with the flattening prototype results in 1.471 productions and 24.942
ACs (414 GACs and 24.528 NACs). All inheritance relationships have been removed from the
type graph and the dependency relationships and attributes have been copied as shown in Fig. 5,
e.g., P(Task)&O(Task|Precondition) now provides the attribute OPrecondition by itself. Further-
more, the concrete flattening of DeonticBpmnGTS leads to 822 productions and 10.170 ACs
(234 GACs and 9.936 NACs). In this case, also the abstract nodes have been removed from the
type graph as shown in Fig. 6 and all productions and ACs with abstract nodes have been deleted.

Figure 5: Abstract Closure of Type Graph

The flattening of DeonticBpmnGTS resulted in a large number of productions and ACs. So
we also calculated the number of flattened productions and ACs manually as shown in Tab. 1.
For example, the production ParallelWithPhiDualRule comprises two abstract Nodes. Every
Node can be replaced by 18 node types of which 13 are concrete. Thus, 18×18 = 324 abstract
and 13× 13 = 169 concrete productions are generated. Furthermore, every node in an AC that
has no morphism image in L leads to additional ACs that must then be multiplied with the
number of productions. For example, the production ParallelWithPhiDualRule includes the NAC
NoFurtherNode which comprises one abstract Node without morphism image in L. Thus, the
flattening of the NAC leads to 18×324 = 5.832 abstract and 13×169 = 2.197 concrete NACs.

Proc. GTVMT 2012 10 / 14

ECEASST

Figure 6: Concrete Closure of Type Graph

The correspondence of the flattening results and the calculated numbers allows us to assume a
correct flattening. Duplicate productions and ACs can be ruled out due to the algorithm (see
methods RemoveDuplicateRules and RemoveDuplicateACs) and a manual check.

Considering, for example, the rule SeveralPhiReductionRule, the flattening leads to nine con-
crete rules in which the two abstract Gateways are replaced in any combination. The left-hand
side of the nine generated rules without the MeasuredValues element is shown in Fig. 7.

Figure 7: Flattened SeveralPhiReductionRule (LHS)

However, the flattening of DeonticBpmnGTS reveals a minor open issue concerning restricted
dependency relationships of subtypes that has neither been considered in the original definition
nor in our extension. If the flattening of the type graph results in two dependency relationships of
the same type being specified between a source and target node, then the restricted dependency
relationship of the subtype is taken. However, during the flattening of productions, every node
is replaced by all subnodes without considering restricted multiplicities of dependency relation-
ships. Thus, the flattening may provide invalid productions and ACs.

For example, the abstract vertex Node may have several incoming and outgoing sequence
flows which is necessary for Gateways, but some subtypes are restricted to at most one incoming
or one outgoing sequence flow. Thus, a Node in a production with two incoming sequence flows
should not be replaced by all subtypes. The invalid productions and ACs are highlighted by
the tool AGG and can easily be disabled or removed. An adaptation of the definitions and the
implementation of a validator within the flattening prototype is complex and left for further work.

In general, it can be said that invalid ACs do not affect the termination analysis, since invalid

11 / 14 Volume 47 (2012)

A Flattening Approach for ATGIs in Algebraic Graph Transformation

Table 1: Flattening of DeonticBpmnGTS: Calculation

Rule Abstract Concrete AC Abstract Concrete
1 16 9
2 1 1 NAC 1 1

NAC 18 13
PAC 324 169

3 18 13
4 36 26
5 36 26 NAC 648 338
6 324 169 NAC 5.832 2.197
7 1 1 PAC 18 13
8 9 9 NAC 9 9
9 324 169 NAC 5.832 2.197
10 1 1 PAC 18 13
11 9 9 NAC 9 9
12 1 1 NAC 1 1

NAC 324 169
NAC 324 169
PAC 18 13

13 324 169 NAC 5.832 2.197
14 1 1 PAC 18 13
15 9 9 NAC 9 9
16 1 1 NAC 1 1

NAC 324 169
NAC 324 169
PAC 18 13

17 72 26 NAC 288 78
NAC 576 182
NAC 144 26

18 288 182 NAC 1.152 546
NAC 2.304 1.274
NAC 576 182

1.471 822 24.942 10.170

Rule Numbers:
1 SeveralPhiReductionRule
2 IterationRepeatUntilRule
3 SequenceRuleBase
4 SequenceRuleExtended
5 SequenceRuleFinish
6 ParallelWithPhiDualRule
7 ParallelRule
8 ParallelRuleFinish
9 ExclusiveWithPhiDualRule

10 ExclusiveWithPhiRule
11 ExclusiveWithPhiRuleFinish
12 ExclusiveWithoutPhiRule
13 InclusiveWithPhiDualRule
14 InclusiveWithPhiRule
15 InclusiveWithPhiRuleFinish
16 InclusiveWithoutPhiRule
17 SequenceBpmnRulePragmatic
18 SequenceDeonticRulePragmatic

Proc. GTVMT 2012 12 / 14

ECEASST

NACs are redundant and PACs are not used for the termination proof. Concerning the flattening
of productions, three cases are distinguished. If (I) a node is created and, thus, only part of the
RHS, then this node is not flattened. Hence, no invalid productions may emerge in this case.
If (II) the node is defined on the LHS and has a morphism image on the RHS, then the node is
neither created nor deleted. An invalid production may emerge but does not affect the termination
analysis. If (III), a node is defined on the LHS but not on the RHS, then this node is deleted. In
this case, invalid productions that affect the termination analysis may occur.

In DeonticBpmnGTS, some invalid NACs are produced and highlighted by the tool AGG.
However, NACs specify graphs that must not be part of the match in graph G. When the re-
placement has also been forbidden by restricted dependency relationships, then this definition is
redundant. Furthermore, NACs are only necessary for the termination analysis of nondeletion
layers. Since all layers in DeonticBpmnGTS are classified as deletion layers, the termination
analysis of DeonticBpmnGTS is not affected by invalid NACs.

After flattening DeonticBpmnGTS, the resulting file is loaded with the tool AGG and the
termination analysis (TA) is executed. Since every production of DeonticBpmnGTS deletes at
least one node or edge, all layers are classified as deletion layer. All in all, AGG classifies
DeonticBpmnGTS as terminating and calculates reasonable creation and deletion layers for every
node and edge type. Thus, DeonticBpmnGTS can be called a trusted model transformation.

7 Conclusion

In this paper, we presented a flattening approach for attributed type graphs with inheritance. We,
therefore, extended the current definitions and proved the semantic equivalence of the original
and the flattened GTS. Afterwards, we developed a flattening prototype and evaluated it within a
case study.

Further goals are to reduce the size of the flattened graph transformation system by deleting
NACs with a finer node type (case 2) and productions with a contradictory PAC. In addition,
restricted dependency relationships of subtypes must be considered.

Acknowledgements: The project Vertical Model Integration is supported within the program
“Regionale Wettbewerbsfähigkeit OÖ 2007-2013” by the European Fund for Regional Devel-
opment as well as the State of Upper Austria. In addition, we want to thank the anonymous
reviewers for their constructive comments and suggestions.

Bibliography

[AGG11] AGG. AGG Homepage. http://user.cs.tu-berlin.de/∼gragra/agg/, 2011. Last visited:
Oct 2011.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Springer, 2006.

13 / 14 Volume 47 (2012)

http://user.cs.tu-berlin.de/~gragra/agg/

A Flattening Approach for ATGIs in Algebraic Graph Transformation

[EPS73] H. Ehrig, M. Pfender, H. J. Schneider. Graph-Grammars: An Algebraic Approach.
In Proceedings of FOCS 1973. Pp. 167–180. IEEE, 1973.

[GLEO12] U. Golas, L. Lambers, H. Ehrig, F. Orejas. Attributed graph transformation with
inheritance: Efficient conflict detection and local confluence analysis using abstract
critical pairs. Theoretical Computer Science 424:46 – 68, 2012.

[LB93] M. Löwe, M. Beyer. AGG – An Implementation of Algebraic Graph Rewriting. In
Rewriting Techniques and Applications. Pp. 451–456. 1993.

[LBE+07] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Attributed graph
transformation with node type inheritance. Theor. Comput. Sci. 376:139–163, May
2007.

[Nat11] C. Natschläger. Deontic BPMN. In Hameurlain et al. (eds.), Database and Ex-
pert Systems Applications. Lecture Notes in Computer Science 6861, pp. 264–278.
Springer Berlin / Heidelberg, 2011.

[Tae04] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Vali-
dation of Software. In Pfaltz et al. (eds.), In: Applications of Graph Transforma-
tions with Industrial Relevance (AGTIVE). Lecture Notes in Computer Science 3062,
pp. 446–453. Springer Berlin / Heidelberg, 2004.

[TR05] G. Taentzer, A. Rensink. Ensuring Structural Constraints in Graph-Based Models
with Type Inheritance. In Cerioli (ed.), Fundamental Approaches to Software En-
gineering. Lecture Notes in Computer Science 3442, pp. 64–79. Springer Berlin /
Heidelberg, 2005.

[VVE+06] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, G. Taentzer. Termination Analysis
of Model Transformations by Petri Nets. In Corradini et al. (eds.), Graph Transfor-
mations. Lecture Notes in Computer Science 4178, pp. 260–274. Springer Berlin /
Heidelberg, 2006.

Proc. GTVMT 2012 14 / 14

	Introduction
	Motivation
	Related Work
	Flattening Algorithm
	Implementation
	Evaluation
	Conclusion

