
Electronic Communications of the EASST
Volume 13 (2008)

Proceedings of the
Second International Workshop on

Layout of (Software) Engineering Diagrams
(LED 2008)

Layout Specification on the Concrete and Abstract Syntax Level of a
Diagram Language

Sonja Maier, Steffen Mazanek and Mark Minas

15 pages

Guest Editors: Andrew Fish, Harald Störrle
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Layout Specification on the Concrete and Abstract Syntax Level of a
Diagram Language

Sonja Maier1, Steffen Mazanek2 and Mark Minas3

1 sonja.maier@unibw.de
2 steffen.mazanek@unibw.de

3 mark.minas@unibw.de
Institut für Softwaretechnologie

Universität der Bundeswehr München, Germany

Abstract: A visual language consists of several visual component types, e.g. states
or transitions in DFAs. Nowadays, the language itself is usually specified via a
meta model. To make a diagram look nice, a layouter is required. This layouter
may either operate on the concrete syntax level, i.e., on the visual components, or
on the abstract syntax level, i.e., on the model instance. In this paper we present
an approach that is capable of specifying a flexible layout on both, the concrete as
well as the abstract syntax level of a diagram. The approach uses pattern-based
transformations. Besides structured editing, it also supports free-hand editing, a
challenging task for the layouter. We introduce how such a specification can be
created and examine the advantages and shortcomings of each of either operating
on the concrete syntax level or on the abstract syntax level.

Keywords: layout algorithm, concrete syntax, abstract syntax, graph transforma-
tion, model transformation

1 Introduction

Each visual editor implements a certain visual language. Several approaches and tools have been
proposed to specify visual languages and to generate editors from such specifications. These
attempts can be characterized by the way the diagram language is specified, and by the way the
user interacts with the editor and creates respectively edits diagrams. Most visual languages as
of today have a meta model as (abstract) syntax specification. Meta models are essentially class
diagrams of the data structures visualized as diagrams.

When considering user interaction and the way how the user can create and edit diagrams,
structured editing is usually distinguished from free-hand editing. Structured editors offer the
user some operations that transform correct diagrams into (other) correct diagrams. Free-hand
editors, on the other hand, allow to arrange diagram components from a language-specific set on
the screen without any restrictions, thus giving the user more freedom and enabling sketching
[BM08]. The editor has to check whether the drawing is correct and what its meaning is. For free-
hand editing a more sophisticated layouter is required: temporarily “incorrect” diagrams need to
be layouted. Furthermore, modifying the appearance of a drawing might result in changes of its
meaning.

1 / 15 Volume 13 (2008)

mailto:sonja.maier@unibw.de
mailto:steffen.mazanek@unibw.de
mailto:mark.minas@unibw.de


Layout on Abstract and Concrete Syntax

Figure 1: Editor for DFA’s

When talking about layout, we need to distinguish two terms: layout, the general term, and
layout refinement (sometimes called beautification [CMP99]). Layout refinement starts with an
initial layout and performs minor changes to improve it while still preserving the “feel” (or “men-
tal map” [PHG07]) of the original layout (also called least astonishment principle). Especially
user interaction is considered in this context. A layouter may also position components of the
diagram from scratch without an initial layout.

In [MM07a] we introduced a dynamic layout algorithm usable for meta-model-based diagram
editors, which combines the concepts constraints and attribute evaluation. This approach pro-
vides us with all we need for layout refinement. However, we have recognized that the constraints
and attribute evaluation rules that need to be specified tend to be long and complicated, especially
when using a “real world” layouting strategy. We tried to improve on this aspect and combined
graph transformation with this dynamic layout algorithm [MM08].

When performing experiments with this approach, using pattern-based graph transformations
for layout specification proved to be a good idea. Also the level on which a layouter is based
on came into question. Generally, we distinguish between the abstract and the concrete syntax
level.

Often, abstract and concrete syntax show a significant redundancy. But there are also some
differences: abstract syntax may contain elements that cannot be expressed on the concrete syn-
tax level of a diagram language, whereas elements in the abstract syntax may be expressed in
different ways on the concrete syntax level [KRV07].

The additional information each of these two levels offers may be considered for layout com-
putation. Hence, we found that besides a specification primarily based on the abstract syntax
of a diagram language (as done in [MM08]), also a specification that is primarily based on the
concrete syntax is reasonable. Many tools operate on one of these levels - some on the abstract
and some on the concrete syntax level - without considering the other. In this paper, we examine
both and describe the advantages and shortcomings of each of these variants, especially in the
context of free-hand editing.

We introduce how such a specification can be created and examine the flexibility this approach
offers to the developer of an editor. The degrees of freedom that may be provided to the user are

Proc. LED 2008 2 / 15



ECEASST

depicted, meaning the possibilities of adjusting the layout to his individual preferences.
We demonstrate our approach by specifying a rather simple layout for deterministic finite

automata (DFAs).
We integrated and tested our approach in DIAMETA [Min06a]. DIAMETA follows the model-

driven approach to specify diagram languages. From such a specification, an editor, offering
structured as well as free-hand editing, can be generated. Fig. 1 shows a DIAMETA editor for
DFAs.

Sect. 2 introduces DFAs, the visual language used as a running example. Sect. 3 depicts
the decisions that need to be made prior to layouter creation. Sect. 4 explains the proposed
algorithm, and gives a detailed example. Sect. 5 compares the different variants and examines
the flexibility of the approach. Sect. 6 provides an overview of DIAMETA, the environment in
which the algorithm has been tested and highlights some details about the implementation of the
algorithm. Sect. 7 contains related work and Sect. 8 concludes the paper.

2 Running Example

As a running example, we choose deterministic finite automata. Fig. 1 shows a sample DFA.
It consists of three states and three transitions. The active state is highlighted. The start state
is indicated by an arrow, end states by a second circle. Additionally, the editor shows the input
string 110110. The active symbol of the input string (called input item in the following) is
visualized by an arrow.

State

boolean : start

boolean : end

boolean : active

Transition

String : item

InputItem

String : item

boolean : active

from
next

to

VC_Transition

double : xStart

double : yStart

double : xEnd

double : yEnd

VC_InputItem

double : xPos

double : yPos

VC_State

double : xPos

double : yPos

Figure 2: Meta Model

Fig. 2 shows the (rather trivial) meta model of this visual language: the meta model contains
the classes that represent aspects of the abstract syntax of the visual language, State, Transition
and InputItem. The class State has three attributes. The attribute start (end) indicates whether
a state is a start state (end state) or not. The attribute active indicates whether a state is the
active state or not. The class Transition has an attribute item. This attribute holds the input item
that is necessary to fire the transition. Between the classes State and Transition, there are two
associations from and to.

Besides the classes that represent aspects of the abstract syntax, the classes VC_State,

3 / 15 Volume 13 (2008)



Layout on Abstract and Concrete Syntax

VC_Transition and VC_InputItem hold the significant attributes of the concrete syntax. The
position of states and input items is determined by the attributes xPos and yPos, the location of
the upper left corner of a state. The start and end points of an arrow are given by the attribute
xStart, yStart, xEnd and yEnd.

3 Layout Decisions

Before layouter development, some questions need to be answered: which visualization aspects
does the layouter cover? How is the layouter triggered? What changes should be performed?
The first two questions are explored in this section, the third question is investigated in the next
section.

3.1 Coverage?

Often, it is not clear which visualization aspects a layouter should cover. E.g., in our example,
a start state is modeled as exactly one component. That means, the part of the system that takes
care of the appearance of a component is responsible for its visualization. Alternatively, we could
have modeled a start state with two components: the arrow and the circle. Then the concrete class
of a circle would have contained the attributes xPos and yPos to specify its location. The concrete
class of an arrow would have contained the attributes xStart, yStart, xEnd and yEnd to specify
the position of the start point and the end point of an arrow. In this case, it would have been
the layouter’s responsibility to adjust those attributes. These decisions need to be made by the
developer of the editor.

3.2 Triggered by?

The second aspect to be displayed is how and when a layouter is triggered. One variant is that
a layouter is applied automatically, each time the user modifies a diagram, i.e. each time the
diagram is repainted. This might happen, for example, if the user adds or removes a component.
This might either be the same layouter, regardless of which component was changed, or different
layouters, depending on the type of the component changed. Calling different layouters means
that different options are provided to the user. For instance, in our example, if the user moves a
state, the attached transitions follow the state. If the user moves a transition, only the transition
is moved, nothing else.

It is also possible to call a layouter manually, e.g., by pressing a button or choosing a menu
item. This is advantageous, since we can provide more than one layouter and the user can decide
when he wants to relayout the diagram.

The first option is used for layout refinement, and the second option for bigger changes.
Our approach supports all these variants. In our DFA editor (Fig. 1), three different layouters

are called automatically, depending on the kind of component changed. Additionally, we in-
cluded a layouter that may be applied manually, by clicking the button “Apply Sugiyama”.

Proc. LED 2008 4 / 15



ECEASST

4 Layout Algorithm

A layouter may operate on the concrete or the abstract syntax level of a diagram language. In
DIAMETA operating on the concrete syntax means operating on an attributed hypergraph, the
graph model of a diagram. Operating on the abstract syntax of a diagram in DIAMETA means
operating on an object model, i.e. on an EMF model [Min06a].

On both levels, one is actually manipulating model and view level attributes. In the hypergraph
approach, the focus is on the view level. Here, significant model level attributes (e.g. active in
the running example, as we will see) are ”embedded” into the rules. On the abstract syntax level,
significant view level attributes are ”embedded” via visual components (e.g. VC_State).

In hypergraph models (HGM) [Roz97], diagram components are represented by labeled hyper-
edges, i.e. edges that are allowed to be visited by an arbitrary number of nodes. Nodes represent
attachment points. Furthermore, we have spatial relationship edges, representing relationships
between different components. E.g., Fig. 3 shows four hypergraphs. Here, edges are represented
by rectangles and outgoing lines, and nodes by circles. Spatial relationship edges are represented
by arrows between circles.

Our layout algorithm identifies a match and then performs some actions. Both can be per-
formed on the graph model as well as on the EMF model. We call this strategy pattern-based
transformation (or transformation). Technical details are explained in Sect. 6.

In the following, we compare these variants and demonstrate the new experiences we gained
from experiments. Although we choose a rather simple layout for the comparison, more sophis-
ticated layouters are possible, of course.

4.1 Operating on Concrete Syntax Level

One alternative is operating on the concrete syntax of a diagram language. On this level, the
pattern-based graph transformation is a graph transformation. This transformation primarily
changes attribute values. First, we describe a simulation operation, the context in which a trans-
formation normally is used. Afterwards we show a transformation, as it is used for layout.

(a) DFA

(b) HGM

Figure 3: “Step”

5 / 15 Volume 13 (2008)



Layout on Abstract and Concrete Syntax

Simulation Operation A sample simulation operation is the transformation “Step”. In Fig. 3
(a) we can see a screenshot of a DFA. On the left-hand side is the DFA before applying the
transformation. On the right-hand side is the diagram after executing the transformation. In
Fig. 3 (b), the hypergraph representing the diagram is shown. In particular, the transformation
changes certain attribute values. It sets the attribute active of s1 to false and the attribute active
of s2 to true.

Layout Transformation After specifying a simulation operation, we now specify two layout
transformations. The first transformation is responsible for layouting transitions, the second
for layouting input items. As we will see, these transformations are quite similar to the graph
transformation shown in the last paragraph.

(a) Layout (b) HGM

Figure 4: Transitions

In Fig. 4 (a) a transition before and after applying the layout transformation for layouting
transitions is shown. Fig. 4 (b) visualizes the hypergraph before and after applying the transfor-
mation. The attributes xStart, yStart, xEnd and yEnd of the object t are changed if the following
constraint evaluates to false. This means that the transformation is applied if the arrow does not
start and end at the “correct” position:1

xStart = s1.xPos + 40 & yStart = s1.yPos + 20
& xEnd = s2.xPos & yEnd = s2.yPos + 20

The layout transformation consists of two parts: a match and some actions. The match identi-
fies a part of the diagram, to which the actions can be applied. The match is a pattern consisting
of two states, connected by a transition. The actions performed update the attributes xStart,
yStart, xEnd and yEnd.

In Fig. 5 (a) two input items before and after applying the layout transformation for layouting
input items can be seen. Fig. 5 (b) shows the hypergraph before and after applying this trans-
formation. The attributes xPos and yPos of the object i2 are changed if the following constraint
evaluates to false, meaning the transformation is applied if the item is not at the correct position:

xPos = i1.xPos + 35 & yPos = i1.yPos

The match is a pattern consisting of two adjacent input items. The action changes the attributes
xPos and yPos.
1 20 = radius; 40 = 2∗ radius; 35 = width+5

Proc. LED 2008 6 / 15



ECEASST

(a) Layout
(b) HGM

Figure 5: Input items

Both transformations are applied to all matches. For the transformation being responsible for
layouting transitions, this is done in an arbitrary order. For the transformation that is responsible
for layouting input items, this is done from left to right. To specify the order of application, a
special (DIAMETA-specific) language is used.

Both transformations are triggered automatically: the first transformation, if a state is changed,
and the second transformation if an item is changed, respectively.

In the examples, only attribute values are changed, not the structure of the hypergraph itself.
Most of the time, this is sufficient. In some cases, also structural changes are needed. E.g., for
some layout algorithms, the layouter might choose to temporarily add additional components,
and then remove them later again. This mechanism is, e.g., used in Sugiyama’s Algorithm for
layouting graphs (Fig. 6). The circle with the dashed line is temporarily added. We implemented
this algorithm on top of our framework [MM08].

In the example (Fig. 6), bendpoints are added - an element that is only available on the concrete
syntax level. There is no representation of bendpoints in the abstract syntax. Hence bendpoints
cannot be modified by the layouter that operates on the abstract syntax level.

Figure 6: Structural Changes

The examples shown here are very simple. A more flexible layout is possible, e.g., one could
demand that transitions are longer than some fixed value, or that transitions start and end at the
border of a state. The full power of the actions, e.g. using incremental actions, was shown in
[MM07a].

4.2 Operating on Abstract Syntax Level

Alternatively, one could operate primarily on the abstract syntax level of a diagram language. On
this level, the pattern-based transformation is a model transformation.

7 / 15 Volume 13 (2008)



Layout on Abstract and Concrete Syntax

To work directly on the EMF model, classes for the visual component types were introduced.
These are the classes VC_State, VC_Transition and VC_InputItem (see Fig. 2). This means that
we do not strictly operate on the abstract syntax, as we extended the abstract syntax with classes
that represent aspects of the concrete syntax, the aspects needed for layout specification.

s1:State 

start = false 
end = false 
active = false 

self:Transition 

item = “A” 
from to 

vt:VC_Transition 

xStart = 30 

yStart = 18 

xEnd = 110 
yEnd = 37 

vs:VC_State 

xPos = 0 
yPos = 0 

s2:State 

start = false 
end = false 
active = false 

vs2:VC_State 

xPos = 100 
yPos = 20 

(a) Transition

i:InputItem 

item = “B” 

active = false 

vi:VC_InputItem 

xPos = 40 
yPos = 14 

self:InputItem 

item = “A” 

active = true 
next 

vi2:VC_InputItem 

xPos = 10 
yPos = 10 

(b) Input item

Figure 7: Object Diagram

The transformation responsible for layouting transitions operates on an object diagram, e.g.
as shown in Fig. 7 (a). The transformation is again specified via a match and an action. The
complete specification is the following:2

[self.from changed]
self.vcomp.xStart := self.from.vcomp.xPos + 40

[self.from changed]
self.vcomp.yStart := self.from.vcomp.yPos + 20

[self.to changed]
self.vcomp.xEnd := self.to.vcomp.xPos

[self.to changed]
self.vcomp.yEnd := self.to.vcomp.yPos + 20

The match is implicitly given. E.g. the first two rules may only be applied if we have two states
connected by the link from. An action consists of a constraint (1) and an attribute evaluation rule
(2). If (1) is not satisfied, then (2) is executed.

(1) false
(2) self.vcomp.xStart := self.from.vcomp.xPos + 40

The transformation responsible for layouting input items operates on an object model, e.g. as
shown in Fig. 7 (b). The corresponding layout specification is the following:

[self.next changed]
self.vcomp.xPos := self.next.vcomp.xPos - 35

[self.next changed]
self.vcomp.yPos := self.next.vcomp.yPos

All transformations are triggered automatically when the object denoted in the squared brack-
ets was changed by the user or the layouter.
2 Here we may also provide an arbitrary OCL expression.

Proc. LED 2008 8 / 15



ECEASST

5 Evaluation

In this section we evaluate the approach. We will demonstrate the flexibility this approach offers
and compare the two levels of application.

5.1 Flexibility

First of all, we may decide whether we operate on the concrete syntax level or on the abstract
syntax level of a diagram language.

Second, a layouter offering a flexible behavior can be specified. E.g., one can specify a trans-
formation that assures that a transition is longer than a minimal length. This way, also mental
map preservation can be achieved. E.g., one could introduce a constraint that assures that a
component is never moved more than, say for example, 10 pixel.

Third, we provide different ways to trigger the layouter: either automatically, eventually de-
pending on the component changed, or applied by hand, i.e. explicitly by the editor user.

Every user has its own “feeling” of what a good layouter is. Similarly every developer prefers
another way to specify a layouter. Our approach offers an environment for performing experi-
ments and will give us a better understanding of what a “good” layouter is for most users and
what the most pleasant environment is for developers to create such a layouter.

5.2 Comparison

For many visual languages, a similarity between abstract and concrete syntax can be observed.
But there are also visual languages where this is not the case. One example are tree diagrams,
as presented in [Min06b]. In our example, the concrete syntax contains more information. But
it is also imaginable that the abstract syntax contains more information. Right now, this is not
possible with DIAMETA. For this reason, we currently integrate Triple Graph Grammars in
DIAMETA.

On both levels, free-hand editing provides an additional challenge: careless changes of the di-
agram might result in changes of the meaning of the diagram. We may overcome this problem by
prohibiting any structural changes in the abstract syntax, e.g. by using the mechanism proposed
in [RS96]. But, as motivated in Sect. 4, we want to allow some structural changes, and hence
there is a need to extend this approach.

The two levels may be compared considering the different information that is contained as well
as their syntactic differences. Currently, both abstractions contain more information than mini-
mally needed. E.g., if layout would be solely specified on the hypergraph, one could completely
remove concrete syntax elements from the EMF model.

In [Baa06], a strict definition of “correct” concrete syntax is given. It claims that each diagram
only corresponds to one model. Our approach was kept more generally, as we only recommend,
but do not demand this.

Concrete Syntax Specifying layout transformations on the concrete syntax is more intuitive
than specifying layout transformations on the abstract syntax. The reason is that a layouter
changes the visualization, not the model.

9 / 15 Volume 13 (2008)



Layout on Abstract and Concrete Syntax

But it is also possible to “destroy” the diagram by a transformation on the concrete syntax
level, because arbitrary changes in the hypergraph may be performed. E.g. you are allowed to
add edges that cannot be mapped to the object model. Consequently, this kind of transforma-
tion needs to be created more carefully, assuming that the developer brings along the required
knowledge. Even then it is hard to avoid all problems.

Besides, you may access visualization information that is not available on the abstract syntax
level. The number of bendpoints of an arrow, or the angle between arrow and circle are two
examples for this kind of information. Components contained in an “incorrect” part of a diagram
are also available on the concrete syntax level and may be considered in the layout specification.
They are not mapped to the object model. But it is possible that some information is not repre-
sented in the concrete syntax, only in the abstract syntax, even though this is not the case in the
example presented.

Abstract Syntax For the formulation of constraints and attribute evaluation rules, the standard
OCL syntax is used. This has the advantage that a developer already familiar with OCL is not
required to learn a new language. Additionally, the developer is prevented from “destroying” the
diagram, as only meaningful changes are possible on the object model. But at some points it is
not as intuitive as operating on the concrete syntax and the developer is more restricted. E.g.,
between input items we do not have a bi-directional link, only the link next. Consequently, we
decided to layout input items from right to left, not from left to right, as this was accomplished
more easily.

A layout strictly based on the abstract syntax means that visual components are not available,
and hence cannot take into account any of this information, e.g. the position of a component.
In our approach, we extended the abstract syntax with classes that represent the aspects of the
concrete syntax that were needed for layout specification. One advantage of this approach is
that we explicitly name the information that we use for layout computation, one disadvantage is
that we do generate some specification overhead. Another advantage is that we can utilize the
additional information the abstract syntax provides.

6 Implementation

In this section, we are going to introduce DIAMETA, the environment the algorithm is imple-
mented in. It is needed to understand the context in which the layout algorithm is used. In par-
ticular it generates an overview of the implementation of pattern-based transformations. They
can either operate on the abstract or on the concrete syntax. In the first case, they operate on an
attributed hypergraph. In the second case, they operate on an EMF model.

The editor generator framework DIAMETA provides an environment for rapidly developing
diagram editors based on meta-modeling. Each DIAMETA editor is based on the same editor
architecture which is adjusted to the specific diagram language. DIAMETA’s tool support for
specification and code generation, primarily the DIAMETA Designer is described in this section.
The description of the architecture is postponed to the next section.

Proc. LED 2008 10 / 15



ECEASST

6.1 DIAMETA Framework

The DIAMETA environment consists of an editor framework and the DIAMETA Designer. The
framework is basically a collection of Java classes and provides the dynamic editor function-
ality, which is necessary for editing and analyzing diagrams. In order to create an editor for a
specific diagram language, the editor developer has to enter two specifications: first, the abstract
syntax of the diagram language in terms of its model and second, the visual appearance of dia-
gram components, the concrete syntax of the diagram language, the reducer rules, the interaction
specification and the layout specification.

A language’s class diagram is specified as an EMF model. The EMF compiler is used to
create Java code that represents this model. The editor developer uses the DIAMETA Designer
for specifying the concrete syntax and the visual appearance of diagram components, e.g., states
are drawn as circles. The DIAMETA Designer generates Java code from this specification. The
Java code generated by the DIAMETA Designer, the Java code created by the EMF compiler, and
the editor framework, implement an editor for the specified diagram language.

6.2 Layout Algorithm

Our layout algorithm uses pattern-based transformations, either operating on the concrete or on
the abstract syntax level. A transformation consists of a match and an action, which itself is made
up of a constraint and an attribute evaluation rule. On the concrete syntax level, transformations
operate on the attributed hypergraph. On the abstract syntax level, transformations operate on
the EMF model. All transformations - graph transformations as well as model transformations -
are controlled by the layouter control.

Actions Actions are based on the algorithm presented in [MM07a]. This algorithm is respon-
sible for satisfying violated constraints. We have to specify a set of given declarative constraints,
assuring the characteristics of the layout. If all constraints are satisfied, the algorithm terminates.
If one or more constraints are violated, some attributes are changed via the attribute evaluation
rules provided, and afterwards the constraints are checked again.

6.3 DIAMETA Architecture

Fig. 8 shows the structure which is common to all DIAMETA editors - editors generated and
based on DIAMETA. The editor supports free-hand editing by means of the included drawing tool
which is part of the editor framework, but which has been adjusted by the DIAMETA Designer.
With this drawing tool, the user is able to create, arrange and modify the diagram components of
the particular diagram language. Editor specific program code, specified by the editor developer
and generated by the DIAMETA Designer, is responsible for the visual representation of the
language specific components. The drawing tool creates the data structure of the diagram as a
set of diagram components together with their attributes (e.g., position, size).

The sequence of processing steps, necessary for free-hand editing, starts with the modeler and
ends with the model analyzer: the modeler first transforms the diagram into an internal model, the
graph model. The reducer then creates the diagram’s instance graph that is analyzed by the model

11 / 15 Volume 13 (2008)



Layout on Abstract and Concrete Syntax

Editor user

selects

operation

6

reads

reads

adds/rem
oves

modifies reads

Highlights syntactically correct sub-diagrams

Model

transformer

Modeler Reducer
Model

analyzer

Graph

transformer
Drawing

tool

Diagram
Graph

model

Instance

graph

Java

objects

Layouter

Control
selects

controls

Figure 8: Architecture of DIAMETA

analyzer. This last processing step identifies the maximal subdiagram which is (syntactically)
correct and provides visual feedback to the user by drawing those diagram components in a
certain color. The model analyzer not only checks the diagram’s abstract syntax, but also creates
the object structure of the diagram’s correct subdiagram.

Structured editing / simulation operations modify the graph model by the means of the graph
transformer and add or remove components to respectively from the diagram. The visual repre-
sentation of the diagram and its layout is then computed by the layouter.

The graph transformer and the model transformer are both optional, but essential for the layout
algorithm proposed.

7 Related Work

Layout Specification Many comparable tools, like AToM3 [LV02] or Tiger [EEHT05], offer
the possibility of using a standard layout algorithm, such as FlowLayout. Besides this, some
tools, like DiaGen [Min03], offer the possibility of using constraints for layout specification.
Most tools additionally allow to write the layouter by hand, as only a small subset of layouters
can be realized by the mechanisms provided. With the approach presented we try to fill this gap.

Transformations Many tools support graph or model transformation, but only rarely use them
in the context of layout specification. Guerra and de Lara describe Event Driven Grammars
[GL07]. Rules in these grammars may be triggered by user actions, and are combined with triple
graph transformation systems. Rules may be defined especially for layout. If a rule is applicable,
it is executed and attribute values are updated. In this approach, attributes are updated through
graph transformations. In our approach, we either change the graph model or the object model
by pattern-based transformation. Attributes are updated by actions giving us more freedom,
especially when considering dynamic layout.

Proc. LED 2008 12 / 15



ECEASST

Visual Specification As of now we only allow to specify layout textually. For the future, we
plan to specify the layouter visually. Most promising for operating on the abstract syntax are
Fujaba’s Story Diagrams [FNTZ98] and VisualOCL [EW05]. Fujaba’s Story Diagrams offer the
possibility of specifying transformations on the object diagram visually. VisualOCL is a visual
language to specify OCL constraints. Most promising for operating on the concrete syntax is the
visual specification of transformations as it is done, for instance, in Tiger or AToM3.

Visualization of DFAs In [JMM04], DFAs are used as a running example to present the toolkit
CIDER. The toolkit provides a simple layout using transformation rules which can constrain the
attributes of new symbols (used in the DFA example to handle DFA execution). Furthermore, it
provides application specific layout such as graph layout (used in the DFA example for laying
out the DFA).

Dynamic Layout Some work had been performed that takes user interaction into account, and
to preserve the ”mental map”. Most of the algorithms are hand coded. With our approach,
this is directly included in the editor specification. In order to create a new layout algorithm,
graph transformations can be used instead of plain Java code. This has the consequence that the
creation and adaption of layouting strategies is easier, and hence experiments in this context are
simplified.

Ware et al. state in [WPCM02] that (graph) aesthetics are taken as axiomatic, and have not
been empirically tested. They argue that human pattern perception can tell us much that is
relevant to the study of aesthetics. With our approach we created a platform to easily perform
this kind of studies, not only for graphs but for all kinds of visual languages. They take into
account aspects of the concrete syntax as well as of the abstract syntax of the diagram language.

Purchase et al. state in [PHG07] that dynamic graph layout algorithms have only recently
been developed. They anticipated that maintaining the “mental map” between time slices assists
with the comprehension of the evolving graph. In DIAMETA, not only automatic time-slices, but
also time-slices triggered by user interaction are seen. Besides this, free-hand editing provides
an initial layout that needs to be considered. With our approach, many degrees of freedom are
available that may be considered when creating a new layout algorithm.

8 Conclusions and Future Work

In this paper we presented a layout approach that can either operate on the concrete or on the
abstract syntax level of a diagram language. In the case of operating on the concrete syntax, this
means graph transformation and on the abstract syntax this means model transformation. We
used DFAs as an example and integrated and tested our approach in DIAMETA. We examined
the assets and drawbacks of both levels of application. On the concrete syntax level, the layout
specification was more natural, whereas on the abstract syntax level, the specification was less
error prone. An intelligent combination of both approaches will combine the advantages of both
variants in the future. On both levels there is additional information available which can be used
for layout computation. As we saw for both variants, just a few simple rules lead to an acceptable

13 / 15 Volume 13 (2008)



Layout on Abstract and Concrete Syntax

layout. In case the editor developer or the editor user demands a more sophisticated layout, this
is also possible.

Future work has to investigate how layouters interfere with user interactions. E.g., a layouter
that moves components away complicates the process of diagram creation. During user inter-
action, a dynamic layouting strategy that that follows the least astonishment principle is more
adequate. To identify the “best” layouting strategy, we will need to perform empirical studies.
With the algorithm presented, a testing environment was created to conduct these studies easier.

Currently, the specification of layout is based on an abstraction of the visualization, either on
the abstract syntax level or on the concrete syntax level. A graphical specification based on the
visualization itself is developed at the moment.

We have developed a flexible approach that offers us a platform for establishing experiments
of how developers and editor users want to interact with DIAMETA, a tool that allows free-hand
editing.

Bibliography

[Baa06] T. Baar. Correctly Defined Concrete Syntax for Visual Modeling Languages. 2006.

[BBM03] F. Budinsky, S. A. Brodsky, E. Merks. Eclipse Modeling Framework. Pearson Educa-
tion, 2003.

[BM08] F. Brieler, M. Minas. Recognition and Processing of Hand Drawn Diagrams Using
Syntactic and Semantic Analysis. In Advanced Visual Interfaces (AVI), Naples, Italy,.
2008.

[CMP99] S. S. Chok, K. Marriott, T. Paton. Constraint-Based Diagram Beautification. In VL
’99: Proceedings of the IEEE Symposium on Visual Languages. P. 12. IEEE Computer
Society, Washington, DC, USA, 1999.

[EEHT05] K. Ehrig, C. Ermel, S. Hänsgen, G. Taentzer. Generation of Visual Editors as Eclipse
Plug-Ins. In ASE ’05: Proceedings of the 20th IEEE/ACM Intl. Conference on Auto-
mated software engineering. New York, NY, USA, 2005.

[EW05] K. Ehrig, J. Winkelmann. Model Transformation from VisualOCL to OCL using
Graph Transformation. In Proc. Intl. Workshop on Graph and Model Transformation
(GraMoT’05). ENTCS. Estonia, Tallinn, 2005.

[FNTZ98] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In Proc. of the 6th Intl. Workshop
on Theory and Application of Graph Transformation. 1998.

[GL07] E. Guerra, J. de Lara. Event-driven grammars: relating abstract and concrete levels of
visual languages. Software and Systems Modeling, 2007.

[JMM04] A. R. Jansen, K. Marriott, B. Meyer. Cider: A Component-Based Toolkit for Creating
Smart Diagram Environments. In Diagrams. Pp. 415–419. 2004.

Proc. LED 2008 14 / 15



ECEASST

[KRV07] H. Krahn, B. Rumpe, S. Voeslkel. Integrated Definition of Abstract and Concrete Syn-
tax for Textual Languages. In Engels et al. (eds.), MoDELS. Lecture Notes in Computer
Science 4735, pp. 286–300. Springer, 2007.

[LV02] J. de Lara, H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-modelling.
In FASE ’02: Proceedings of the 5th Intl. Conference on Fundamental Approaches to
Software Engineering. London, UK, 2002.

[Min03] M. Minas. VisualDiaGen – A Tool for Visually Specifying and Generating Visual Ed-
itors. In Applications of Graph Transformation with Industrial Relevance, Proc. 2nd
Intl. Workshop AGTIVE’03, Charlottesville, USA. 2003.

[Min06a] M. Minas. Generating Meta-Model-Based Freehand Editors. Electronic Communica-
tions of the EASST, Proc. of 3rd Intl. Workshop on Graph Based Tools, Natal, Brazil,
2006.

[Min06b] M. Minas. Syntax analysis for diagram editors: a constraint satisfaction problem.
In AVI ’06: Proceedings of the working conference on Advanced visual interfaces.
Pp. 167–170. ACM, New York, NY, USA, 2006.

[MM07a] S. Maier, M. Minas. A Generic Layout Algorithm for Meta-model based Editors.
In Applications of Graph Transformation with Industrial Relevance, Proc. 3rd Intl.
Workshop AGTIVE’07, Kassel, Germany. 2007.

[MM07b] S. Maier, M. Minas. A Pattern-Based Layout Algorithm for Diagram Editors. In Elec-
tronic Communications of the EASST, Proc. Workshop LED’07, Coeur d’Alene, Idaho,
USA. 2007.

[MM08] S. Maier, M. Minas. A Static Layout Algorithm for DiaMeta. In Graph Transforma-
tion and Visual Modeling Techniques, Proc. 7th Intl. Workshop GT-VMT’08, Budapest,
Hungary. 2008.

[PHG07] H. C. Purchase, E. Hoggan, C. Görg. How Important is the ”Mental Map”? – an Em-
pirical Investigation of a Dynamic Graph Layout Algorithm. In Kaufmann and Wagner
(eds.), Graph Drawing, Germany. 2007.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, 1997.

[RS96] J. Rekers, A. Schürr. A graph based framework for the implementation of visual envi-
ronments. In VL. 1996.

[WPCM02] C. Ware, H. Purchase, L. Colpoys, M. McGill. Cognitive measurements of graph
aesthetics. Information Visualization, 2002.

15 / 15 Volume 13 (2008)


	Introduction
	Running Example
	Layout Decisions
	Coverage?
	Triggered by?

	Layout Algorithm
	Operating on Concrete Syntax Level
	Operating on Abstract Syntax Level

	Evaluation
	Flexibility
	Comparison

	Implementation
	DiaMeta Framework
	Layout Algorithm
	DiaMeta Architecture

	Related Work
	Conclusions and Future Work

