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Abstract: The semantical integrity of business data is of great importance for
the implementation of business applications. Model-Driven Software Development
(MDSD) allows for specifying the relevant domain concepts, their interrelations and
their concise semantics using a plethora of modelling languages. Since model trans-
formations enable an automatic mapping of platform independent models (PIMs) to
platform specific models (PSMs) and code, it is reasonable to utilise them to derive
data schemas and integrity rules for business applications. Most current approaches
only focus on transforming structural descriptions of software systems while seman-
tical specifications are neglected. However, to preserve also the semantical integrity
rules we propose a Query Code Generation Framework that enables Model-Driven
Integrity Engineering. This framework allows for mapping UML models to arbitrary
data schemas and for mapping OCL invariants to sentences in corresponding declar-
ative query languages, enforcing semantical data integrity on implementation level.
This supersedes the manual translation of integrity constraints and, thus, decreases
development costs while increasing software quality.

Keywords: OCL, Code Generation, Query Languages, Model-Driven Integrity En-
gineering

1 Introduction

The development of business applications involves a stepwise derivation of a software system
starting from very abstract specification of the businesses domain concepts, their interrelations
and their concise semantics. The idea of automating the transformation of more abstract repre-
sentations to less abstract representations is at the heart of the MDSD [Obj03a][Bet04].

However most current approaches in MDSD only focus on transforming structural descriptions
of software systems. Since structural descriptions do not tackle all aspects of software systems,
a plethora of other specification and modelling techniques exists. The OCL [Obj03b] provides
means to enrich models with detailed semantics in a formal way. Unfortunately, OCL constraints
are not preserved in current multi-staged transformation approaches and thereby are lost during
PIM to PSM transformation.
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Generating Query Language Code from OCL Invariants

The Query Code Generation Framework addresses this issue by providing a general framework
for mapping OCL invariants to declarative query languages and thereby enables Model-Driven
Integrity Engineering. We focus on query languages, because data in business systems is mostly
managed by systems that are accessible through query languages (e.g. database systems).

In Section 2, we present the architecture of the Query Code Generation Framework that was
developed within the Dresden OCL2 Toolkit [Sof]. It consists of a Model Transformation Frame-
work which supports the generation of arbitrary data schemas from the UML [Obj04] class
model, and the OCL Transformation Framework realizing the mapping of OCL invariants to
queries in the corresponding query languages. In Section 3 we show the application of the Query
Code Generation Framework by means of two examples, the mapping of UML/OCL to relational
databases plus SQL [MS93] and to XML schemas [FW04] plus XQuery [BCF+07]. Finally, Sec-
tion 4 and Section 5 conclude this paper by discussing related work and summarizing the results
of our work.

2 Architecture of the Query Code Generation Framework

Our Query Code Generation Framework’s architecture is tripartite, where the first module is
responsible for reading a UML/OCL model and building an abstract syntax model of it. This
part is described in detail in [LO03, DHK05] and is not discussed in this paper. The second
module performs the transformation of the UML model to the target data schema. We refer to
this module as the Model Transformation Framework. The third module maps OCL invariants to
declarative query languages. We refer to this module as the OCL Transformation Framework.

2.1 Model Transformation Framework

Models appear on several abstraction levels within the Query Code Generation Framework:
UML models are used to describe domain concepts platform independently, CWM models,
conforming to the Common Warehouse Metamodel [Obj01], describe data schemas, and so-
called schema facade models provide a generic interface to these data schemas for the OCL
Transformation Framework. To mediate between these levels of abstraction arbitrary model
transformations are necessary. To address this issue we extended the existing OCL Toolkit in-
frastructure with a Java framework that includes a generic transformation engine to compose,
configure and execute transformations in the context of a MDSD process. The models are stored
in a central repository—the Netbeans MDR—and can be accessed via Java Metadata Interfaces
(JMI) [Sun02] which were automatically generated from the corresponding metamodels. Thus,
type-save model transformations can be implemented in Java with no effort to learn a completely
new transformation language.

The frameworks’s architecture follows the Strategy pattern [GHJV95]. A Transforma-
tionEngine provides input and configuration data for each transformation and steers its ex-
ecution (see Figure 1). The interface ITransformation declares the common interface to
be realised by all concrete transformation strategies. Its abstract implementation—the class
M2MTransformation—provides typical services that every transformation requires: load-
ing source models from the repository, configuring transformation parameters, and preparing
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Figure 1: Architecture of the Transformation Framework

the target model. Concrete transformations like the mapping of a UML class model to the
ISchemaFacade and its ingredients (cf. Subsection 2.2) or the object-relational mapping of
UML-based domain models to a database schema can be implemented as subclasses (Uml2-
ISchemaFacade, Uml2DBSchema) and use the provided transformation services.

The design of the model transformation framework strongly addresses the specific needs of
the Dresden OCL Toolkit with regard to repository access, transformation implementation and
transformation configuration. However, in future work we will resolve these strict dependencies
through the introduction of an adaptation layer which decouples the toolkit from repository and
language specifics. This will provide new possibilities to integrate the upcoming transformation
standard QVT [Obj05] and existing transformation tools as ATL [JK05].

2.2 OCL Transformation Framework

Since we also want the semantic constraints to be preserved across the different abstraction
levels, we provide the OCL Transformation Framework which transforms OCL invariants to
equivalent sentences in declarative query languages. These expressions are used to ensure the
integrity rules in the platform specific data schema.

Conceptually, we utilise a pattern-based approach to map OCL invariants to platform specific
query languages. In our previous work [DH99] we have identified common patterns that occur
when working with OCL invariants. Examples of such patterns refer to the general structure of
an OCL invariant, attribute access, or navigation across associations. For language-specific code
generation we created templates for each of the identified patterns.

Although there are many different declarative query languages out in the wild, they all share
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<<interface>>

ISchemaFacade
<<interface>>

ISchemaElement Guide

Figure 2: The ISchemaFacade is a generic interface to access target data schemas

common concepts for querying data. They provide constructs for

1. Projection,

2. Cartesian product, and

3. Restriction

of data, that are similar to the concepts from relational algebra. It is true that in some languages
(e.g. Xcerpt [BS03]) these concepts are not that obvious than in other languages (e.g. SQL
[MS93]), where they exist as first-class constructs of the language.

Our code generator—the DeclarativeCodeGenerator—translates OCL invariants to
equivalent expressions in the target query language. Therefore it requires knowledge about both
the target data schema and the target query language to realise e.g. class and attribute access or
navigation expressions from the OCL invariants. The framework provides a generic interface for
data-schema specific access to elements corresponding to the classes, attributes and associations
in the source model—the ISchemaFacade that manages ISchemaElements (see Figure 2).

To encapsulate the specifics of attribute access and navigation across associations in the target
data model the code generator requires the developer to provide a language-specific realisation
of the ISchemaFacade. During code generation the ISchemaFacade acts as lookup repos-
itory for elements that are referenced in the OCL invariants and provides information about how
these elements can be accessed in the target data schema. Since there is no generic format for
the definition of data schemas, every ISchemaElement offers a Guide that gives hints to the
code generator about the specific location of the element in the target data schema. The Guide
makes use of the common properties of query languages mentioned above. Thereby it consists
of a triple of attributes for projection, Cartesian product, and restriction.

This information is used to parameterise pattern templates—source code fragments containing
holes—to build code fragments in the target query language. We follow a visitor-based approach
[GHJV95] and use the template engine StringTemplate [Par] for template expansion, which en-
forces a strict separation of generation logic and template definition by providing a template
language for context-free templates [Par04]. This interesting property of the template engine
and the abstract notion of Guides allows us to build a code generator that is independent of
concrete query languages.

3 Applications

To show the applicability of our Query Code Generation Framework we present two examples
where we apply the introduced concepts to UML-based domain models that are semantical en-
riched by OCL constraints. The UML models are mapped to platform-specific data schemas (us-
ing the Model Transformation Framework) while the OCL invariants are transformed to equiva-
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Figure 3: Mapping of UML/OCL-based domain models to relational databases

lent representations in the corresponding query language (using the OCL Transformation Frame-
work).

3.1 OCL2SQL

A mapping of UML/OCL-based domain models to databases (either relational or object-oriented)
and additional integrity checks (formulated in SQL or OQL respectively) is motivated by the
manifold of software applications employing databases as persistence mechanism. Nowadays
different techniques to ensure the integrity of application data are commonly used. Checks to
ensure data integrity are either realised directly in the user interface, or manually embedded in
the application layer, or written by hand as a bunch of SQL integrity checks at the persistence
layer of the software system.

All of these approaches share the drawback that it is not possible to automatically transfer
integrity rules known and specified with OCL at design time into the system’s implementa-
tion. In the following we show how this issue can be tackled using the Query Code Generation
Framework. We decided to realise integrity checking at the persistence layer to reduce its cohe-
sion with the application layer. This alleviates the effort for client implementation and system
maintenance—especially in the context of distributed systems sharing a common database.

Figure 3 depicts the steps taken by the Query Code Generation Framework to implement the
mapping. The procedure is divided into two phases.

First, Schema Propagation maps structural specifications of domain models to database re-
lations. It consists of an object-relational mapping implemented as model transformation of
UML class models to CWM (Relational) [Obj01] models. This transformation is highly con-
figurable with regard to mapping strategies for inheritance structures, association mapping, or
naming conventions in the database schema. However, the resulting models are still independent
of a concrete database platform. To generate database-specific DDL (Data Definition Language)
code an additional code generation step is taken. Since generation logic and code templates are
strictly separated, arbitrary vendor-specific SQL dialects can be supported with minimal effort.

Second, Constraint Propagation maps OCL constraints to integrity VIEWs which are used to
ensure data integrity. It involves a model transformation which results in an ISchemaFacade
used as interface for the OCL Transformation Framework to generate the SQL integrity checks
(cf. Subsection 2.2). These integrity checks are realised with the VIEW approach [DHL01]
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which generates SQL views for all OCL invariants to determine data that violates semantical
data integrity. Database enforced constraints such as CHECK constraints do not suit this issue,
because they only refer on tuples of one table. Indeed typical navigation expression in OCL in-
variants need to be mapped to a constraint including multiple tables respectively relational joins.
The VIEW approach supports this requirement and is well understood for relational databases
and SQL. Database-specific trigger mechanisms can be used to integrate view-based integrity
checks in the persistence layer, because they are part of the database schema. With the use of a
template engine for code generation this works for several vendor-specific SQL dialects too.

i n v a r i a n t b o d y ( c o n s t r a i n t n a m e , c o n t e x t , c o n t e x t a l i a s , e x p r e s s i o n ) : : = <<
c r e a t e view $ c o n s t r a i n t n a m e $ as

( s e l e c t ∗ from $ c o n t e x t $ as $ c o n t e x t a l i a s $
where not ( $ e x p r e s s i o n $ ) )

>>

Listing 1: SQL template definition for OCL invariant

l o g i c a l e x p r e s s i o n a n d ( e x p r e s s i o n 1 , e x p r e s s i o n 2 ) : : = <<
( $ e x p r e s s i o n 1 $ AND $ e x p r e s s i o n 2 $ )

>>

Listing 2: SQL template definition for logical and

Listing 1 shows the template that is used to generate the body of an OCL invariant. The current
implementation contains templates based on SQL92 that range from very abstract patterns like
OCL invariant bodies to very basic patterns like logical and expressions as shown in Listing 2.
It is notable, that all template code is of declarative nature.

Obviously, the illustrated approach provides a clear separation of the structural and the se-
mantical mapping of domain models to database platforms. This reduces the complexity of the
mappings, eases maintenance and results in a highly adaptive and configurable approach to en-
sure data integrity for business applications.

3.2 OCL2XQuery

Since many applications are using XML as data format for storing their application data (either
directly or indirectly by XML-based databases like the IBM DB2 Viper system [IBM]), it is also
useful to support these systems with our Query Code Generation Framework. The second exam-
ple for the application of our framework is the mapping of UML/OCL-based domain models to
XML Schema [FW04] and XQuery [BCF+07] respectively.

For transformation of UML models to XML Schema we have used the strategies and patterns
described in [Car01]. We have developed a pattern catalogue for mapping OCL invariants to
equivalent expressions in XQuery (similar to the cataloque for SQL presented in [DH99]) that
is partly based on the work from Gaafar and Sakr [GS04] who describe the possibility to map
XQuery to OCL.

Since the OCL2XQuery tool also heavily utilises our framework, the structure of the mapping
process resembles the process described in Subsection 3.1 (see Figure 4).
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Figure 4: Mapping of UML/OCL-based domain models to XML

These two examples show, that by simply exchanging model transformation strategies and
pattern catalogues for code generation, a platform independent model can be translated to more
platform specific models and code while preserving the platform independent OCL constraints.

4 Related Work

In our work, we face up to the model-driven integrity engineering in data-intensive applications.
Knowing well that it is hard to draw a sharp dividing line between database and application rules
[Dat00], we consider database rules (cf. Section 3).

There is one project that is strongly related to our work. The AndroMDA Toolkit [And] trans-
forms models of higher abstraction levels to models of lower abstraction levels (i.e. Platform
Specific Models or Code) and also offers a means for transforming OCL constraints to other
languages. At the moment it is limited to HQL (Hibernate Query Language) [Hib] and EJB-QL
(Enterprise Java Bean Query Language) [Sun] but due to its framework character, other target
languages are also possible. However, it also differs in an important point from our work: in con-
trast to our metamodel-based approach it works on a string-based level, where OCL constraints
are translated to target languages by a match parser that uses regular expressions.

In [TG01] Türker and Gertz give an overview of the semantic integrity support in the SQL
standard SQL:1999 [EM99], and show that advanced concepts such as assertions and check
constraints proposed in this standard are rarely supported in major commercial (object-)relational
database management systems. The role of integrity constraints is often underestimated so that
non-trivial integrity constraints are seldom considered in database design. One reason for this
is the decreased performance when using an automatic constraint-enforcing mechanism. In our
OCL2SQL tool we therefore generate integrity views whereby the constraint evaluation can be
performed in a batch-oriented manner.

There are several OCL-to-SQL case studies. In [PKV04] our (first) OCL-to-SQL tool is used
to generate SQL code from Spatial OCL, a domain-specific OCL version to model spatial con-
straints in environmental information systems. In [BC06] Brambilla and Cabot propose OCL-
to-SQL transformation and its tuning for web applications. Vermeer and Apers [VA96] exploit
object constraints for database interoperation.
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5 Summary

In this paper we reported on our experiences on preserving OCL-based data-integrity rules for
business applications in a multi-staged MDSD process. The automatic transformation of UML
class models to other data schemas—while preserving the semantical integrity through the trans-
formation of OCL invariants to sentences of corresponding query languages—reduces devel-
opment costs and enhances the quality of the resulting system. We gave an overview on the
architecture of the Query Code Generation Framework and its components to illustrate the ab-
straction mechanisms necessary to cope with the variety of implementation platform specifics.
As illustrated in Section 3, the presented approach is highly configurable and adaptable to a man-
ifold of platforms and the corresponding query languages which advances the development of
data-intensive business applications.

Acknowledgements: We would like to thank all people who have contributed over several
years to the Dresden OCL Toolkit project.

Bibliography

[ABE+06] D. Akehurst, B. Bordbar, M. Evans, W. Howells, K. McDonald-Maier. SiTra: Sim-
ple Transformations in Java. In: ACM/IEEE 9th International Conference on Model
Driven Engineering Languages and Systems, 2006.

[And] AndroMDA Project Team. AndroMDA.
http://www.andromda.org/

[BC06] M. Brambilla, J. Cabot. Constraint Tuning and Management for Web Applications. In
ICWE 2006. Pp. 345–352. ACM 1-59593-352-2/06/0007, 2006.

[BCF+07] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon. XQuery
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