
Electronic Communications of the EASST
Volume 62 (2013)

Specification, Transformation, Navigation
Special Issue dedicated to Bernd Krieg-Brückner

on the Occasion of his 60th Birthday

Enhanced Formal Verification Flow for Circuits
Integrating Debugging and Coverage Analysis

Daniel Große Görschwin Fey Rolf Drechsler

13 pages

Guest Editors: Till Mossakowski, Markus Roggenbach, Lutz Schröder
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Enhanced Formal Verification Flow for Circuits
Integrating Debugging and Coverage Analysis

Daniel Große1 Görschwin Fey2 Rolf Drechsler2

1 solvertec GmbH 2 Institute of Computer Science
Anne-Conway-Str. 1 University of Bremen

28359 Bremen,Germany 28359 Bremen, Germany
grosse@solvertec.de {fey,drechsle}@informatik.uni-bremen.de

Abstract: In this paper we briefly review techniques used in formal hardware ver-
ification. An advanced flow emerges from integrating two major methodological
improvements: debugging support and coverage analysis. The verification engineer
can locate the source of a failure with an automatic debugging support. Compo-
nents are identified which explain the discrepancy between the property and the cir-
cuit behavior. This method is complemented by an approach to analyze functional
coverage of the proven Bounded Model Checking (BMC) properties. The approach
automatically determines whether the property set is complete or not. In the lat-
ter case coverage gaps are returned. Both techniques are integrated in an enhanced
verification flow. A running example demonstrates the resulting advantages.

Keywords: Formal Verification, Boolean Satisfiability, Bounded Model Checking,
Debugging, Functional Coverage

1 Introduction

For economic reasons the number of components in integrated circuits grows at an exponential
pace according to Moore’s law. This growth is expected to continue for another decade. Result-
ing is the so-called design gap, the productivity in circuit design does not increase as fast as the
technical capabilities. Thus, more components can be integrated on a physical device than can be
assembled in a meaningful way during circuit design. The verification gap, i.e. how to ensure the
correctness of a design, is even wider. This is of particular importance in safety critical areas like
traffic or security-related systems storing confidential information. Thus, techniques and tools
for the verification of circuits received a lot of attention in the area of Computer Aided Design
(CAD).

Simulation has always been in use as a fast method to validate the expected functionality of
circuits. Once the circuit is described in a Hardware Description Language (HDL) like Verilog or
VHDL, a testbench is used to excite the circuit under stimuli expected during in-field operation.
But the full space of potential assignments and states of a circuit is exponential in the number of
inputs and state elements. Therefore the search space cannot be exhausted by simulation. Even
emulation using prototypical hardware is not sufficient to completely cover the full state space.

Thus, more powerful techniques for formal verification have been developed. In particular, to
prove the correctness of a hardware design with respect to a given textual specification property

1 / 13 Volume 62 (2013)

Enhanced Formal Verification Flow for Circuits Integrating Debugging & Coverage Analysis

DONE

fails

holds

100%

<100%
Analyze scenario

Edit/add property Property checker

Coverage analyzer

Autom. debugger

Analyze candidates

Figure 1: Enhanced flow

checking (or model checking) has been developed. Formal properties are derived from the textual
specification. The properties are proven fully automatically to hold on the design. In Symbolic
Model Checking [BCMD90, Bry95] Binary Decision Diagrams (BDDs) [Bry86] are used to rep-
resent the state space symbolically. This approach has been used successfully in practice. How-
ever, BDDs may suffer from memory explosion. As an alternative methods based on Boolean
Satisfiability (SAT) have been proposed. In Bounded Model Checking (BMC) [BCCZ99] the sys-
tem is unfolded for k time frames and together with the property converted into a SAT problem.
If the corresponding SAT instance is satisfiable, a counter-example of length k has been found.
Due to the significant improvements in the tools for SAT solving BMC is particularly effective.
Even for very large designs meaningful properties can be handled [ADK+05, NTW+08]. Still
the verification gap remains due to low productivity, and intensive training of verification engi-
neers is required to apply property checking in practice. Therefore besides powerful reasoning
engines, tool support is necessary for several tasks during formal verification.

Here we propose an enhanced verification flow enriched by techniques to ease the verification
task. The flow is based on previous results by the authors. Figure 1 illustrates this flow. Dark
boxes denote automatic tools while light boxes require manual interaction.

Typically only a property checker is available that returns a counter-example if a property
fails. The subsequent debugging task is only supported by standard simulators. But techniques
automating debugging in the context of property checking have been presented [FSBD08] to
speed up the work flow. The debugger uses multiple counter-examples to determine candidate
sites for the bug location and thus decreases the amount of manual interaction.

Another major problem in property checking is to decide when a property set is complete.
This is usually done by manual inspection of all properties – a threat to correctness for any larger
design. Thus, several methods to solve this problem have been proposed, e.g. [CKV03, Cla07,
BBM+07, Bor09]. An approach to automatically find uncovered scenarios has been presented in
[GKD08]: The coverage analyzer determines whether the properties describe the behavior of the
design under all possible input stimuli. If some input sequences are not covered, this scenario
is returned to the verification engineer for manual inspection. Additional properties may be
required or existing properties have to be modified.

Festschrift Bernd Krieg-Brückner 2 / 13

ECEASST

(3) decision of var. assignment

(4) propagation of assignments

(5) conflicting assignment ?

(6) resolve conflict

yes

(1) free var. left?

(7) UNSAT

(2) SAT

noyes

failed

no

ok

Figure 2: DPLL algorithm in modern SAT solvers

This paper is structured as follows: The next section provides preliminaries on Boolean rea-
soning engines. Section 3 explains property checking as considered here. The automatic debug-
ging approach is briefly discussed in Section 4. Section 5 describes the approach to automatically
analyze functional coverage. An embedded example is used to illustrate the techniques. Section 6
concludes the paper.

2 Boolean Reasoning

Since the introduction of model checking there has been large interest in robust and scalable
approaches for formal verification. Symbolic model checking based on Binary Decision Dia-
grams [McM93] has greatly improved scalability in comparison to explicit state enumeration
techniques. However, these methods are impractical for industrial designs.

Due to dramatic advances of the algorithms for solving Boolean Satisfiability (SAT) many
SAT-based verification approaches have emerged. Today, SAT is the workhorse for Boolean
reasoning and is very successful in industrial practice [GG07]. Hence, in the following a brief
introduction to SAT is provided as SAT is also the basis for Bounded Model Checking (BMC).

The SAT problem is defined as follows: Let h be a Boolean function in Conjunctive Normal
Form (CNF), i.e. a product-of-sums representation. Then, the SAT problem is to decide whether
an assignment for the variables of h exists such that h evaluates to 1 or to prove that no such
assignment exists.

The CNF consists of a conjunction of clauses. A clause is a disjunction of literals and each lit-
eral is a propositional variable or its negation. SAT is one of the central NP-complete problems.
In fact, it was the first known NP-complete problem that was proven by Cook in 1971 [Coo71].
Despite this proven complexity today there are SAT algorithms which solve many practical prob-
lem instances, i.e. a SAT instance can consist of hundreds of thousands of variables, millions of
clauses, and tens of millions of literals.

3 / 13 Volume 62 (2013)

Enhanced Formal Verification Flow for Circuits Integrating Debugging & Coverage Analysis

For SAT solving several (backtracking) algorithms have been proposed [DP60, DLL62, MS99,
MMZ+01, ES04]. The basic search procedure to find a satisfying assignment is shown in Fig. 2
and follows the structure of the DPLL algorithm [DP60, DLL62]. The name DPLL goes back
to the initials of the surnames names of the authors of the original papers: Martin Davis, Hilary
Putnam, George Logeman, and Donald Loveland.

Instead of simply traversing the complete space of assignments, intelligent decision heuris-
tics [GN02], conflict based learning [MS99], and sophisticated engineering of the implication
algorithm by Boolean Constraint Propagation (BCP) [MMZ+01] lead to an effective search pro-
cedure. The description in Fig. 2 follows the implementation of the procedure in modern SAT
solvers. While there are free variables left (step 1), a decision is made (step 3) to assign a value
to one of these variables. Then, implications are determined due to the last assignment by BCP
(step 4). This may cause a conflict (step 5) that is analyzed. If the conflict can be resolved by
undoing assignments from previous decisions, backtracking is done (step 6). Otherwise, the in-
stance is unsatisfiable (step 7). If no further decision can be done, i.e. a value is assigned to all
variables and this assignment did not cause a conflict, the CNF is satisfied (step 2).

To apply SAT for solving CAD problems an efficient translation of a circuit into CNF is
necessary. The principle transformation in the context of Boolean expressions has been proposed
by Tseitin [Tse68]. The Tseitin transformation can be done in linear time. This is achieved by
introducing a new variable for each sub-expression and constraining that this new variable is
equivalent to the sub-expression. For circuits the respective transformation has been presented
in [Lar92].

Example 1 Consider the expression (a+b)∗c where + denotes a Boolean OR and ∗ denotes a
Boolean AND. This is decomposed into two constraints:

t1 ↔ a + b (1)

t2 ↔ t1 ∗ c (2)

These, are now transformed into CNF:

(t1 +a)∗ (t1 +b)∗ (t1 +a+b) (CNF for Constraint 1)

(t2 + t1)∗ (t2 + c)∗ (t2 + t1 + c) (CNF for Constraint 2)

Then, the final CNF for (a+b)∗c is the conjunction of both CNFs where t2 represents the result
of the expression.

3 Formal Hardware Verification using Bounded Model Checking

In the following the basic principles of BMC are provided. We use BMC [BCCZ99] in the form
of interval property checking as described e.g. in [WTSF04, NTW+08]. Thus, a property is only
defined over a finite time interval of the sequential synchronous circuit. In the following, the
vector st ∈ S denotes the states at time point t, the vector it ∈ I the inputs and the vector ot ∈ O
the outputs at time point t, respectively. The combinational logic of the circuit defines the next
state function δ : I×S→ S describing the transition from the current state st to the next state st+1

Festschrift Bernd Krieg-Brückner 4 / 13

ECEASST

s0

i0

o0

s1 sc

o1 oc

i1 ic

...

...

p

Figure 3: Unrolled circuit and property

under the input it . In the same way the output function λ : I×S→ O defines the outputs of the
circuit. Then, a property over a finite time interval [0,c] is a function p : (I×O×S)c+1→ B. For
a sequence of inputs, outputs and states the value of p(i0,o0,s0, . . . , ic,oc,sc) determines whether
the property holds or fails on the sequence. Based on the bounded property p the corresponding
BMC instance b : Ic+1×S→B is formulated. Thereby, the state variables of the underlying Finite
State Machine (FSM) are connected at the different time points, i.e. the current state variables
are identified with the previous next state variables. This concept is called unrolling. In addition,
the outputs over the time interval are determined by the output function of the FSM. Formally,
the BMC instance for the property p over the finite interval [0,c] is given by:

b(i0, i1, . . . , ic,s0) =
c−1∧
t=0

(st+1 ≡ δ (it ,st)) ∧
c∧

t=0

(ot ≡ λ (it ,st)) ∧ ¬p

In Figure 3 the unrolled design and the property resulting in the defined BMC instance is de-
picted. As described in the previous section the BMC instance can be efficiently transformed
into a SAT instance. As the property is negated in the formulation, a satisfying assignment
corresponds to a case where the property fails – a counter-example.

In contrast to the original BMC as proposed in [BCCZ99] interval property checking does
not restrict the state s0 in the first time frame during the proof. This may lead to false negatives,
i.e. counter-examples that start from an unreachable state. In such a case these states are excluded
by adding additional assumptions to the property. But, for BMC as used here, it is not necessary
to determine the diameter of the underlying sequential circuit. Thus, if the SAT instance is
unsatisfiable, the property holds.

In the following we assume that each property is an implication always(A→ C). A is the
antecedent and C is the consequent of the property and both consist of a timed expression. A
timed expression is formulated on top of variables that are evaluated at different points in time
within the time interval [0,c] of the property. The operators in a timed expression are the typical
HDL operators like logic, arithmetic and relational operators. The timing is expressed using the
operators next and prev.

An example circuit given in Verilog and properties specified in the Property Specification
Language (PSL) [Acc] are given in the following.

5 / 13 Volume 62 (2013)

Enhanced Formal Verification Flow for Circuits Integrating Debugging & Coverage Analysis

1 module s r e g ;
2 input c lk , r s t
3 input in , c t r l ;
4 output o u t ;
5 reg s0 , s1 ;
6
7 a s s i g n o u t = s1 ;
8
9 always @(posedge c l k)

10 i f (r s t) s0 <= 0 ;
11 e l s e s0 <= i n ;
12
13 always @(posedge c l k)
14 i f (r s t) s1 <= 0 ;
15 e l s e
16 / / i n c o r r e c t l i n e :
17 / / i f (! c t r l)
18 i f (c t r l)
19 s1 <= s0 | | i n ;
20 e l s e
21 s1 <= s0 && i n ;
22
23 endmodule

Figure 4: Example circuit

0
0

clk

in rst ctrl

s0

s1

out

Q’

QD
Q’

QD

0

1

0

1
0

1

Figure 5: Logic representation of the circuit

Example 2 Figure 4 describes the circuit sreg with the reset input and a clock signal, the data
input in and the control input ctrl. The input data from input in is stored in the internal register
s0 at each clock tick (lines 9–11). The control input ctrl decides whether output out returns the
Boolean AND or the Boolean OR of the current value of in and the previously stored value s0
(lines 13-21). Figure 5 shows the logic level representation of this circuit.

The unrolling of the circuit for two time steps is shown in Figure 6. The flip flops are replaced
by two signals to represent current state and next state. For example, the current state of s0 in
time step 0 is given by s00. Based on current state and primary input values the next value is
calculated in s01.

The simple PSL property pReset in Figure 7 describes the behavior of this circuit immediately
after a reset has been triggered. The property is defined over the interval [0,1]. The antecedent
consists of a single assumption saying that the reset is triggered at time step 0 (line 2). The
consequent specifies that the output is 0 in the next time step under this condition (line 4).

Figure 8 shows a PSL property describing the standard operation of the circuit. The antecedent
requires that no reset is triggered, i.e. rst == 0 (line 2). Under this condition the output value after
two time steps is defined by the value of the control signal in the next time step, the current value
of the input and the next value of the input. If ctrl is zero (line 4), the output value after two time
steps is the Boolean AND of the current input value and the next input value (line 5). Otherwise
the output value is the Boolean OR of the two input values (line 6).

Festschrift Bernd Krieg-Brückner 6 / 13

ECEASST

0 0

s10

s00

s11

s01

s12

s02

0

time step 0

in rst ctrlout0 0 0 0

time step 1

in rst ctrlout1 1 1 1

01

0

0

1

1

0

0

1

0

1
0

1

Figure 6: Circuit unrolled for two time steps

1 property pR es e t = always (
2 r s t == 1
3) −> (
4 next [1] (o u t) == 0
5) ;

Figure 7: Reset property

1 property p O p e r a t i o n = always (
2 n e x t a [0 . . 1] (r s t == 0)
3) −> (
4 next [1] (c t r l ==0) ?
5 next [2] (o u t) ==(i n && next [1] (i n))
6 : next [2] (o u t) ==(i n | | next [1] (i n))
7) ;

Figure 8: Property for normal operation

4 Debugging

As explained above, debugging is a manual task in the standard design flow. Tool automation
helps to improve the productivity. An automatic approach for debugging in the context of equiva-
lence checking has been proposed in [SVFA05] and extended to property checking in [FSBD08].

Essentially, the same model is created as for BMC shown in Figure 3. Additionally, for the
failing property one or more counter-examples are given. The primary inputs of the circuit
are restricted to this counter-example. While the property is restricted to hold. This forms a
contradictory problem instance: when a counter-example is applied to the circuit, the property
does not hold. Finding a cause for this contradiction yields a potential bug location, a so called
fault candidate.

A fault candidate is a component in the circuit that can be replaced to fulfill the property.
Here, a component may be a gate, a module in the hierarchical description, or an expression in
the source code.

To determine such fault candidates, each component of the circuit is replaced by the logic
shown in Figure 9. In the circuit component c implements the function fc. This signal line is

7 / 13 Volume 62 (2013)

Enhanced Formal Verification Flow for Circuits Integrating Debugging & Coverage Analysis

f
C

r
C

f
C

C ’

Figure 9: Repairing a component

modified to calculate f ′c =!rc→ fc, where rc is a new primary input to the model. This allows to
change the output value of c. When rc is zero, c simply calculates the original output as given
by the circuit description. When rc is one, the circuit can be repaired by injecting a new output
value for c.

A trivial solution at this stage would modify all components of the circuit at the same time and
by this easily fulfill the attached property. Therefore an additional constraint limits the number of
modifications. First a solution with only one modification is searched, if no such solution exists
more modifications are iteratively allowed until a first solution has been found. For example, if
more than one bug is present, often multiple modifications are required to fix the circuit. Then,
all modifications that allow to fulfill the property are determined to retrieve all fault candidates.
Finding the ”real” bug among the fault candidates is left to the verification engineer.

Some enhancements have been proposed to improve accuracy or efficiency of this simple ap-
proach [FSBD08]. Improving the accuracy can be achieved by using multiple counter-examples.
The same construction as described above is done for all counter-examples. The same variables
rc are reused with respect to all counter-examples. Thus, the same components are modified to
correct all counter-examples at the same time. Alternatively, the specification may be strength-
ened to improve the accuracy. By using multiple properties to specify correct behavior, the
acceptable behavior is described more accurately. Therefore, false repairs are excluded. Finally,
so called Ackermann constraints force all modifications to be realizable by combinational cir-
cuitry. The approach considered so far allows components to behave non-deterministic for repair,
which is not feasible in practice. Ackermann constraints that force the same output assignment
under the same input assignment for each instance of a component can be used to remove these
infeasible fault candidates.

Efficiency can be improved, by incrementally using more and more counter-examples or more
and more properties. Simulation-based preprocessing can help to remove some fault candidates
in case of single faults.

Further works show how to improve the efficiency [SLM+07, SFBD08], exploit hierarchical
knowledge [FSV+05], apply abstraction [SV07], fully correct a circuit with respect to a given
specification [CMB07] or generate better counter-examples [SFB+09].

Example 3 Assume that the control signal ctrl of the Verilog circuit was interpreted wrongly.
Instead of the correct line 18 in Figure 4, line 17 was used. In this case property pOperation
in Figure 81 does not hold on the circuit. One counter-example may set ctrl to zero, so the
then-branch of the if-statement is executed erroneously. The resulting output may be corrected
by changing either line 19, where the operation is carried out, or line 17, the faulty condition.
These two locations are returned as fault candidates by the approach. When adding another

1 Note that in the consequent of the property the conditional operator ? is used to express if-then-else.

Festschrift Bernd Krieg-Brückner 8 / 13

ECEASST

counter-example that sets ctrl to one, the else-branch is erroneously executed. Lines 17 or 21
are fault locations. Thus, only line 17 remains as a common fault candidate when both of the
counter-examples are applied during automatic debugging.

Experiments have shown that the number of fault candidates is reduced significantly compared
to a simple cone-of-influence analysis [FSBD08].

5 Coverage Analysis

After debugging and finally proving a set of properties, the verification engineer wants to know
if the property set describes the complete functional behavior of the circuit. Thus, in the standard
design flow the properties are manually reviewed and the verification engineer checks whether
properties have been specified for each output (and important internal signals) which prove
the expected behavior in all possible scenarios. The coverage analysis approach introduced in
[GKD08] automatically detects scenarios – assignments to inputs and states – where none of the
properties specify the value of the considered output.

The general idea of the coverage approach is based on the generation of a coverage property
for each output. If this coverage property holds, the value of the output o is specified by at least
one property in any scenario. Essentially, the method shows that the union of all properties that
involve the output o does not admit behavior else than the one defined by the circuit. For this task
a multiplexor construct is inserted into the circuit for the actual output o, the properties describing
the behavior of o are aligned and finally the coverage property for o is generated. Figure 10
depicts the final result of the multiplexor insertion which is carried out before unrolling. As can
be seen for each bit of the n-bit output o a multiplexor is inserted. Each multiplexor is driven
by the respective output bit and the inverted output bit. Then, in a renaming step the output
of each multiplexor becomes oi and the input o origi, respectively. Moreover, the predicate sel
computes the conjunction of all the select inputs of the multiplexers. Based on this construction,
the coverage check can be performed by proving that the multiplexor is forced to select the
original value of o (i.e. o orig) at the maximum time point, assuming all properties involved.
This is expressed in the generated coverage property of the considered output:(|Po|∧

j=1

p̂ j ∧
tmax−1∧

t=0

Xtsel = 1

)
→ Xtmaxsel = 1,

where |Po| is the set of properties which involve o in the consequent, tmax is the maximum time
point of time intervals defined by the properties in |Po|, p̂ j are the adjusted properties over time,
and Xk denotes the application of the next operator for k times. By this, the coverage problem is
transformed into a BMC problem.

Complete coverage in terms of the approach is achieved by considering all outputs of a circuit.
If all outputs are successfully proven to be covered by the properties, then the functional behavior
of the circuit is fully specified.

Further works consider to aid the verification engineer while formulating properties with the
goal to achieve full coverage. In [GWKD09] an approach to understand the reasons for contra-
dictions in the antecedent of a property has been proposed. The technique of [KGD09] removes

9 / 13 Volume 62 (2013)

Enhanced Formal Verification Flow for Circuits Integrating Debugging & Coverage Analysis

sel0

o
o_orig0

0

o
o_orig1

1

. .
 .

sel1

sel

. . .

1

0

1

0

Figure 10: Insertion of the multiplexor

1 property pNew = always (
2 (r s t == 1) && next [1] (r s t == 0)
3) −> (
4 next [1] (c t r l ==0) ? next [2] (o u t) == 0
5 : next [2] (o u t) == next [1] (i n)
6) ;

Figure 11: Property required for full coverage

redundant assumptions in a property and generates valid properties for a given specified behavior.
Both techniques can be combined with the coverage analysis to reduce the number of iterations
to obtain full coverage.

Example 4 Again consider the example circuit and the properties pReset and pOperation. Prop-
erty pReset covers the behavior after the reset while property pOperation describes the normal
operation of the circuit. Thus, full coverage should be reached and both properties are passed to
the coverage analyzer.

The algorithm unexpectedly returns the uncovered scenario where rst is one in the first time
step and zero in the next. Indeed none of the properties covers this case, because pOperation
assumes rst to be zero in two consecutive time steps. Thus, a new property pNew to cover the
remaining scenario is formulated as shown in Figure 11. Applying the coverage analysis to the
three properties yields 100% coverage.

In general, experimental evaluation has shown that the costs for coverage analysis are compa-
rable to the verification costs [GKD08].

6 Conclusions

In this paper we have presented an enhanced formal verification flow. For formal verification
the flow uses bounded model checking. The two major improvements in the new flow are the
integration of debugging and coverage analysis. Both techniques automate manual tasks and
hence the productivity improves significantly in comparison to a traditional flow.

Festschrift Bernd Krieg-Brückner 10 / 13

ECEASST

Bibliography

[Acc] Accellera. Accellera Property Specification Language Reference Manual, version
1.1. http://www.pslsugar.org, 2005.

[ADK+05] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, K. L. McMillan. An Analy-
sis of SAT-Based Model Checking Techniques in an Industrial Environment. In
CHARME. Pp. 254–268. 2005.

[BBM+07] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Blackmore, F. Bruno.
Complete Formal Verification of Tricore2 and Other Processors. In Design and
Verification Conference (DVCon). 2007.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, Y. Zhu. Symbolic model checking without BDDs.
In Tools and Algorithms for the Construction and Analysis of Systems. LNCS 1579,
pp. 193–207. Springer Verlag, 1999.

[BCMD90] J. Burch, E. Clarke, K. McMillan, D. Dill. Sequential circuit verification using
symbolic model checking. In Design Automation Conf. Pp. 46–51. 1990.

[Bor09] J. Bormann. Vollständige funktionale Verifikation. PhD thesis, Technische Univer-
sität Kaiserslautern, 2009.

[Bry86] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. on Comp. 35(8):677–691, 1986.

[Bry95] R. Bryant. Binary Decision Diagrams and Beyond: Enabling Techniques for Formal
Verification. In Int’l Conf. on CAD. Pp. 236–243. 1995.

[CKV03] H. Chockler, O. Kupferman, M. Y. Vardi. Coverage Metrics for Formal Verification.
In CHARME. Pp. 111–125. 2003.

[Cla07] K. Claessen. A Coverage Analysis for Safety Property Lists. In Int’l Conf. on For-
mal Methods in CAD. Pp. 139–145. 2007.

[CMB07] K. Chang, I. Markov, V. Bertacco. Fixing Design Errors with Counterexamples and
Resynthesis. In ASP Design Automation Conf. Pp. 944–949. 2007.

[Coo71] S. Cook. The complexity of theorem proving procedures. In 3. ACM Symposium on
Theory of Computing. Pp. 151–158. 1971.

[DLL62] M. Davis, G. Logeman, D. Loveland. A Machine Program for Theorem Proving.
Comm. of the ACM 5:394–397, 1962.

[DP60] M. Davis, H. Putnam. A computing procedure for quantification theory. Journal of
the ACM 7:506–521, 1960.

[ES04] N. Eén, N. Sörensson. An extensible SAT solver. In SAT 2003. LNCS 2919,
pp. 502–518. 2004.

11 / 13 Volume 62 (2013)

Enhanced Formal Verification Flow for Circuits Integrating Debugging & Coverage Analysis

[FSBD08] G. Fey, S. Staber, R. Bloem, R. Drechsler. Automatic Fault Localization for Prop-
erty Checking. IEEE Trans. on CAD 27(6):1138–1149, 2008.

[FSV+05] M. Fahim Ali, S. Safarpour, A. Veneris, M. Abadir, R. Drechsler. Post-Verification
Debugging of Hierarchical Designs. In Int’l Conf. on CAD. Pp. 871–876. 2005.

[GG07] M. Ganai, A. Gupta. SAT-Based Scalable Formal Verification Solutions (Series on
Integrated Circuits and Systems). Springer, 2007.

[GKD08] D. Große, U. Kühne, R. Drechsler. Analyzing Functional Coverage in Bounded
Model Checking. IEEE Trans. on CAD 27(7):1305–1314, 2008.

[GN02] E. Goldberg, Y. Novikov. BerkMin: a Fast and Robust SAT-Solver. In Design, Au-
tomation and Test in Europe. Pp. 142–149. 2002.

[GWKD09] D. Große, R. Wille, U. Kühne, R. Drechsler. Contradictory Antecedent Debugging
in Bounded Model Checking. In Great Lakes Symp. VLSI. Pp. 173–176. 2009.

[KGD09] U. Kühne, D. Große, R. Drechsler. Property Analysis and Design Understanding.
In Design, Automation and Test in Europe. Pp. 1246–1249. 2009.

[Lar92] T. Larrabee. Test Pattern Generation Using Boolean Satisfiability. IEEE Trans. on
CAD 11:4–15, 1992.

[McM93] K. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering an
Efficient SAT Solver. In Design Automation Conf. Pp. 530–535. 2001.

[MS99] J. Marques-Silva, K. Sakallah. GRASP: A Search Algorithm for Propositional Sat-
isfiability. IEEE Trans. on Comp. 48(5):506–521, 1999.

[NTW+08] M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, W. Kunz. Un-
bounded Protocol Compliance Verification Using Interval Property Checking With
Invariants. IEEE Trans. on CAD 27(11):2068–2082, 2008.

[SFB+09] A. Sülflow, G. Fey, C. Braunstein, U. Kühne, R. Drechsler. Increasing the Accuracy
of SAT-based Debugging. In Design, Automation and Test in Europe. Pp. 1326–
1332. 2009.

[SFBD08] A. Sülflow, G. Fey, R. Bloem, R. Drechsler. Using Unsatisfiable Cores to Debug
Multiple Design Errors. In Great Lakes Symp. VLSI. Pp. 77–82. 2008.

[SLM+07] S. Safarpour, M. Liffton, H. Mangassarian, A. Veneris, K. A. Sakallah. Improved
Design Debugging Using Maximum Satisfiability. In Int’l Conf. on Formal Methods
in CAD. Pp. 13–19. 2007.

[SV07] S. Safarpour, A. Veneris. Abstraction and refinement techniques in automated de-
sign debugging. In Design, Automation and Test in Europe. Pp. 1182–1187. 2007.

Festschrift Bernd Krieg-Brückner 12 / 13

ECEASST

[SVFA05] A. Smith, A. Veneris, M. Fahim Ali, A.Viglas. Fault Diagnosis and Logic Debug-
ging Using Boolean Satisfiability. IEEE Trans. on CAD 24(10):1606–1621, 2005.

[Tse68] G. Tseitin. On the complexity of derivation in propositional calculus. In Studies
in Constructive Mathematics and Mathematical Logic, Part 2. Pp. 115–125. 1968.
(Reprinted in: J. Siekmann, G. Wrightson (Ed.), Automation of Reasoning, Vol. 2,
Springer, Berlin, 1983, pp. 466-483.).

[WTSF04] K. Winkelmann, H.-J. Trylus, D. Stoffel, G. Fey. Cost-efficient Block Verification
for a UMTS Up-link Chip-rate Coprocessor. In Design, Automation and Test in
Europe. Volume 1, pp. 162–167. 2004.

13 / 13 Volume 62 (2013)

	Introduction
	Boolean Reasoning
	Formal Hardware Verification using Bounded Model Checking
	Debugging
	Coverage Analysis
	Conclusions

