
Electronic Communications of the EASST
Volume 18 (2009)

Proceedings of the
Eighth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

Aspects for Graph Grammars

Rodrigo Machado, Luciana Foss and Leila Ribeiro

13 pages

Guest Editors: Artur Boronat, Reiko Heckel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Aspects for Graph Grammars

Rodrigo Machado1, Luciana Foss12 and Leila Ribeiro1

1 (rma, leila)@inf.ufrgs.br
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

2 luciana.foss@ufpel.edu.br
Instituto de Fı́sica e Matemática - Departamento de Informática

Universidade Federal de Pelotas
Pelotas, Brazil

Abstract: Aspect-oriented programming (AOP) is an extension to the object ori-
ented paradigm that aims to provide better modularity for code that is usually scat-
tered across an object-oriented system such as logging, authentication and distributed
object handling. Aspect weaving is a novel way to compose systems, focusing on
the integration of system-wide policies through pattern-action rules. While there are
several semantic proposals for representing aspects over source code and programs,
aspect weaving for visual models such as graph rewriting systems is still not fully
established. In this work, we propose the definition of aspect-oriented graph gram-
mars, an extension to conventional graph grammar where aspects are modeled as
transformation rules over the structure of a base graph grammar.

Keywords: aspect-oriented software development, graph grammars, double-pushout
approach.

1 Introduction

Aspect-oriented programming (AOP) [KLM +97] is an extension to the object oriented paradigm
that aims to provide better modularity for code that is scattered across object-oriented systems,
such as logging, authentication and distributed object handling. The main idea of the paradigm
is to encapsulate the statements that deal with such situations in a module called aspect. Inside
the aspect there are rules (advices) that describe how thesestatements should be weaved into the
base code. Every advice actuates over a specific set (pointcut) of system execution points (join
points), executing some actionbefore, after or in place of the join point.

Aspect-orientation can be seen as a kind ofmeta-programming that allows one to describe
system-wide behaviors in a compact notation. Since its proposal in the late 90s, the paradigm has
been gaining acceptance and development tools. Although there are several proposals [WZL03,
JJR06, DDFB06, CL06] to describe the operational effect of aspect weaving over programs, the
weaving of aspects over visual models is still not totally established.

The fact that several visual languages can be naturally modeled using graphs makes graph
grammars an appealing formalism to define the semantical models for such languages. A graph
grammar (GG) [Roz97] is a model in which the state is represented by a graph and system evo-

1 / 13 Volume 18 (2009)

mailto:(rma,\ leila)@inf.ufrgs.br
mailto:luciana.foss@ufpel.edu.br

Aspects for Graph Grammars

lution is represented by graph rewriting productions. Several interesting models for computation
and software development, such as UML diagrams, have a natural graph-based interpretation,
and thus can be naturally modeled by means of GGs [HET08].

In this work we address the issue of crosscutting concerns ingraph grammars, and propose the
definition ofgraph aspects to modularize their treatment. Our main contribution is thedefinition
of aspect-oriented graph grammars (AOGG), where aspects are represented by a second-order
transformation over the productions of a base GG. We also specify how aspects are combined to
a base grammar, resulting in aweaved graph grammar. By defining formally aspects and aspect
weaving over graph grammars, we also provide a semantic interpretation for aspect-oriented
concepts over other models that are instances of GGs.

The rest of the text is organized as follows. Initially, in Section 2, we informally present the
main concepts of the aspect-oriented paradigm. In Section3, we review graph grammars and
introduce our working example. Then, in Section4, we discuss how to modify the example in
order to implement system-wide policies such as logging. InSection5, we provide a description
of aspects over graph grammars and formally define aspect-oriented graph grammars. Finally,
in Section6, we compare our approach to other proposals, state our final remarks and present
future work.

2 Aspect-Oriented Paradigm

The main purpose of using AOP is to spread some behavior automatically over the whole source
code (or bytecode) of the application. The fundamental abstractions of the paradigm are the
following: i) join points: execution points that can be affected by aspects;ii) pointcuts: specific
sets of join points;iii) advices: rules that, given a pointcut, define some behavior to be triggered
when the system reaches some of its join points;iv) inter-type declarations: extensions to the
static structure of the system, which may be needed by the behavior introduced by the advices.
v) aspects: modules containing all advices and inter-type declarations for dealing with a specific
crosscutting concern.

In aspect-oriented programming languages, join points aregenerally defined as a subset of the
system named transitions, like method calls and attribute accesses. Pointcuts are specific sets of
join points, specified by means of apointcut language. Advices substitute the join points that
match its associated pointcut with some programmed behavior, which can also include the orig-
inal behavior. The module that combines the aspects over theoriginal base code is calledaspect
weaver. As a simple example of aspect weaving, consider the AspectJsource code depicted in
Figure1 (AspectJ is the most popular AOP extension for the Java programming language). The
AspectJ weaver receives both the base code and the aspect code. Then, it applies the advices
within the aspect, inserting the commands provided in the advices every time it finds their point-
cuts in the base code. In the example of Figure1, the aspects simply introduces a print command
right before the start of the execution of any method withoutparameters sent to an object of class
A. Although the result of the combination is shown as a source-code transformation, the AspectJ
compiler actually performs byte-code level weaving, i.e. the aspect weaving occurs after the
compilation of both base code and aspects.

Proc. GT-VMT 2009 2 / 13

ECEASST

Base code:

p u b l i c c l a s s A {
vo id a () { . . . body of a . . . }
vo id b () { . . . body of b . . . }
vo id c (i n t x) { . . . body of c . . . }

}

Aspect:

p u b l i c a s p e c t LogA{
b e f o r e () : e x e c u t i o n (∗ A. ∗ ()) {

System . ou t . p r i n t l n (” Method w i t h o u t p a r a m e t e r s\n ”) ;
}

}

Weaved code = Aspect Weaver(Base code, Aspect):

p u b l i c c l a s s A {
vo id a () { System . ou t . p r i n t l n (” Method w i t h o u t p a r a m e t e r s\n ”) ;

. . . body of a . . . }
vo id b () { System . ou t . p r i n t l n (” Method w i t h o u t p a r a m e t e r s\n ”) ;

. . . body of b . . . }
vo id c (i n t x) { . . . body of c . . . }

}

Figure 1: Example of aspect weaving in AspectJ

3 Graph Grammars

A graph grammar (GG) is a visual model to represent systems. In a GG, the states of the system
are graphs and the system behavior is defined by an starting graph together with a set of graph
rewriting rules. In this section, we recall the basic concepts of GGs, according to the DPO
(double-pushout) approach [C+97], and provide the working example to be used in the rest of
the paper. We will usetyped graph grammars, i.e. grammars where all states and rules are typed.

Definition 1 ((Typed) Graph and Graph Morphisms) Agraph is a tupleG = 〈VG, EG,sG
, tG〉,

whereVG andEG are sets of vertices and edges, andsG
, tG : EG→ VG are the source and target

function. A (total) graph morphism f : G→ G′ is a pair of functions(fV : VG→VG′ , fE : EG→
EG′) such thatfV ◦ sG = sG′ ◦ fE and fV ◦ tG = tG′ ◦ fE . The category of graphs and total graph
morphisms is calledGraph. Let T ∈ Graph be a fixed graph, called type graph, aT -typed
graph GT is given by a graphG and a (total) graph morphismtG : G→ T . A morphism ofT -
typed graphsf : GT → G′T is a (total) graph morphismf : G→ G′ that satisfiestG′ ◦ f = tG. A
typed graphGT is calledinjective if the typing morphismtG is injective. The category ofT -typed
graphs andT -typed graph morphisms is the comma categoryGraph↓T , shortened byT -Graph.

Definition 2 (Graph Productions and Graph Grammars) AT -typed (graph) production (or

graph rule) is a tupleq : Lq

lq
 Kq

rq
 Rq, whereq is the name of the production,Lq, Kq and

3 / 13 Volume 18 (2009)

Aspects for Graph Grammars

Rq areT -typed graph,lq andrq are injective morphisms. The class of allT -typed graph pro-
duction is denoted byT -Prod. A T -typedgraph grammar is a tupleG = 〈T,P,π,G0〉, where
T is a type graph,P is a set of production names,π is a function mapping production names to
productions inT -Prod, andG0 is aT -typed graph, named theinitial graph.

Definition 3 (Direct derivation and Derivations) Given aT -typed graphG, a T -typed graph

productionq = Lq
l
←Kq

r
→Rq and a match (i.e. an injectiveT -typed graph morphism)m : Lq→ G,

a direct derivation from G to H usingq (based onm) exists if and only if the diagram below can
be constructed, where both squares are pushouts inT -Graph. In this case the direct derivation
is denoted byδ : G

q,m
⇒ H or δ : G

q
⇒ H if we do not make explicitm.

Lq

(1)

��

m

��

Kqooloo // r //

k

��

(2)

Rq

m∗

��

G D
l∗

oo
r∗

// H

Elements inLq which are not in the range ofl are said to be deleted byq, while elements
in Rq which are not in the range ofr are said to be created byq. Given a graph grammar

G = 〈T,P,π,G0〉, aderivation ρ : G0
p1,m1
⇒ G1

p2,m2
⇒ G2 · · · of G is a finite or infinite list of direct

derivationsδi : Gi
pi,mi
⇒ Hi, whereGi+1 = Hi andi ≥ 0. If a derivationρ : G0

p1,m1
⇒ ···

pn,mn
⇒ Gn is

finite we callGn the final graph.

Example 1 (Graph grammar) Figure 2 shows a graph grammar thats models a client-server
scenario. The type graphT represents the possible kinds of nodes: clients (stylized persons),
content servers (cylinders), addresses (pentagons), data(rectangles with sharp angles), signaling
messages (rectangles with rounded angles), and connections between clients and servers (circles
with the letterC). There are basically two kinds of interactions in this system: clients can recover
information from servers providing an address as parameter, and clients can store information in
servers, passing both the address and the desired information as parameters1. In order to retrieve
or store information, the client must first connect with a server that provides the required ad-
dress. After the connection, the information is exchanged and, finally, the connection is released.
The graph productionsConnectGet, TransferGet andCloseGet perform the informa-
tion retrieval from servers, and the graph productionsConnectSend, TransferSend and
CloseSend perform the information update. Inside the rules, the itemsannotated with small
D’s are the ones being deleted, and the ones with smallC’s are the ones being created. The initial
graph of the system consists of two clients and three servers. One of the clients comes with
an initial send message for addressA2 (the “updater” client), while the other one has two get
messages for addressesA2 andA3 (the “reader” client). According to the order in which the
productions are applied, the reader client can retrieve information about the addressA2 before
or after it is updated by the updater client. Also, the readerclient can get connected to any server
that provides addressA3, retrieving different results according to the server it connects to.

1 in this example, it would be necessary to have attributes in order to properly represent addresses and numeric data.
Since our main focus is in the crosscutting concerns, for nowwe left attributes out of the theoretical development.

Proc. GT-VMT 2009 4 / 13

ECEASST

Figure 2: Example of graph grammar for clients and servers

Graph grammars provide a natural and visual way to representdistributed and nondetermin-
istic systems, such as the one shown in Example1. Distribution is naturally represented by the
graph topology. The semantics of graph grammars is based on production applications. If there
are matches for more than one production in one state (graph), they may all be applied in paral-
lel, if there are no conflicts. Conflicts exist if two (or more)productions try to delete the same
portion of a graph at the same time. In such situation, the choice of which production will be
actually applied is non-deterministic.

4 Crosscutting Concerns in Graph Grammars

The main purpose of the aspect-oriented paradigm is to solvethe problem of lack of modularity
for the code that handles crosscutting concerns. In order toillustrate crosscutting concerns in the

5 / 13 Volume 18 (2009)

Aspects for Graph Grammars

context of graph grammars, we propose two simple modifications to the system of Figure2: the
inclusion of alogging object (to log executions) and of a security policy for server access.

4.1 Logging Execution Steps

Suppose we want to register every execution step within the system in order to have access to the
execution history. For instance, it is very common that servers store information about the start
and the end of each client connection, both for profiling and security reasons. In the context of
GGs, this would mean that we have to record each production application, or derivation step. In
our example, the changes that have to be performed to introduce such a log object are:

1. the type graph would have to be extended to introduce the new kind(s) of element(s);

2. the initial graph should be populated with initial instances of the new elements (if any). In
the case of log, we must introduce one global instance of the log object;

3. all relevant productions must be modified in order to reflect the desired behavior. The
left-hand side of every rule should have an additional element (the log register), and some
information related to the effect of a production application on this log shall be included.

Figure 3: New type graph, initial graph and variations of theoriginal ruleConnectGet to
implement log.

Figure3 depicts the required modifications over the GG presented in Example1 in order to
implement a simple log policy. The square node with anL represents the global log object. The
square node with anE represents a log entry, which carries information about theproduction
application. In order to keep the example simple, we omittedthis information from log entries –
they actually only represent the number of applied productions (this abstraction is fine, since our
purpose is not to show how to model logs, but rather how to model transformation of specifica-
tions, that is, how one specification is transformed into another by considering an aspect). Log
entries are connected to each other in a way that resembles a linked list structure, represented by

Proc. GT-VMT 2009 6 / 13

ECEASST

the arrowsbegin,end andnext. The empty list is represented by the endoarrowempty. The
modification to the initial graph would be only the addition of one empty log object, i.e. one with
a uniqueempty arrow. The greatest impact comes from the modifications in productions, since
all of them must be altered to cope with two different situations: when the log list is empty, and
when it has at least one element. For instance, the ruleConnectGetmust be rewritten as a pair
of productions, as shown in Figure3. This should be done for every production of the original
specification, duplicating the total number of productionsof the graph grammar. This very small
example shows how structural patterns for productions may not scale well in the usual definition
of graph grammars.

One interesting effect of this log model concerns the graph grammar execution. Since we have
a global log object which is updated by all productions, we lose the possibility of simultaneous
application of productions, even if they refer to differentclient and servers. Thus, this imple-
mentation of logging modifies the concurrent semantics of the system, although the sequential
semantics is not changed at all.

4.2 Security policy for server access

Another system requirement that is a crosscutting concern is the implementation ofsecurity poli-
cies. Suppose it is important to distinguish between two kinds ofusers:content administrators,
the ones that have write and read access to the servers, and ii) plain users, who can only read
information. Every time a user tries to connnect to a server,its type should be taken into account
to decide if the connection should be allowed. A very simple implementation of such policy is
depicted in Figure4, which shows a new type graph and new versions for rulesConnectGet
andConnectSend. The user attributeR representsread privilege andW, write privilege. Both
user marks are preserved by the productions. Unlike the log policy, which affected all the pro-
ductions, these are the only rules affected by the security policy, since the permissions may be
verified only when the connections are being made.

Figure 4: Modified rules and type graph for security policy.

Notice that both the log and the security implementations are modelled as modifications of
both the structure (type graph) and the behavior (initial graph and graph productions) of the
original GG. If both crosscutting concerns are needed in ourspecification, the productions may

7 / 13 Volume 18 (2009)

Aspects for Graph Grammars

become excessively complex and difficult to understand, since they may have to treat several
crosscutting concerns. One of the original motivations forusing visual methods such as GG is
its ease of use, and such lack of modularity can difficult its adoption for modeling large systems.
In the next sections we introduce aspect-oriented graph grammars (AOGG) as an extension of
traditional graph grammars. In AOGGs, the modifications needed to treat every crosscutting
concern are encapsulated into anaspect, allowing clearer specifications.

5 Aspect-Oriented Graph Grammars

In this section, we describe formally how to define aspects over graph grammars, leading to the
definition of aspect-oriented graph grammars (AOGG).

Graph advices may be seen as meta-productions defining how the original graph productions
should be modified in order to implement a given crosscuttingconcern. Therefore, we employ the
same mechanism for graph rewriting in order to describe production rewritings. First, we define
a notion of how to relate productions (production morphism), that will be used to formally define
graph advices.

Definition 4 (Production morphism) Letp : Lp

lp
 Kp

rp
 Rp andq : Lq

lq
 Kq

rq
 Rq beT -typed

graph productions. Aproduction morphism f : p→ q is a triple〈 fL, fK , fR〉 of T -typed graph
morphisms between the left-hand side, interface and right-hand side of the productions such
that the diagram below commutes. The production morphismf = 〈 fL, fK , fR〉 is injective iff
all its components are injective. The category ofT -typed productions andT -typed production
morphisms is denotedT -MSpan.

Lp

fL

��

Kp

fK

��

oo
lp

oo //
rp

// Rp

fR

��

Lq Kqoo
lq

oo //
rq

// Rq

Definition 5 (Graph advice) AT -typedgraph advice a is a production overT -typed produc-
tions, i.e. it is a monic spanp i e in T -MSpan. In terms ofT -typed graphs, a graph advice
has the structure depicted below, where all squares commute:

Liww

wwpppppppppppppppppp &&

&&NNNNNNNNNNNNNNNNN
Kiww

wwppppppppppppppppp &&

&&NNNNNNNNNNNNNNNNN
oooo // // Rixx

xxppppppppppppppppp &&

&&NNNNNNNNNNNNNNNNN

Lp Kpoooo // // Rp Le Ke
oooo // // Re

Given aT -typed advicea : pie, the productionp is called theadvice pointcut, i, theadvice
interface, ande, theadvice effect.

Proc. GT-VMT 2009 8 / 13

ECEASST

Definition 6 (Graph aspect) Given a graph grammarG = 〈T,P,π,G0〉, we define agraph aspect
A overG as a triple〈D, t,g〉, whereD is a set ofT ′-typedgraph advices (see Definition5), and
t : T →֒ T ′ andg : G0 →֒G′0 are graph inclusions. The graphsT ′ andG′0 are called, respectivelly,
the type graph andinitial graph of the aspectA.

Example 2 (Graph aspects)Figure5 depicts a graph aspect for the graph grammar of Figure2,
implementing an execution log. The regionsT andG0 refer to the original type graph and
initial graph, respectively. The advicesa1 anda2 implement the modifications over the original
productions as presented in Section4. The fact that the pointcut is empty makes them match
all the original productions, as will be shown. Figure6 shows a graph aspect implementing a
security policy that affects only theConnectGet andConnectSend productions, since there
are matches for the advice pointcuts in those productions.

Figure 5: Example of a graph aspect implementing execution log.

Figure 6: Example of a graph aspect implementing security policy.

Definition 7 (Aspect-oriented graph grammar) An aspect-oriented graphgrammar (AOGG) is
a pairA = 〈G ,∆〉, whereG is a graph grammar, and∆ is a (possibly empty) finite sequence
[A1,A2, . . . ,An] of graph aspects overG .

9 / 13 Volume 18 (2009)

Aspects for Graph Grammars

The behavior of an AOGGA = 〈G ,∆〉 is given by itsweaved graph grammar, i.e. the graph
grammar resulting from the combination of all aspects in∆ overG . We start by defining how
a single advice modifies one production (advice weaving), then how an aspect is weaved to a
graph grammar (aspect weaving), and finally how one obtains the weaved graph grammar from
a given aspect-oriented graph grammar (AOGG weaving).

Definition 8 (Advice weaving) Given aT -typed graph productionq, a T -typed graph advice
a : p i e and a production monomorphismm : p q (called aproduction match), an
advice weaving from q to q′ usinga (based onm) exists if and only if the diagram below can be
constructed, where both squares are pushouts inT -MSpan. In this case the advice weaving is
denoted byq

a,m
⇒ q′.

p

(1)

��

m
��

iooloo // r //

��

��

(2)

e
��

��

q doooo // // q′

An advice can rewrite a production if there is an inclusion ofits pointcut in the production.
Then, the resulting production is obtained by a double-pushout construction applied componen-
twise in their left- and right-hand sides and in its interface. Intuitively, the elements that are in
the pointcut production (for each graph componentL, K andR) but not in the effect production
are deleted, and those that are in the effect but not in the pointcut are created.

Definition 9 (Aspect weaving) LetG = 〈T,P,π,G0〉 be a graph grammar, andA = 〈D,T
t
→֒ T ′,

G0
g
→֒ G′〉 and aspect overG . Then theaspect weaving of A overG , denoted byWASP(G ,A), is a

graph grammarG ′ = 〈T ′,P′,π ′,G′〉, whereP′ andπ ′ are calculated as follows:

1. all T -typed productionsx ∈ range(π) are retyped for T ′ by composing their respective
typing morphisms with the inclusiont. This generates the setQT ′ of T ′-typed productions:

Lx

tLx $$IIIIIIIIIII

t ′Lx ++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX Kx

tKx
��

t ′Kx

))TTTTTTTTTTTTTTTTTTTTTTTT
oooo // // Rx

tRx

zzuuuuuuuuuuu

t ′Rx

$$IIIIIIIIIII

T
� �

t
// T ′

2. the setQ′ is defined as the smallest set which the following holds: for all y ∈ QT ′ ,

(a) if does not exist an advicea ∈ D and a matchm such thaty
a,m
⇒ y′, theny ∈ Q′

(b) if y
a,m
⇒ y′ for somea andm, theny′ ∈ Q′

3. The setP′ of rule names and the functionπ ′ : P′ → Q′ are chosen arbitrarily, respecting
the restriction thatπ ′ must be a bijection.

Proc. GT-VMT 2009 10 / 13

ECEASST

The application of an aspect weaving in a AOGG generates a GG consisting of the type and
initial graph of the aspect and all productions obtained by applying all advices based on all
possible matches over all productions of the AOGG. The productions that are not updated by any
advice are kept in the resulting GG.

Definition 10 (AOGG weaving) LetA = 〈G ,∆〉 be an AOGG, such thatG = 〈T,P,π,G0〉 and

∆ = [〈Di,T
ti
→֒ Ti,G0

gi
→֒Gi〉 | 1≤ i≤ n]. The weaved graph grammarG ∆

W is calculated as follows:

1. the type graphTW of G ∆
W is the object of the colimit (inGraph) of the diagrams containing

all type graph inclusions in∆, as shown in the diagram below.

TK k

yyrrrrrrrrr � _

��

� s

%%LLLLLLLLL

T1

in j1
%%

T2

in j2
��

... Tn

in jn
yy

TW

2. in order to relate the initial graphs and productions in all aspects, we need to retype the
original graph grammarG and all aspects in∆ by composing all their typing morphisms
with the respective injections overTW . This generates the retyped AOGG〈〈TW ,PTW ,πTW ,

GTW
0 〉,∆

TW 〉, where all type graph inclusionstTW
i : TW →֒ TW (in all aspects) become identi-

ties.

3. the initial graphGW of G ∆
W is the object of the colimit (inTW -Graph) of the diagram

containing allTW -retyped initial graph inclusions in∆TW , as shown in the diagram below.

GTW
0K k

xxrrrrrrrr � _

��

� s

&&LLLLLLLL

GTW
1

&&

GTW
2

��

... GTW
n

xx
GW

4. the graph grammarG ∆
W is obtained as the result ofWAOGG(〈TW ,PTW ,πTW ,GW 〉,∆TW). The

operationWAOGG is defined inductively, combing all aspects in∆TW according to the order
they appear.

WAOGG(G
′
, []) = G ′

WAOGG(G
′
, [A1,A2, . . .An]) = WAOGG(WASP(G

′
,A1), [A2, . . . ,An])

Finally, the AOGG weaving is done by applying all aspects in order of occurrence: the first
aspect is applied over the original grammar and the subsequent ones are applied over the grammar
resulting of the previous aspect weaving.

The AOGG weaving model has the following characteristics:i) positive pointcut match: the
pointcut matching is given by a single production monomorphism; ii) non-reentrant weaving:

11 / 13 Volume 18 (2009)

Aspects for Graph Grammars

our weaving model combines one advice and one rule at most once for every possible match;iii)
deterministic aspect combination: by using a sequence instead of a set, we enforce a canonical
ordering for the aspects in a AOGG. Although these properties allow us to easily express the
aspects for our example, they also may not be the most expressive choices. In aspect-oriented
languages, usually there is a rather complexexpression language for defining pointcuts, which
also includes negative expressions such as “all methods whose return type isnot void”. Without
negative matches, we can not differ created elements from preserved elements in the pointcut,
since we can not test their absence from the interface of the production. It would also be of
interest to define how pointcuts should be composed in our graph-based setting. Concerning the
non-reentrant weaving, this brings both advantages and drawbacks. The positive effect is that
non-deleting advices (the ones where the left-hand side is isomorphic to the interface) pose no
problem to the weaving, since they will never start a non-terminating rewriting. On the other
hand, it may not suffice to describe more complex aspects.

6 Concluding Remarks

One of the first connections between graph rewriting systemsand aspect-oriented programming
was made in [AL99], where graph rewriting mechanism was proposed has a tool for describing
aspects over graph based models. Some proposals, such as theMATA framework [WJ07], follow
this principle, characterizing aspect weaving as a specialkind of model transformation. Most of
these works do not extend the theory of graph rewriting for aspects, employing it as a language
for specifying diagram transformations. As far as we know, there is no other formal approach
for defining aspects and aspect weaving over graph grammars.

In this work, we addressed the problem of the lack of modularity for crosscutting concerns
in graph-grammars, and claimed that aspects for graph grammars are an interesting approach
for the modularisation of such requirements. We provided a formal definition for aspects over
graph grammars, leading to the definition of aspect-oriented graph grammars (AOGG). We also
defined the aspect weaving process that combines all the aspects over the base grammar in an
AOGG, resulting in a (weaved) graph grammar. We showed by means of an example how the
use of AOGGs may reduce the size of GG-based specifications that must deal with crosscutting
concerns.

Our approach differs from others that relate aspects and graph rewriting systems mainly be-
cause it propose the definition of aspects over graph grammars, and not graph grammars as
rewriting models for aspects. On the technical side, there is still room for improvements on the
proposed theory, such as extending the pointcut matching model and defining composition oper-
ations for pointcuts and advices. It would be interesting toconfirm that this theory holds for other
kinds of graph rewriting models, such as attributed graph grammars or even in the single-pushout
approach. The way AOGG is defined models static weaving of systems. Thus, it remains an open
question if there is a way to define dynamic modifications in rules during the system execution.
Other topics of investigation include the study of aspect interference over the execution of the
base grammar and the possible conflicts between aspects.

Acknowledgements: The authors would like to thank the anonymous referees for their helpful

Proc. GT-VMT 2009 12 / 13

ECEASST

comments and suggestions. This work was partially supported by CNPq – Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico.

Bibliography

[AL99] U. Aßmann, A. Ludwig. Aspect Weaving with Graph Rewriting. In Czarnecki and
Eisenecker (eds.),GCSE. LNCS 1799, pp. 24–36. Springer, 1999.

[C+97] A. Corradini et al. Algebraic Approaches to Graph Transformation I: Basic Concepts
and Double Pushout Approach. In Rozenberg (ed.),Handbook of Graph Grammars
and Computing by Graph Transformation. Volume 1, chapter 3, pp. 163–245. World
Scientific, River Edge, February 1997.

[CL06] C. Clifton, G. T. Leavens. MiniMAO1: an imperative core language for studying
aspect-oriented reasonings.Sci. Comput. Program. 63(3):321–374, 2006.

[DDFB06] S. D. Djoko, R. Douence, P. Fradet, D. L. Botlan. CASB: Common Aspect Se-
mantics Base,. Technical report, Research Report, Networkof Excellence in AOSD
(AOSD-Europe, August 2006, no D54)., 2006.

[HET08] F. Hermann, H. Ehrig, G. Taentzer. A Typed Attributed Graph Grammar with In-
heritance for the Abstract Syntax of UML Class and Sequence Diagrams.ENTCS
211:261–269, 2008.

[JJR06] R. Jagadeesan, A. Jeffrey, J. Riely. Typed parametric polymorphism for aspects.Sci.
Comput. Program. 63(3):267–296, 2006.

[KLM +97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. marc Loingtier,
J. Irwin. Aspect-oriented programming. InEropean Conference on Object-Oriented
Programming, ECOOP’97. LNCS 1241, pp. 220–242. Springer, Finland, June 1997.

[Roz97] G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 1. World Scientific, River Edge, February 1997.

[WJ07] J. Whittle, P. K. Jayaraman. MATA: A Tool for Aspect-Oriented Modeling Based on
Graph Transformation. In Giese (ed.),MoDELS Workshops. LNCS 5002, pp. 16–27.
Springer, 2007.

[WZL03] D. Walker, S. Zdancewic, J. Ligatti. A Theory of Aspects. InICFP ’03: Proceedings
of the eighth ACM SIGPLAN international conference on Functional programming.
Pp. 127–139. ACM Press, New York, NY, USA, 2003.

13 / 13 Volume 18 (2009)

	Introduction
	Aspect-Oriented Paradigm
	Graph Grammars
	Crosscutting Concerns in Graph Grammars
	Logging Execution Steps
	Security policy for server access

	Aspect-Oriented Graph Grammars
	Concluding Remarks

