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Abstract: This article focuses on the pattern language PLML. Some enhancements
and corrections to it are proposed to make use of PLML in pattern catalogs.Addi-
tionally, a textual domain specific language as human-readable variant of PLML is
proposed. Supporting editors, textual and graphical, which were developed using
model-based techniques are presented.
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1 Introduction

Object-oriented design patterns, as introduced by Gamma et al. [GHJV02], are considered a
valuable aid in software development. Patterns were identified in many other domains of com-
puter science. One such domain is human computer interaction (HCI). HCI patterns do exist
for many different aspects of the user interface of an application. For example for navigation
through an interface, its layout, input modalities or presentation.

A number of pattern catalogs has been compiled by the HCI community. Well known exam-
ples are the catalogs of Tidwell [Tid] and Van Welie [vW]. On examining HCI patterns in those
catalogs one soon discovers certain problems:

• There is no consistent naming of patterns across those collections. Multiple entries for
what is essentially the same pattern are likely.

• Intra-catalog references are rare, cross-catalog references almost non-existant.

• Aspects of a pattern that are detailed in a pattern entry differ. This is not only in naming
but also in extent. (e.g. a problem or solution description is omitted)

• The abstraction level differs from pattern to pattern.

• The pattern solution is given very informal, mostly text accompanied by pictures for illus-
tration purposes.

Of course, the findings above are not novel. There are approachesto standardize pattern catalogs.
The XML dialect PLML [Fin03] is such an attempt. It was developed to define a common base
of how to describe patterns. PLML defines a pattern language and an exchange format. It
was constructed to cover generic patterns, not for HCI patterns in particular. Without having a
specific domain as boundary, it was not possible to restrict the language elements beyond very
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Figure 1: General view on a transformational model-based development process

basic constraints. Therefore PLML itself does not overcome the lack of formalization problem
mentioned earlier.Section 2of this paper presents PLML in some detail and also introduces
some enhancements proposed by us.

In our research we develop a pattern-based approach to model-driven user interface engi-
neering. Therein we consider software development as a sequence oftransformations of models.
Figure 1shows the source and target models and the in-between transformations ofour approach.
Further details of this process are described for example in [WFDR05].

More important, than the details of our approach, for the scope of this paper is the ubiquitous
use of pattern-based transformations. One consequence of this was theneed to specify those
transformations. Our goal always was to create a semi-automatic human-controlled overall pro-
cess, which will be supported by appropriate tools for every transformation step. Therefore we
had to store patterns in a machine readable manner.

The current focus of our research is the lower part ofFigure 1, the generation of user inter-
faces (UI). We attempt to represent HCI-patterns for UIs in a suitable way so they can be used
within our MDA process. This is done by transforming the pattern idea into a so-called pattern
instance component (PIC). Such a PIC is basically an attributed template that may include some
programming logic. It is called instance component, since we consider the template to be already
an instance of the pattern that is described through this component. We are aware of the fact that,
due to their nature, not all known HCI patterns can be treated as or translated into an algorithm
or a PIC.

Comparable work has been done for the original Gamma patterns by Arnout[Arn04], who
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investigated and, where possible, created usable components of design patterns for the Eiffel
programming language.

The language used for our pattern instance components is domain specific touser interfaces, it
was outlined in [RWF06]. Nevertheless, it is a XML-based language and therefore it is possible
to contain it in or link to it from most existing pattern languages.

As our whole approach is model-based, we developed a pattern languagethat also is based
on models. It is compliant to PLML and able to hold PICs. Also it is possible to store pattern
descriptions of patterns whose solution cannot be specified using a PIC.The rest of this paper
presents this pattern language.Section 3shows a textual domain specific language (DSL) as
interface to our catalog. InSection 4a possile graphical interface is discussed and generated as
model-based graphical editor.

2 Pattern Language Meta Language

2.1 Overview PLML

The pattern language meta language PLML was developed by a group of stakeholders during a
workshop. The idea behind, was to formalize the description of patterns to eventually merge all
existing pattern languages or at least to have a general interchange format. It was designed to
be able to describe patterns on any abstraction level and of any domain. Beside the pure pattern
description a number of identifying meta data became standardized.� �
<!ELEMENT pattern (

name?, confidence?, alias∗, synopsis?, illustration?,
context?, problem?, forces?, evidence?, solution?, diagram?,
implementation?, related−patterns?, pattern−link∗,
literature?, management?)>

<!ELEMENT management (
author?, revision−number?, creation−date?, last−modified?,
change−log?, credits?)>

<!ATTLIST pattern
patternIDCDATA #REQUIRED
collectionCDATA #REQUIRED

>

<!ATTLIST context mylabelCDATA #IMPLIED >

<!ATTLIST pattern−link
typeCDATA #REQUIRED
patternIDCDATA #REQUIRED
collectionCDATA #REQUIRED
labelCDATA #REQUIRED

>� �
Listing 1: DTD of the PLML standard [PLM]

Listing 1shows the document type definition of PLML, official version 1.1.2. Everyelement that
is not explained in further detail is of type #PCDATA or ANY.Table 1has a short description for
all pattern related language elements. The meta-data elements ofmanagementseem to be self
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Element Description
patternID Collection-unique id of a pattern
name Name, as short as possible
alias Alternative names
illustration Picture that illustrates a particularly good pattern instance
problem Design situation which the pattern addresses
context Conditions when application of a pattern is most useful
forces Forces which are resolved by application of the pattern
solution Instructions to follow the idea of the pattern
synopsis Summary of the pattern idea
diagram Schematic visualization of the pattern, sketched or formal
evidence Justification that a pattern actually is a pattern by:

example - known uses
rationale - principled reasons, axioms, common sense or the like

confidence Star rating whether the entry is a true pattern (0 to 2 stars)
literature References to related work
implementation Code or fragments of code or other technical documentation
related-pattern Container for connections to other patterns
pattern-link Connection to other pattern:

type - kind of connection, either ofis-a, is-contained-by, contains
patternID - connection endpoint
collectionID - connection endpoint in collection named collectionID
label - descriptive text of connection

Table 1: Summarization of the meanings of PLML’s language elements [Fin03]

explanatory.
As mentioned before, the degree of freedomListing 1 permits was modeled deliberately. How-
ever, some aspects that are discussed in the workshop report [Fin03] were not put into the stan-
dard. Additionally there is a lack of meta-data storage area if PLML is used to actually build a
pattern catalog.Subsection 2.2outlines our enhancements to PLML and provides a rationale for
each amendment.

2.2 Enhancing PLML

Building a pattern catalog using PLML, as defined inSection 2, quickly reveals a first problem.
There is no root element to attach the entries to. Also no XML-tags are reserved to describe the
catalog itself, i.e. its authors, revision or certain dates.Listing 2 introduces such a catalog root
element to meet these basic requirements. Attributes are provided to name a catalog and assign
a global identificator to it. The latter feature is needed for cross-catalog pattern-links. Other,
catalog describing, meta-data is stored using the already existing elementmanagement.� �
<!ELEMENT catalog (management, pattern+)>

<!ATTLIST catalog
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id CDATA #REQUIRED
nameCDATA #IMPLIED >� �

Listing 2: Introducing catalog meta information into PLML

The PLML explanation in [Fin03] explains that theconfidence, whether an entry is a true pattern,
is expressed using a star rating. It is possible to include this into the documenttype definition of
PLML. Listing 3 defines an attributelevel for the elementconfidenceand limits its value space
to one of the three entries. The elementconfidenceis redefined to not contain content any more.
Through this amendment the notation of confidence levels is fixed and therefore easy to parse.� �
<!ENTITY % confidenceLevels”(0 |∗|∗∗)” >

<!ELEMENT confidenceEMPTY >

<!ATTLIST confidence level %confidenceLevels;#REQUIRED>� �
Listing 3: Narrowing the value space of confidence information

The PLML standard often refers to illustrations to describe certain aspectsof a pattern. Nev-
ertheless, there was little support to actually integrate pictures or at least resource locators of
pictures in a catalog. While it is possible to include pictures as binary data in an XML docu-
ment, we resorted to annotate URLs of pictures in our pattern entries.Listing 4 defines optional
url attributes for three PLML elements.� �
<!ATTLIST context urlCDATA #IMPLIED >

<!ATTLIST diagram urlCDATA #IMPLIED >

<!ATTLIST example urlCDATA #IMPLIED >� �
Listing 4: Annotating picture URLs to certain elements

Another notable change to the original standard was to allowpattern-linkonly as subelements of
related-pattern. Also there were minor changes to the representation ofmanagementmeta-data.

3 PLML as textual DSL

PLML was designed as storage and interchange format, human-readabilitywas not of primary
concern. But, when writing and maintaining a catalog it is sometimes inconvenientand error-
prone to edit in XML structures. There are different ways to cope with thissituation. One
solution is to use dedicated XML editors or to develop a specialized editor.
Since we work in a model-based context we decided to create a dedicated PLML editor using
model-based technology. We defined a grammar for a textual domain specificlanguage (DSL)
resembling PLML. From this grammar we generate a fully featured text editor and a meta-model
of PLML. Having a proper meta-model enables us to easily include the patterns of the catalog
within our software engineering approach ofFigure 1. The meta-model also is a prerequisite to
keep our pattern catalog compliant to PLML standard. Using the model it is very straightforward
to generate valid PLML from our modified pattern language and thus adhereto the interchange-
ability concept of PLML.
The grammar of our textual DSL is a xText [EV] grammar. XText is a model-based framework
for such DSLs. It is a plugin to the Eclipse rich client platform. Provided a grammar, xText
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generates a text editor and an EMF Ecore [emf] meta-model. Through simple customizations
this text editor supports:

• Syntax highlighting, keywords or structuring elements are emphasized

• Syntax completion, there is an editing help which offers keyword completion within the
text editor

• Error checking, the text is permanently checked against the language grammar and viola-
tions are marked within the editor.

• A structured outline view provides an overview and simple navigation throughthe catalog.

A xText grammar is context-free and its notation is EBNF-like. Nonterminal symbols start with
a capital letter, terminal symbols are in quotation marks. Several syntax elements and predefined
types were introduced through xText to derive better meta-models.� �
RelatedPatterns:

”RelatedPattern” ” {” (references+=PatternLink)∗ ” }” ;
PatternLink:

type=PatternLinkType”id=” targetId=STRING
(hasCollection?=”collection=” collection=ID)?
(hasLabel?=”label=” label=STRING)?;

Enum PatternLinkType:
isA=”is−a” |containedIn=”is−contained−by” |contains=”contains” ;� �

Listing 5: Grammar for a pattern-link entry

Listing 5is an excerpt from the xText grammar of PLML. It shows the specificationof pattern re-
lations. Apattern-linkis specified using the nonterminalPatternLink. PatternLinks occur within
the nonterminalRelatedPatterns. RelatedPatternsis defined as starting with the terminal (or
String) ”RelatedPattern” followed by zero-to-manyPatternLinks included in curly braces within
the text. In the meta-model everyPatternLinkwill be stored in the references aggregation of the
RelatedPatterns type. HasCollection and hasLabel are simple markers, theyare interpreted as
boolean values to easily check whether a collection or label value was set at all. The enumer-
ation typePatternLinkTyperestricts the value space of thePatternLinktype to one of the three
values, this is very much like inListing 3 for confidence level stars.
The xText framework parses the grammar into an ANTLR grammar. ANTLR [ant] is an object
oriented parser generator. XText uses ANTLR to generate parser and lexer for the text editor.

� �
CatalogSampleCatalog
MasterData {
Author ”Andreas Wolff”
CreationDate2008−12−31
Revision1.0.2
}

Pattern ync ”Yes−No−Cancel” {
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Alias ”feedback” collectionhciPatterns
Problem ”Decide a binary question or cancel the current operation”
Evidence{
Rationale
”A user should be able to cancel an operation,
not only decide between two possibly undesired consequences”
}

Confidence∗∗
RelatedPattern{
containsid=”yn”
}
MasterData {
Author ”andreas”
CreationDate2009−02−15
Revision1.0
}

}� �
Listing 6: Catalog containing one pattern entry using our textual DSL

In Listing 6a sample catalog can be seen. This catalog contains only a single pattern description,
the ”Yes-No-Cancel” pattern [Pet] which got the id ”ync” assigned. The confidence in ”ync” be-
ing a pattern is high and it is related to a pattern ”yn” within the same catalog. ”ync” is also
known as the pattern ”feedback” in another catalog which has the id ”hciPatterns”. A problem
description and a rationale for this pattern are given textually, no illustration or diagrams are
used.Listing 6 is a minimum example to illustrate the idea.

Figure 2shows the meta-model which was derived from the grammar. Again, to reduce com-
plexity, it is only an excerpt of the complete model. TypeManagementis actually not an empty
class. Catalog management data has been left out too. The enumerationPatternLinkTypewhich
consists of three constant values is also not displayed.
While the pattern catalog itself is a plain-text file, the data it contains is accessedvia instances
of the meta-model. XText parses the catalog text file and builds such instances from the textual
entries. The root class of the model is the typePattern, whose objects have an association to an
object of classPatternDescription. PatternDescriptionis a container class where most aspects
of a pattern are defined by creating aggregrations to their respective types.

4 Graphical representation of PLML

The meta-model of PLML is a useful tool. It can be used to generate a graphical editor or viewer
for PLML based catalogs. There is another model-based framework to construct such editors
from EMF Ecore models, the Eclipse Graphical Modeling Framework (GMF)[gmf]. GMF pro-
vides runtime components and a generator framework to build graphical editors, these editors are
generated as Eclipse plugins. A number of auxiliary models are necessarywithin this process:

• GMFGraph is the model to define figures. The appearance of any diagram element is
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Figure 2: Overview of the meta-model of PLML

described here.

• GMFTool describes the various menus, toolbars and the palette of an editor.

• Ecore is the underlying meta-model of the application domain.

• Genmodel is for generating source code for access and modification of the model in-
stances.

• GMFMap merges above four models. The mapping model defines how meta-model ele-
ments are mapped on diagram nodes or connections. Other mappings includethe connec-
tion between menu entries and diagram nodes.

• GMFGen is the basis for editor generation. It is derived from the mapping model GMFMap.
As it is the very last step before generating the actual editor, a lot of fine tuning can be ex-
ecuted here.

An important decision for every meta-model class and attribute is whether andhow to display it
in an editor. Basically every such element can be a free-form figure or aconnection link or a label
or a composed figure or have no figure at all. Property sheets are assigned to every class figure.
This way properties that are not displayed as a figure are editable anyway. In GMF-editors we
can also choose to display elements as container, i.e. that they can have children within their
graphical representation.

For the initial PLML meta-model we map the classesPattern, PatternDescriptionandMan-
agementonto graphical containers.Patternwill be the root container of pattern description and
its associated master data.PatternLinks will be editable as connections and have labels about
their type attached. Attributes of type string are mapped to labels and can be edited in place.
They are arrange into their appropriate category, either management or pattern description data.
Boolean attributes and the link type of a pattern relation can only be edited usingthe property
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Figure 3: Graphical PLML editor in Eclipse

sheet.
After all mappings are done GMF generates a complete graphical editor as Eclipse plugin.

Figure 3is a screenshot of such an editor. For this specific editor the master data ofthe catalog
itself was mapped to an own graphical element. Two patterns are defined in thiscatalog and a
bi-directional relation exists between them. The lower pattern node (Yes-No-Cancel) is the re-
sult of the textual definition inListing 6. The other pattern node for a Yes-No pattern is defined
very similar. Only the containment relation was reversed and the confidence for Yes-No to be a
pattern was set to 1-star. InFigure 3the pattern relation ”contains” between Yes-No-Cancel and
Yes-No was selected within the editor window. The property sheet below shows all attributes of
this relation. Changing the attribute values here directly effects the content of the editor.
The property sheet of the link reveals two attributes which are not definedin the meta-model of
Figure 2. Attributessourceandtarget were introduced while preparing the GMFMap mapping
model, both are of typePattern. They were specified to be derived and transient, i.e. their value
is a direct consequence of other attribute values and they therefore need not to be serialized. The
value oftarget for example is the pattern object whose id equals the targetID of thePatternLink.

Another notable difference is inConfidence. The meta-model declares three boolean at-
tributes, this is a direct result from xText’s grammar to model transformation.I.e. these attributes
are a technical necessity, but somewhat impractical. To visualize the true confidence level a star-
like labeling was desired. So again an transient derived attributelabel was introduced whose
value is displayed instead of the booleans.

Of course, the concrete values oftarget, sourceand label need to be calculated somewhere.
To achieve this we had to leave the model level and actually write some source code. Through
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modification of the meta-model edit code, which was generated using theGenmodel, getting
and setting the value of the derived attributes also modifies the underlying dataattributes.

Using GMF for the graphical editors enables us to quickly modify the editors.Since most
of the editors source code is generated from the models we can easily try out many kinds of
visualizations. This is not only about the layout or form or color of a certain diagram node.
Through changes in the mapping model we could pursue a completely different idea of graphical
containment. But of course, all such editors would only be different views on the very same data.
The catalog data itself will always be serialized using the textual DSL ofSection 3.

5 Conclusion

This paper describes the pattern language PLML. It is a XML-based language which can be used
to define pattern catalogs. Certain modifications to its original standard were proposed in the
paper to repair some issues with applying PLML in a real catalog.
PLML is used as the pattern container in an integrated model-based environment. Therefore the
pattern language was backed with model-based editing tools. A textual DSL has been presented
that makes it easy to edit the pattern catalog using standard text editors. At the same time this
DSL is the meta-model or rather forms the foundation of an EMF Ecore meta-model of the
pattern language.
Two separate editors for the DSL where derived from models. The firstis an advanced text editor,
that supports typical developer features like syntax highlighting and auto-completion. A second
editor is a graphical editor that was developed using the eclipse graphicalmodeling framework. It
was shown that such generated editors are highly flexible in terms of the graphical representation
of the language elements.
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