
Electronic Communications of the EASST
Volume 29 (2010)

Proceedings of the
Ninth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GT-VMT 2010)

Preserving constraints in horizontal model transformations

Paolo Bottoni, Andrew Fish, Francesco Parisi Presicce

14 pages

Guest Editors: Jochen Küster, Emilio Tuosto
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Preserving constraints in horizontal model transformations

Paolo Bottoni1, Andrew Fish2, Francesco Parisi Presicce1

1 Dipartimento di Informatica, ”Sapienza” Università di Roma, Italy, 2Computing,
Mathematical and Information Sciences, University of Brighton, UK

Abstract: Graph rewriting is gaining credibility in the model transformation field,
and tools are increasingly used to specify transformation activities. However, their
use is often limited by special features of graph transformation approaches, which
might not be familiar to experts in the modeling domain. On the other hand, trans-
formations for specific domains may require special constraints to be enforced on
transformation results. Preserving such constraints by manual definition of graph
transformations can be a cumbersome and error-prone activity. We explore the prob-
lem of ensuring that possible violations of constraints following a transformation are
repaired in a way coherent with the intended meaning of the transformation. In par-
ticular, we consider the use of transformation units within the DPO approach for
intra-model transformations, where the modeling language is expressed via a type
graph and graph conditions. We derive additional rules in a unit from a declarative
rule expressing the principal objective of the transformation, so that the constraints
set by the type graph and the graph conditions hold after the application of the unit.
The approach is illustrated with reference to a diagrammatic reasoning system.

Keywords: DPO, automatic generation, model transformation.

1 Introduction

Graph rewriting-based tools are increasingly used in the field of model transformation. However,
their use is often limited by the special features of the different graph transformation approaches,
which might not be familiar to experts in the modeling domain. On the other hand, transforma-
tions for specific domains may require constraints to be enforced on the results of the transfor-
mation. In this paper we explore the problem of ensuring that possible violations of constraints
are managed in a way coherent with the intended meaning of the transformation.

We consider horizontal (or in-place) model transformations which destructively update a model
expressed in a given language, for the case where the modeling language is expressed via a type
graph and a set of graph conditions. In particular, we study transformations in reasoning pro-
cesses deriving inferences via logical steps creating or deleting model elements.

While modelers are generally clear on what they want to achieve by defining a transformation,
the evaluation of all of its consequences may be complex, and the definition of the implied
preserving or enforcing actions cumbersome and error-prone.

We propose an approach to the automatic construction of transformation units achieving the
effect of an intended model transformation while ensuring that all conditions are satisfied at the
end of the unit if they held at its start. We consider transformations consisting of the creation or
deletion of elements of a specific type, expressed as principal declarative rules. As their appli-

1 / 14 Volume 29 (2010)

Preserving constraints

cation may violate some conditions, they have to be applied in a proper (condition preserving)
context, or (condition enforcing) repair actions have to be taken to restore the satisfaction of such
conditions. Hence, additional rules are defined, derived from the principal one and the conditions
to be enforced. The approach is illustrated with reference to a diagrammatic reasoning system.

Paper organisation. Section 2 discusses related work on constraint preservation in graph trans-
formation, and Section 3 provides the relevant formal notions. Section 4 introduces Spider
Graphs (SGs) as running example, before presenting the approach in Section 5 and applying
it to SGs in Section 6. Finally, Section 7 draws conclusions and points to future developments.

2 Related work

Rensink and Kuperus have exploited the notion of nested graphs to deal with the amalgamated
application of rules to all matches of a rule. In [RK09], they define a language to specify nested
graph formulae. A match can be found from a nested graph rule to a graph satisfying a formula,
according to a given morphism, and the application of a composite rule ensues. Their approach
is focused on avoiding control expressions when all the matches of a rule have to be applied,
while we focus here on preserving constraints with reference to a single match.

Bottoni et al. have defined methods to extend single declarative rules for model transforma-
tion so that they comply with specific patterns defining consistency of interpretation in triple
graphs [BGL08]. They define completions of single rules with respect to several patterns, while
we are interested here in constructing several rules, navigating along different sets of constraints.

Taentzer et al. have proposed the management of inconsistencies among different viewpoints
of a model in distributed graph rewriting. For example, the resolve strategy requires the def-
inition of the right-hand sides of rules to be applied when the left-hand side identifying the
inconsistency is matched [GMT99]. The detection of inconsistencies between rules representing
different model transformations has been attacked by static analysis methods in [HHT02]. Sim-
ilarly, Münch et al. have added repair actions to rules in case some post-conditions are violated
by rule application [MSW00]. In all these cases, actions were modeled through single rules.

Habel and Pennemann [HP09] unify theories about application conditions from [EEHP06]
and nested graph conditions from [Ren04], lifting them to high-level transformations. They
transform rules to make them preserve or enforce both universal and existential conditions. Their
approach leads to the generation of a single rule incorporating several application conditions
derived from different conditions with reference to the possible matches of the rule on host
graphs. In his dissertation [Pen09], Pennemann expands on the topic, also introducing programs
with interfaces, analogous to transformation units, but allowing passing of matches.

In [OEP08], Orejas et al. define a logic of graph constraints to allow the use of constraints for
language specification, and to provide rules for proving satisfaction of clausal forms.

The idea of introducing basic rules derived from entities and associations defined in a meta-
model is exploited in [BQV06] to define constraints on the interactive composition of complex
rules, by allowing their presence in the rule left or right-hand sides only in accordance with their
roles in the meta-model, where only the abstract syntax is taken as a source of constraints.

Ehrig et al. describe a procedure, exploiting layers, which derives a grammar to generate
(rather than transform) instances of the language defined by a meta-model with multiplici-

Proc. GT-VMT 2010 2 / 14

ECEASST

ties [EKTW06]. Satisfaction of OCL constraints is checked a posteriori on a generated instance.

3 Background

For a graph G = (V (G),E(G),s, t), V (G) is the set of nodes, E(G) ⊂ V (G)×V (G) the set of
edges and s, t : E→V the source and target functions. In a type graph T G = (VT ,ET ,sT , tT), VT

and ET are sets of node and edge types, while sT : ET →VT and tT : ET →VT define source and
target node types for each edge type. G is typed on T G via a graph morphism type : G→ T G,
where typeV : V →VT and typeE : E → ET preserve sT and tT , i.e. typeV (s(e)) = sT (typeE(e))
and typeV (t(e)) = tT (typeE(e)). |V (G) |t is the number of nodes of type t ∈VT in G.

A DPO rule [EEPT06] consists of three graphs: left- and right-hand side (L and R) and inter-
face graph K. Two morphisms1 l : K→ L and r : K→ R model the embedding of K (containing
the elements preserved by the rule) in L and R. Figure 1 shows a DPO direct derivation diagram.
Square (1) is a pushout (i.e. G is the union of L and D through their common elements in K),
modeling the deletion of the elements of L not in K, while pushout (2) adds the new elements,
i.e. those present in R but not in K. Figure 1 also illustrates the notion of negative application

condition (NAC), as the association of a set of morphisms ni : L→Ni, also noted NAC
−→n← L, with

a rule. A rule is applicable on G through a match m : L→G if there is no morphism qi : Ni→G,
with Ni in NAC, commuting with m (i.e. qi ◦ni = m). We exploit the partial order ≤ induced, up
to isomorphisms, by monomorphisms on the set of graphs, i.e. g1 ≤ g2⇔∃m : g1 ↪→ g2.

Nk

qk
//

6=

. . . N1

q1
,,

6=

Ln1
oo

nktt

m
��

(1)

K

(2)

loo r //

k
��

R

m∗

��
G Dfoo g // H

Figure 1: DPO Direct Derivation Diagram for rules with NAC.

Graph conditions allow the specification of models by forbidding the appearance of certain
subgraphs, or by enforcing others to appear in given contexts. We use here a class of conditions
Q similar to those in [HP09], where a condition over a graph A is either of the form true or
of the form ∃(a,q), with a : A→ Q a morphism from A to some graph Q and q a condition over
Q. Conditions are also obtained by using the Boolean connectives ¬ and ∨, and can be written
in the form ∀(a,q), equivalent to ¬∃(a,¬q). We assume that all conditions in a set Θ⊂Q differ
for the a morphism, so that (a1,q1),(a2,q2) ∈Θ⇒ (A1 6' A2)∨ (Q1 6'Q2). We will also use the
short forms ∃(Q) for ∃(a : /0→ Q, true) and @(Q) for ¬∃(a : /0→ Q, true). We restrict here to
positive conditions of types ∃(Q) or ∀(a : /0→ Q,q), noted ∀(Q,q) with q =

∨
j∈J q j : Q→Wj a

disjunction of existential conditions. In this case, all the conditions of the form ∃(Qi) ∈ Θ can
be collapsed into a single condition ∃Q, with Q the colimit of all Qi on the diagram constructed
with all pairwise maximal common subgraphs. Simple negative conditions have the form @(Q).

Definition 1 Given a graph G, we say:
1 In this paper, when we speak of morphisms, we will always consider them injective.

3 / 14 Volume 29 (2010)

Preserving constraints

• A morphism m : X → G satisfies a condition C, (m |= C), iff one of the following holds:

1. C = true.

2. C = ∃(Y) and Y ≤ X .

3. C = ∀(X ,
∨

j∈J q j : X →Wj) and ∃m j : m(X)→Wj s.t. q j = m j ◦m for some q j.

4. C = @(Y) and Y 6≤ X .

5. C = C1∨C2 and m |= C1 or m |= C2.

• A graph G satisfies C (G |= C), iff one of the following holds:

1. C = true.

2. C = ∃(Y) and there exists m : Y → G s.t. m |= C.

3. C = ∀(X ,q) and for each m : X → G, m |= C.

4. C = @(Y) and there is no morphism m : Y → G.

5. C = C1∨C2 and G |= C1 or G |= C2.

We say that a graph G typed on T G is a model for Θ, noted G |= Θ, if for each Ci ∈Θ, G |= Ci.
We assume Θ to be a consistent set of conditions, whose models are finite non-empty graphs; in
particular, simple graphs, with no two instances of the same edge type between two nodes.

Transformation units control rule application through control words over rule names [KKS97].
Given: 1) G the class of typed graphs; 2) R the class of DPO rules with NACs on G ; 3) =⇒
the DPO derivation relation; 4) E a class of graph expressions (here defined by type graphs and
graph conditions), where the semantics of an expression e is a subclass sem(e)⊂ G ; 5) W a class
of control words over identifiers of rules in R exploiting single rules, the sequential construct
‘;’, the iteration construct w∗, with w ∈ W , the alternative choice ‘|’; a transformation unit is a
construct TU = (e1,e2,P, imp,w), with e1,e2 ∈ E initial and terminal graph class expressions,
P ⊂ R a set of DPO rules, imp a set of references to other, imported, units, whose rules can
be used in the current one, and w ∈ W a control word enabling rules from P, and units from
imp, to be applied. TUs have a transactional behaviour, i.e. a unit succeeds iff it can be executed
according to the control condition; it fails otherwise. The semantics of a TU is the set sem(TU)=

{(g1,g2) | g1 ∈ sem(e1),g2 ∈ sem(e2),g1
TU↓
=⇒ g2}, where ↓ indicates successful termination.

4 A Running Example: Spider Diagrams and Spider Graphs

Spider Diagrams are a reasoning system based on Euler diagrams. Several variants exist, differ-
ing in syntax and semantics [HMT+01]. We adopt a simplified version, based on Venn, rather
than Euler, diagrams and omitting shading and strands. We first provide an indication of the con-
crete syntax of the diagrams and an informal semantics. Then we propose a graph-based abstract
model for them, called Spider Graphs, which differs from the usual algebraic abstract models
and is in fact slightly closer to the concrete model, even modelling spider’s feet.

Let C = {C1, . . . ,Cn} be a collection of simple closed curves in the plane with finitely many
points of intersection between curves. A zone is a region of the form X1 ∩ ·· · ∩Xn, where Xi ∈

Proc. GT-VMT 2010 4 / 14

ECEASST

{int(Ci),ext(Ci)}, the interior of Ci or the exterior of Ci, for i ∈ {1, . . . ,n}. If each of the 2n

possible zones of C are non-empty and connected then C is a Venn diagram (see [Rus97] for
more details). Each zone z defines a unique partition of the set C, according to whether z is
inside or outside a curve. Two zones are called twins if their inside and outside relations are
switched for exactly one curve. In this paper, a Spider Diagram is a Venn diagram whose curves
are labelled, together with extra syntax called spiders, which are trees whose vertices (called
feet) are placed in unique zones. The set of zones containing a spider’s feet is called its habitat.
Special arcs, called ties, can be drawn between feet of different spiders in the same zone.

Intuitively, each curve represents a given set (indicated by the label) and each zone represents
some set intersection. A spider indicates the existence of an element within the set determined by
its habitat, whilst a tie between a pair of feet of different spiders within a zone indicates equality
of elements, if both spiders represent an element in the set represented by the zone.

Figure 2 (left) shows an example of a Spider Diagram, with two curves {A,B} and four
zones described by {({A},{B}), (/0,{A,B}), ({B},{A}), ({A,B}, /0)}. Here, these zones are
the four minimal region of the plane determined by the curves; for example, the zone described
by ({A},{B}) is the region int(A)∩ext(B) which is inside A but outside B. The habitat of spider
s is the set of zones {({A},{B}),({A,B}, /0)}, while that of t is the singleton {({A,B}, /0)}. In-
formally, the diagram semantics is: there are two sets A and B, there exists an element named s
in A and an element named t in A∩B. Moreover, if s is in A∩B then s = t.

Figure 2: A Spider Diagram on the left, with the corresponding Spider Graph on the right.

We provide here an abstract graph-based model of a Spider Diagram, called a Spider Graph,
not taking into account its concrete geometry. Since we are interested here only in syntactic
aspects, we do not consider the labeling of the curves. We obtain the type graph of Figure 3 (left),
where nodes represent the diagram elements Curve, Foot, Spider and Zone, and edges represent
relations between them. A twin edge indicates that two zones are twins w.r.t. some curve and an
inside/outside edge indicates whether a curve contains/excludes a zone, respectively.

In Figure 2 (right) the Spider Graph associated with the Spider diagram on the left is shown.
The names of the nodes show the correspondence with the objects in the diagram. We have
two curve nodes in each possible relation with four zones2. For ease of reading, the zone nodes
are given names consisting of a list of the lower case letters corresponding to the upper case
letters used as names of the curves the zones are inside, and we use O for the name of the node
corresponding to the zone outside all curves in the diagram. Zone node pairs ab and b, and O
and a are twinned due to curve A, whilst ab and a, and O and b are twinned due to curve B.

We now present the conditions completing the definition of the class of Spider Graphs. Fig-

2 To keep the graph simple, we have omitted the outside edges, which are complementary to the inside ones.

5 / 14 Volume 29 (2010)

Preserving constraints

Figure 3: The type graph (left) and negative conditions (right) for Spider Graphs.

ure 3 (right) shows a set of conditions of the form @Q, presented as forbidden graphs. They
prevent duplication or inconsistency of information and state the uniqueness of relations be-
tween zones and curves. Moreover, we assume the existence of all negative conditions forcing
the graphs to be simple. We omit the direction of edges and their labels, when understood from
the type graph, and use the abbreviations i and o for the inside/outside case. The remaining
conditions force the existence of a partition of the set of curves for all zones, and require suit-
able contexts for zones and feet. We present them adopting a visual syntax where a condition
∃(a : A→Q,q) is represented by a box, separated into two parts by a horizontal line, with the top
part containing a depiction of the morphism a and the bottom part containing a box depicting the
condition q on Q. An empty bottom box corresponds to true. Each condition box has an exter-
nal tab containing either quantifier information or the boolean connective ∨,∧ or ¬. As we use
conditions with A = /0, we only present Q and we do not repeat Q in the depiction of q. Numbers
indicate identification in the morphisms, while not numbered nodes indicate a hidden existential
quantification, as usual. Edges between identified nodes are also assumed to be identified in the
morphisms. The class of Spider Graphs is the intersection of the languages defined by the type
graph and the negative conditions of Figure 3, and the positive conditions in Figures 4 to 6.

Figure 4: Conditions on single elements.

Reasoning rules are derived on top of the algebraic abstract models for Spider diagrams. These
are syntactic transformations whose application corresponds to logical deduction, according to
the semantics. They are usually specified by complex algorithmic procedures, during which the
intermediate diagrams may not be logical consequences of the premise diagram, with pre and
post conditions taking into account the stated semantics of the diagram. For instance a rule to
add a new curve must split every zone into two zones, one inside and one outside each existing
zone, as well as duplicating spider’s feet in zones. Whereas the first effect derives from the
syntactical conditions, the second is a semantic aspect.

Proc. GT-VMT 2010 6 / 14

ECEASST

Figure 5: Conditions on pairs of elements.

Figure 6: Conditions on existence and uniqueness of twins.

5 Condition preserving rules

We discuss the derivation of a condition-preserving transformation unit TU t
g for the generation

of an element of type t. The initial and terminal expressions e1 and e2 for TU t
g define the class of

graphs typed on T G and satisfying Θ. TU t
g is associated with the execution of3 r : /0← /0→ t

and is constructed so that given a graph G ∈ sem(e1), for G
TU t

g↓=⇒ H, (G,H) ∈ sem(TU t
g), and

G≤ G+ t ≤ H, where + indicates the pushout along the empty subgraph.
Note that in general G + t 6|= Θ, but G + t |= Θ′ for some Θ′ ⊂ Θ. Hence, we admit that

some conditions may not be satisfied at intermediate steps of the unit application, and define an
operational class in which to perform transformations. Graphs in this class satisfy a subset of
the graph conditions and may be typed on some T G′ with additional types and edges w.r.t. T G.
In particular, we use here the subset Θ′ containing ∃(Q) and all the conditions @(Qi) in Θ.

Before presenting the algorithm, we give its rationale. We only have to consider universal and
negative existential conditions, as positive existential conditions cannot be violated by adding an
element. However, adding t produces a graph G + t which may not satisfy Θ in two ways:
either it contains a forbidden subgraph, or it provides a new match for the premise of a universal
condition, but it fails to satisfy the conclusion.

3 Here and in the rest of the paper, t denotes the graph consisting of a single node of type t.

7 / 14 Volume 29 (2010)

Preserving constraints

To solve the first problem, given4 a rule r : L→ R in TU t
g (including r : /0→ t), for each

condition @(X) ∈ Θ, the function genNAC(r,X) adds to r the set of NACs formed according to
the construction in Figure 7 (left). Here M j is a maximal common subgraph of R and X and M′j is
a maximal common subgraph to M j and L, s.t. all the squares are pushouts. Hence, L→ X ′j← X j

is the pushout for L←M′j→ X j, with the second morphism given by arrow composition. The set
of NACs contains all the morphisms n′j : L→ X ′j preserving the image of L in X j. This prevents
the application of r on a match which could create the forbidden subgraph X (see [HHT96]).

M′j //

��

M j

��

// X
��

L
r //

��@
@@

R

��
L

r //

n′j ((QQQQQQQQQ

11

R // X j
��

Mh

>>}}}}

 A
AA

Lh rh
 B

BB

X ′j X

??~~~
// Rh

Figure 7: Constructing NAC (left) and incorporating available context (right).

To solve the second problem, given a (universal) condition C = ∀(Q,
∨

j∈J q j : Q→Wj), s.t.
t ≤ Q, the function genUniRules(C) produces the set of rules R(C) where each rule has the

form NAC(C)
−→n← Q

rC. j→Wj. TU t
g will contain an alternative choice among these rules, produced

by the function alt(R(C)). In order to prevent these rules from being applied indefinitely in case
of iteration on the choice, NAC(C) contains a copy of each Wj so the same match is not reused
twice. Intuitively, these rules adjust the relations of the newly added element w.r.t. the contexts
defined in their premises. However, several aspects have to be taken into account. For example,
consider conditions C2 in Figure 4 and suppose we want to add a Spider. Then, the derived
rule will have to create a Foot (condition C2), but this will require a Zone (condition C3), which
will require a Curve (condition C4), hence other additional Zones (conditions C8 and C9), with
several relations to other curves and zones (conditions C10−C12). On the other hand, a Zone for
a Foot is already guaranteed to be present by C1, so that one can reuse existing context to satisfy
this. To deal with such situations, given a rule r : L→ R and a context X to be reused (more on
this later), the function reuseContext(r,X) produces a collection of rules of the form rh : Lh→ Rh
according to the construction in Figure 7 (right). Here, L→ Lh ← X is the pushout along a
maximal common subgraph Mh of L and X and X → Rh← R is the pushout of X ←Mh→ R.

In general, one wants to obtain a TU t
g which, after applying r : /0→ t to G, proceeds through

the following abstract steps, so that context is progressively constructed for the next step.

1. define all edges between the added node and existing nodes of G as required by conditions;

2. generate new nodes as required by the conditions;

3. generate all edges for the new nodes, as required by the conditions.

For example, when adding a Curve, one has to: 1) define relations between the new curve and
existing zones; 2) create new zones, while defining relations with the new curve; 3a) establish
relations between new zones and existing curves; 3b) establish relations between zones.

4 Where not needed, we will omit K.

Proc. GT-VMT 2010 8 / 14

ECEASST

Two things have to be considered. In general, satisfaction of ∀(Q,q) requires iterating through
all possible matches for Q. However, when Q consists of just one node, no iteration is necessary,
and if Q is the graph t , the derived rule has to be applied only to the newly added node, as
it is already satisfied for the nodes of type t which were in G originally. Hence, we extend
T G to admit a special type of loop edge: the first rule is changed to r : /0→ t †, where t †

designates a node with a marker loop. For a rule5 r : L→ R, the function mark(r) produces a set
P†

r = {r†
h : L†

h→ R†
h | h : t → L} where L†

h and R†
h are obtained by adding the loop to the images

h(L) and r ◦h(L), the immersions mh : L ↪→ L†
h and m′h : R ↪→ R†

h preserve such images, and r†
h is

the unique morphism s.t. L†
h

r†
h→ R†

h
m′h← R is the pushout of L†

h
mh← L r→ R. TU t

g will apply r or rules
from P†

r in different situations. The rule delLoop : t †→ t will conclude TU t
g deleting the loop.

Moreover, as in the examples above, some rules create new nodes if they cannot be provided
by the context, and so conditions relative to the new nodes have to be satisfied. This potentially
creates a situation in which an infinite recursion might start. To avoid this, we study the relations
between types for which conditions are mutually recursive. In our example one such pair consists
of Curve and Zone. Indeed, generating a curve implies the generation of a collection of zones,
whilst the generation of a zone can imply the generation of a single curve and of the collection
of zones related to the new curve: we need to distinguish between situations in which context,
enriched with the new node which has started the process, has to be reused, and those in which a
new node is needed to provide the correct context. Definition 2 provides the needed notation.

Definition 2 Let t ∈ VT be a type and Q(t) ⊂ Θ the set of conditions of the form Op(a : A→
Q,q), for Op∈ {∃,∀,@} s.t. t ≤Q (i.e. a node of type t appears in Q). {Q∃(t),Q∀(t),Q@(t)} is a
partition of Q(t) into existential6, universal and negative existential conditions for t, respectively.
V ∃T = {t | t ≤ Q} is the set of existentially quantified types. A partial order ≤C is induced on
Q∀(t) by (C1 <C C2)⇔ ((A1 < A2)∨ ((A1 ' A2)∧ (Q1 < Q2))). DAG(t) = (Q(t),≺,s, t) is the
directed acyclic graph induced on Q(t), where (q1,q2) ∈≺ ⇔ q1 <C q2 ∧ @qx s.t. q1 <C qx,
qx <C q2. We call Min(t) the set of minimal models for Θ∪{∃(Q + t)} for t ∈ VT ⊂ V ∃T and
MIN(S) the set of minimal models for Θ∪

⋃
t∈S⊂VT

{∃(Q+ t)}.

For each condition C ∈ Q∀(t) the rules in genUniRules(C) will be applied in an order estab-
lished by a function visit(DAG(t)) which starts from initial nodes and proceeds from a join node
only after all its incoming paths have been visited. In this way, progressively increasing contexts
will have been produced, possibly providing new matches for the subsequent rules.

In order to follow the abstract steps discussed above, for a type t we organize the rules derived
from Q∀(t) into layers: LAY ER1(t) contains rules which only add edges touching nodes of type
t, LAY ER2(t) contains rules which add at least one node (of any type) in a non-empty context
(and possibly edges of any type), whilst LAY ER3(t) contains rules which do not create nodes but
add edges of any type, but with at least one edge between instances of some type other than t.

The sets Min(t) provide context which is certainly present if a unit for the addition of an
element of type t has already been applied, while Q is guaranteed to be always present. Hence,
reuseContext will be invoked with parameter X equal to Q or Min(t), depending on the situation.

5 For each function operating on rules or types we overload the symbol to accept as argument sets.
6 Note that Q∃(t) = {∃(Q)} if t ≤ Q, and Q∃(t) = /0 otherwise.

9 / 14 Volume 29 (2010)

Preserving constraints

Moreover, if an element of type t ′ is created as a consequence of the generation of t , rules
derived from visiting DAG(t ′) have also to be applied, in the context provided by the already
applied rules. Hence, we introduce a notion of domination and a predicate dominates(t, t ′) ≡
DAG(t ′) ≤ DAG(t). Figure 8 shows the DAGs for the example introduced in Section 4. When
adding a new zone, as we have dominates(Zone,Curve), the construction of TUcurve

g should re-
cursively be invoked. But then, rules from Q∀(curve) would create new zones, thus requiring
the invocation of rules from Q∀(zone), etc. Hence, in the context of the construction of TU t

g if
DAG(t ′) ≤ DAG(t), then the rules from the conditions in Q∀(t ′) are generated used via reuseC-
ontext, with X = MIN(t ′), to take into account that the minimal context for t ′ can already exist.
Also, a function create(r) returns the set of types produced by r, i.e. in VT (R)\V (L).

Figure 8: The DAGs for Spider Graphs.

The resulting algorithm CreateGenUnit(t) populates TU t
G with rules derived from Q∀(t), with

added NACs to preserve conditions in Q@(t), and organizes them according to ordering and
layering: rules are applied only when context for their application is ready.

AlgorithmCreateGenUnit(t:type) :TU

initialize UNIT with r†
t : /0→ t †;

foreach condition C = ∀(Q,q) ∈Θ do { R(C) = genUniRules(C); }
return RecursiveGen(t, /0, f alse);

Algorithm RecursiveGen(t:type, S:setOfTypes, inner:boolean):TU

path = visit(DAG(t)); X = /0; aux = /0;
if isEmpty(S) then { if t ∈VT \V ∃T then { X = Q; } } else { X = MIN(S); }
foreach condition C = ∀(Q,

∨
j∈J q j : Q→Wj) ∈ path do {

foreach k ∈ {1, . . . ,3} do {
foreach t ′ ∈ S { if dominates(t, t ′) { aux = aux∪{t ′} } };
if !isEmpty(aux) then { X = MIN(aux) }; single = /0; nosingle = /0;

foreach rule rC.h = NAC
−→n← L→ R ∈ R(C)∩LAY ERk(t) do {

if |V (L) |= 1 then { single = single∪{rC.h} } else { nosingle = nosingle∪{rC.h}; };
if(inner) then {UNIT = concat(UNIT,alt(reuseContext(single,X)));

UNIT = concat(UNIT,(alt(reuseContext(nosingle,X)))∗);
} else {UNIT = concat(UNIT,alt(mark(reuseContext(single,X))));

UNIT = concat(UNIT,(alt(mark(reuseContext(nosingle,X))))∗); }
if (k == 2) then { foreach t ′ ∈ create(rC.h) do {

Proc. GT-VMT 2010 10 / 14

ECEASST

UNIT = concat(UNIT,RecursiveGen(t ′,S∪{t}, true)); } } } } } ;
foreach rule r : L→ R in UNIT do {

foreach condition C = @(X) ∈Θ do { replace r with genNAC(r,X); } };
UNIT = concat(UNIT,delLoop);
return UNIT

Theorem 1 A call CreateGenUnit(t, /0): 1) terminates, and 2) produces a correct unit TU t
g s.t.

given a graph G typed on T G s.t. G |= Θ, ∀H s.t. G
TU t

g↓=⇒ H, we have H |= Θ∪{∃(G+ t)}.

Proof. (Sketch) 1) The first nested loop performs a finite number of iterations on conditions,
layers and rules. The recursion on recursiveGen terminates since the set S increases in size on
each call. The final iteration to add NACs occurs on a finite number of conditions and rules.

2) If the first rule is applicable, then the application of TUG(t) terminates on each finite graph
G s.t. G |= Θ. Indeed, the NACs prevent repeated applications of a rule on identical matches, and
even if new matches can be created, the layering prevents infinite repetition of the execution of a
rule. Moreover, the application of reuseContext avoids arbitrary generation of new elements. If
a graph H is obtained, then H |= ∃(G+ t), as only increasing rules have been applied. Suppose
now that H 6|= Θ. Then either: 1) H 6|= Ci for some Ci in some Q@(t), but this is impossible as this
is prevented by the use of genNAC; or 2) H 6|= ∃Q, but this is impossible as Q≤G≤G+ t ≤H;
or 3) H 6|= Ci for some Ci in some Q∀(t), but this is impossible as all the rules are derived from
some Q∀(t) and all matches for their premises have been considered.

6 Application to Spider Diagrams

Contrasted to algorithmic definitions of inference figures for Spider Diagrams, the proposed
approach allows the modeling both of syntactically correct Spider Diagram and of an operational
system, admitting intermediary-type diagrams with some syntactic constraints relaxed.

We now apply the constructions in Section 5. Firstly, considering the addition of a Curve, we
have conditions Q∃(Curve) = {C1}, Q∀(Curve) = {(C7),(C8,C9),(C10),(C11,C12)}, where
we have abused notation for universal conditions to indicate their ordering according to ≤Q; e.g.
the premise of C7 is included in the premise of both C8 and C9. The layers associated to the type
Curve are as follows. LAY ER1(Curve) contains rules generated from C7, C11, C12 and from
the first two graphs in the bottom box of C10 since these only add edges incident with nodes
of type Curve. LAY ER2(Curve) contains rules generated from C8,C9 which add Zone nodes,
whilst LAY ER3(Curve) consists of the rule generated from the last graph in the bottom box in
C10 which adds an edge between nodes of type Zone.

Note that depending on which iteration of the rules derived from C8 or C9 is applied first, the
other iteration will be performed vacuously. The same thing happens for C11 and C12.

Figure 9 shows a version of the rules derived from condition C10, with one choice of marking.
Each possible conclusion of the rules from C10 give rise to a NAC, preventing re-application
of the rule to the same match, and the set of three NACs (these define the n j morphisms in the
construction provided earlier) is presented together at the bottom left of the figure.

Using the same rule naming scheme as in Figure 9, and the initial rule rcurve : /0→Curve, the

11 / 14 Volume 29 (2010)

Preserving constraints

algorithm produces a transformation unit of the form:

TU(addCurve)= r†
curve; (r7.1† | r7.2†)∗; (r10.1† | r10.2†)∗;(r11†)∗ ;(r12†)∗;(r8†);(r9†)∗;

(r4.1 | r4.2)∗;r6∗;(r7.1 | r7.2)∗ ;(r10.1 | r10.2 | r10.3)∗ ;r11∗;r12∗;r10.3∗

The iterations on rules from r4.i to r12 in the second row derive from the fact that some Zone
is created in the previous rules, so that the second top-level loop must be started, reusing context
to prevent the creation of new curves.

The analogous construction for the type Zone is based on the following specifications Q∃(Zone)
= {C1}, Q∀(Zone) = {(C4),(C6,C7),(C8,C9),(C10),(C11,C12)}. LAY ER1(Zone) contains
the rules generated from C7, C10, C11, while LAY ER2(Zone) contains the rules generated from
C8 and C9. In this case, the unit will first define the relations of the new zone with the existing
curves, according to the rule from C4, then create a required new curve (as the context does not
provide one to satisfy C6). After the iteration of the rule for C7, the context again will not be
sufficient for the application of the rules from C8 and C9. Finally, the rules from C10, C11 and
C12 will adjust the relations with the newly created curves and among all zones.

Figure 9: A marked version of the 3 rules derived from condition C10 and the non-marked NAC.

For a Spider, we have Q∃(Spider) = /0, Q∀(Spider) = {(C2)}, generating a rule in layer 2.
While the creation of a Spider requires the creation of a Foot, the Zone will be taken from
the context, due to its presence in Q, so that it has been incorporated by the application of
reuseContext. Insertion of a Foot will instead require the creation of a new Spider, if none
exists, or its reuse if one had already been created. However, such a creation will fail if the spider
has already a foot in each existing zone.

In a similar way, a unit for the deletion of a curve would first remove the twin edges between
zones attached to the marked curve, then all edges from all other curves to these zones, then
all zones attached with an inside or outside edge to the curve to be removed, then all remaining
connections from the marked Curve node to be deleted, and finally the marked node itself.
Removal of a spider would be preceded by removal of all its feet and their attachments to zones.
The construction of such units is beyond the scope of this paper.

7 Conclusions

We have provided a methodology for the automatic derivation of transformation units from a
principal rule via an algorithm that iteratively adds restorative rules to a unit for increasing rules.

Proc. GT-VMT 2010 12 / 14

ECEASST

As a result, membership in the model language is ensured before and after the application of the
unit, but not necessarily throughout the unit. The methodology exploits a rule layering approach,
and rules are generated from graph conditions taking into account the rule application context.

The automatic production of the rules needed to reassemble a syntactically correct diagram
simplifies the specification of diagrammatic inference rules and supports therefore the develop-
ment and comparison of syntactic and semantic variations of the systems. Future work will define
a similar algorithm for deleting rules, adding preparatory rules for performing a final deletion.

Of course, semantic considerations play a greater role than simple syntactic constraints. How-
ever, the constructed rules may provide a basis to be extended with additional context and con-
sequences. For example, the specification of a transformation via pre- and post-conditions can
be used to integrate syntactic rules with specific side effects. In this sense, this construction
provides more flexibility to modelers, who can define the language through conditions, the main
goal of a transformation and the desired side effects in an independent manner. This removes
the need to consider complex interplays between rules and constraints, as in approaches which
derive amalgamated rules which have to achieve a global effect with a single specification.

We notice that most transformations involve redirection of associations from one element to
another, or changing the context for an element. The construction presented in the paper can be
adapted to define accumulators and distributors of associations, which would collect all edges to
be redirected, while deleting or constructing elements. Hence, such redirections might be taken
as primitive constructs. The approach has been presented only for typed graphs. Extensions to
graphs with inheritance and with attributes have to be explored, in particular for the case where
identifiers are used to describe the associations of an element with others.

This would be useful also in other domains. For instance, model refactoring often involves
the elimination of elements, or the creation of suitable contexts for their insertion. One example
is the elimination of a composite state in a Statechart which requires the elimination of all of its
internal states. Then, given a set of conditions stating that each state must be contained within a
composite state, the construction in Section 5 could be applied to generate transformation units
to be recursively invoked to visit the nesting tree. Another refactoring example is that of moving
a method. This requires placing it in a different class and redirecting all its invocations, as well
as the messages which may originate from its invocation, to its new location. Our construction
can thus be used to manage the identification of the arcs related to such a method.

Acknowledgements: Partially funded by UK EPSRC grant EP/E011160: Visualisation with
Euler Diagrams.

Bibliography

[BGL08] P. Bottoni, E. Guerra, J. de Lara. Enforced generative patterns for the specification
of the syntax and semantics of visual languages. JVLC 19(4):429–455, 2008.

[BQV06] P. Bottoni, P. Quattrocchi, D. Ventriglia. Constraining Concrete Syntax via Meta-
model Information. In Proc. IEEE VL/HCC 2006. Pp. 85–88. IEEE CS Press, 2006.

13 / 14 Volume 29 (2010)

Preserving constraints

[EEHP06] H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann. Theory of Constraints and Ap-
plication Conditions: From Graphs to High-Level Structures. Fundam. Inform.
74(1):135–166, 2006.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2006.

[EKTW06] K. Ehrig, J. M. Küster, G. Taentzer, J. Winkelmann. Generating Instance Models
from Meta Models. In Proc. FMOODS 2006. LNCS 4037, pp. 156–170. Springer,
2006.

[GMT99] M. Goedicke, T. Meyer, G. Taentzer. ViewPoint-oriented software development by
distributed graph transformation: towards a basis for living with inconsistencies. In
Proc. IEEE Requirements Engineering, 1999. Pp. 92–99. 1999.

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application Con-
ditions. Fundam. Inform. 26(3/4):287–313, 1996.

[HHT02] J. H. Hausmann, R. Heckel, G. Taentzer. Detection of conflicting functional require-
ments in a use case-driven approach: a static analysis technique based on graph
transformation. In Proc. ICSE ’02. Pp. 105–115. ACM Press, 2002.

[HMT+01] J. Howse, F. Molina, J. Taylor, S. Kent, J. Gil. Spider Diagrams: A Diagrammatic
Reasoning System. JVLC 12(3):299–324, 2001.

[HP09] A. Habel, K.-H. Pennemann. Correctness of high-level transformation systems rel-
ative to nested conditions. Math. Struc. in Comp. Sc. 19(2):245–296, 2009.

[KKS97] H.-J. Kreowski, S. Kuske, A. Schürr. Nested graph transformation units. Int. J. on
SEKE 7(4):479–502, 1997.

[MSW00] M. Münch, A. Schürr, A. J. Winter. Integrity Constraints in the Multi-paradigm
Language PROGRES. In Selected Papers from TAGT’98. LNCS 1764, pp. 338–351.
Springer, 2000.

[OEP08] F. Orejas, H. Ehrig, U. Prange. A Logic of Graph Constraints. In Proc. FASE 2008.
LNCS 4961, pp. 179–198. Springer, 2008.

[Pen09] K.-H. Pennemann. Development of Correct Graph Transformation Systems. Ph.d
thesis, Carl von Ossietzky Universität - Oldenburg, 2009.

[Ren04] A. Rensink. Representing First-Order Logic Using Graphs. In Proc. ICGT.
LNCS 3256, pp. 319–335. Springer, 2004.

[RK09] A. Rensink, J.-H. Kuperus. Repotting the Geraniums: On Nested Graph Transfor-
mation Rules. ECEASST - Proc. GT-VMT 2009 18, 2009.

[Rus97] F. Ruskey. A Survey of Venn Diagrams. Electronic Journal of Combinatorics, 1997.
www.combinatorics.org/Surveys/ds5/VennEJC.html.

Proc. GT-VMT 2010 14 / 14

	Introduction
	Related work
	Background
	A Running Example: Spider Diagrams and Spider Graphs
	Condition preserving rules
	Application to Spider Diagrams
	Conclusions

