
Electronic Communications of the EASST
Volume 076 (2019)

Automated Verification of Critical Systems 2018
(AVoCS 2018)

An Entailment Checker for Separation Logic with Inductive Definitions

Radu Iosif and Cristina Serban

21 pages

Guest Editors: David Pichardie, Mihaela Sighireanu
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

An Entailment Checker for Separation Logic with Inductive
Definitions

Radu Iosif and Cristina Serban

CNRS/VERIMAG/Université Grenoble Alpes
Radu.Iosif@univ-grenoble-alpes.fr, Cristina.Serban@univ-grenoble-alpes.fr

Abstract: In this paper, we present Inductor, a checker for entailments between mu-
tually recursive predicates, whose inductive definitions contain ground constraints
belonging to the quantifier-free fragment of Separation Logic. Our tool implements
a proof-search method for a cyclic proof system that we have shown to be sound
and complete, under certain semantic restrictions involving the set of constraints in
a given inductive system. Dedicated decision procedures from the DPLL(T)-based
SMT solver CVC4 are used to establish the satisfiability of Separation Logic formu-
lae. Given inductive predicate definitions, an entailment query, and a proof-search
strategy, Inductor uses a compact tree structure to explore all derivations enabled by
the strategy. A successful result is accompanied by a proof, while an unsuccessful
one is supported by a counterexample.

Keywords: cyclic proofs, inductive definitions, infinite descent, separation logic

1 Introduction

Inductive definitions play an important role in computing, being an essential component of pro-
gramming languages, databases, automated reasoning and program verification systems. The
main advantage of using inductive definitions is the ability of recursively reasoning about sets
of logical objects. The semantics of these definitions is defined in terms of least fixed points of
higher-order functions on assignments mapping predicates to sets of models. A natural problem
is the entailment, that asks whether the least solution of one predicate is included in the least
solution of another. Examples of entailments are language inclusion between finite-state (tree)
automata, context-free grammars or verification conditions generated by shape analysis tools
using specifications of recursive data structures as contracts of program correctness.

The interest for automatic proof generation is two-fold. On one hand, machine-checkable
proofs are certificates for the correctness of the answer given by an automated checker, that in-
crease our trust in the reliability of a particular implementation [SOR+13]. On the other hand,
the existence of a sound and complete proof system provides a (theoretical) decision procedure
for the entailment problem. Assuming that the sets of models and derivations are both recur-
sively enumerable, one can interleave the enumeration of counter-models with the enumeration
of derivations; if the entailment holds one finds a finite proof (provided that the proof system is
complete), or a finite counterexample, otherwise. Moreover, proof generation can be made ef-
fective by providing suitable strategies that limit the possibilities of applying the inference rules
and guide the search towards finding a proof or a counterexample.

1 / 21 Volume 076 (2019)

mailto:Radu.Iosif@univ-grenoble-alpes.fr
mailto:Cristina.Serban@univ-grenoble-alpes.fr

An Entailment Checker for Separation Logic with Inductive Definitions

In this paper we consider inductive systems with constraints written in Separation Logic
[Rey02] with the classical (strict) interpretation of spatial atoms. We introduce a set of inference
rules tailored for proving inductive entailments in Separation Logic, which have been shown
to be sound [IS17] under a ranking assumption for the constraints of the inductive definitions.
Completeness is assured under three additional restrictions and only for a particular interpreta-
tion of the least solution of the inductive system, taking into account the coverage trees of the
heap generated by the inductive definitions. We then describe Inductor [Ser17], a prototype im-
plementation for the more general proof search algorithm given in [IS17] and reprised in §2.4,
and discuss several case studies involving both valid and invalid entailments.

Related Work The problem of entailment in Separation Logic with inductive definitions has
been approached by other solvers. The generic cyclic proof framework CYCLIST [BGP12] has an
instantiation for this fragment and allows for the discovery of inductive arguments during proof
construction. CYCLIST builds proofs in which infinite traces can be cut by induction when they
satisfy a global trace condition requiring them to visit infinitely many progress points. SLEEK

[CDNQ12] and SPEN [ELS17, ESW15] both provide methods of proving entailments by relying
on lemmas that relate the inductive definitions. However, SLEEK utilizes a database of user-
provided lemmas, while SPEN is able to automatically discover and synthesize concatenation
lemmas.

Chu et al. [CJT15] propose a proof system that extends the basic cyclic proof method with a
cut rule type that uses previously encountered sequents as inductive hypotheses and applies them
by matching and replacing the left with the right-hand side of such a hypothesis. This method
can prove entailments between predicates whose coverage trees differ and only soundness is
guaranteed. An automata-based decision procedure that also tackles such entailments is given
in [IRV14]. This method translates the entailment problem to a language inclusion between tree
automata and uses a closure operation on automata to match divergent predicates. Unlike proof
search, this method uses existing tree automata inclusion algorithms, which do not produce proof
witnesses.

2 Cyclic Proofs for Inductive Entailments in Separation Logic

2.1 Preliminaries

For two integers 0≤ i≤ j, we denote by [i, j] the set {i, i+1, . . . , j} and by [i] the set [1, i], where
[0] = /0. ||S|| denotes the cardinality of the finite set S.

We consider a signature Σ=(Σs,Σf), where Σs is a set of sort symbols and Σf is a set of function
symbols. For the purpose of this paper, we restrict the signature such that Σs = {Loc,Bool} and
Σf contains only equality, the constant symbol nil of sort Loc and the boolean constants > and
⊥. Let Var be a countable set of first order variables, each xσ ∈ Var having a sort σ. We write
x,y, . . . for both sets and ordered tuples of variables and, for brevity, we use ∈, ∪, ∩, ⊆ on tuples
such that x ∈ x iff x occurs in x, x∪y = {x | x ∈ x or x ∈ y}, x∩y = {x | x ∈ x and x ∈ y}, x⊆ y
iff x ∈ y for any x ∈ x.

A term tσ is either a constant or a variable of sort σ ∈ Σs. Separation Logic (SL) formulae are
generated by the following syntax:

AVoCS 2018 2 / 21

ECEASST

φ ::=> | ⊥ | tσ
1 ≈ tσ

2 | emp | xLoc 7→ (tLoc
1 , . . . , tLoc

k) | φ1 ∗φ2 | ¬φ1 | φ1∧φ2 | φ1∨φ2 | ∃x.φ1 | ∀x.φ1
where k > 0 is a fixed constant. Given a set of formulae F = {φ1, . . . ,φn}, we write ∗F for
φ1 ∗ . . . ∗ φn, which is equivalent to emp if F = /0. For a formula φ (set of formulae F), FV(φ)
(
⋃

φ∈F FV(φ)) is the set of variables not occurring under a quantifier scope, and φ(x) (F(x))
means that, for every x ∈ x, we have x ∈ FV(φ) (x ∈

⋃
φ∈F FV(φ)).

Given sets of variables x and y, a flat substitution θ : x→ y is a mapping of the variables in
x to variables in y. We denote by xθ = {θ(x) | x ∈ x} its image under the substitution θ. For a
formula φ(x), φθ is the formula obtained by replacing each occurrence of x ∈ x with the term
θ(x). Observe that θ is always a surjective mapping between FV(φ) and FV(φθ). We lift this
notation to sets as Fθ = {φθ | φ ∈ F}.

We fix an interpretation I such that I (>) = true, I (⊥) = false, I (Loc) is a countably infinite
set L, and I (nil) = `nil is a fixed element of L. A valuation ν maps each variable xBool to true or
false and each variable yLoc to an element of L. Given a term tσ, by writing tI

ν we mean either
I (t) (if t is a constant symbol) or ν(t) (if t is a variable).

A heap is a finite partial mapping h : L⇀fin L
k associating locations with k-tuples of locations.

We denote by dom(h) the set of locations on which h is defined, by img(h) the set of locations
occurring in the range of h, and by Heaps the set of heaps. Two heaps h1 and h2 are disjoint if
dom(h1)∩ dom(h2) = /0. In this case, h1] h2 denotes their union, which is undefined if h1 and
h2 are not disjoint. Given a valuation ν and a heap h, the semantics of SL formulae is defined as:

ν,h |=sl t1 ≈ t2 ⇔ (t1)I
ν = (t2)I

ν

ν,h |=sl emp ⇔ h = /0

ν,h |=sl x 7→ (t1, . . . , tk) ⇔ h = {
〈
ν(x),((t1)I

ν, . . . ,(tk)
I
ν)
〉
}

ν,h |=sl φ1 ∗φ2 ⇔ ∃h1,h2 ∈ Heaps .h = h1]h2 and ν,hi |=sl φi, i ∈ [2]

The semantics of boolean and first order connectives is the usual one, omitted for brevity. Given
SL formulae φ and ψ, we say that φ entails ψ (i.e. φ |=sl ψ) iff ν,h |=sl φ implies ν,h |=sl ψ, for
any valuation ν and heap h.

2.2 Inductive Systems of Predicates in Separation Logic

Let Pred be a countable set of predicates, each pσ1...σn ∈ Pred having an associated tuple of
argument sorts. Given a tuple of terms (tσ1

1 , . . . , tσn
n), we call p(t1, . . . , tn) a predicate atom. A

predicate rule is a pair 〈{φ(x,x1, . . . ,xn),q1(x1), . . . ,qn(xn)} , p(x)〉, where x,x1, . . . ,xn are tuples
whose corresponding sets of variables are pairwise disjoint, φ is a formula, called the constraint,
p(x) is a predicate atom called the goal and q1(x1), . . . ,qn(xn) are predicate atoms called sub-
goals. The variables x are the goal variables, whereas

⋃n
i=1 xi are the subgoal variables.

An inductive system S (system, for short) is a finite set of predicate rules. In this paper, we con-
sider inductive systems whose constraints belong to the SL fragment described in §2.1. We as-
sume w.l.o.g. that each predicate p∈Pred is the goal of at least one rule of S and that there are no
goals with the same predicate and different goal variables. We write p(x) :=S R1 | . . . | Rm when
{〈R1, p(x)〉 , . . . ,〈Rm, p(x)〉} is the set of all predicate rules in S with goal p(x). We consider
only quantifier-free constraints, in which no disjunction occurs positively and no conjunction
occurs negatively, and assume that the set of constraints of a system has a decidable satisfiability

3 / 21 Volume 076 (2019)

An Entailment Checker for Separation Logic with Inductive Definitions

problem. Disjunctions can be eliminated by splitting 〈{φ1 ∨ . . .∨ φm,q1(x1), . . . ,qn(xn)}, p(x)〉
into m rules 〈{φi,q1(x1), . . . ,qn(xn)} , p(x)〉, one for each i ∈ [m].

Example 1 Consider the SL inductive system SAB consisting of the predicate rules:

p(x) :=SAB x 7→ (x1,x2), p1(x1), p2(x2) q(x) :=SAB x 7→ (x1,x2),q1(x1),q2(x2)
| x 7→ (x1,x2),q2(x1),q1(x2)

p1(x) :=SAB x 7→ (x1,nil), p1(x1) | x 7→ (nil,x) q1(x) :=SAB x 7→ (x1,nil),q1(x1) | x 7→ (nil,x)
p2(x) :=SAB x 7→ (x1,nil), p2(x1) | x 7→ (nil,nil) q2(x) :=SAB x 7→ (x1,nil),q2(x1) | x 7→ (nil,nil)

Broadly speaking, the predicates define binary trees in which the root node points to two lists
and one leaf is not nil, but its position differs in each definition.

Given an SL inductive system S , an assignment X maps each predicate pσ1...σn ∈ Pred to
a set X (p) ⊆ Ln ×Heaps. For a set F = {φ,q1(x1), . . . ,qn(xn)}, where φ is an SL formula
and q1(x1), . . . ,qn(xn) are predicate atoms, we define X (∗F) = {(ν,h0]

⊎m
i=1 hi) | ν,h0 |=sl

φ,(ν(xi),hi) ∈ X (qi),∀i ∈ [m]}.
Then S induces a function Fsl

S (X) on assignments, which maps each predicate p ∈ Pred into
the set

⋃m
i=1{(ν(x),h) | (ν,h) ∈ X (∗Ri)}, where p(x) :=S R1 | . . . | Rm. A solution of S is an

assignment X such that Fsl
S (X)⊆ X , where inclusion between assignments is defined pointwise.

It can be shown that the set of all assignments, together with the ⊆ relation, is a complete lattice
and that FI

S is monotone. Therefore, by the Knaster-Tarski theorem, µS sl =
⋂
{X | FI

S (X)⊆ X }
is the least fixed point of Fsl

S and the least solution of S .

Example 2 Considering the SAB inductive system from Example 1, the set µS sl
AB(q) consists of

trees of both following forms, where n≥ 1 and m≥ 1:

x
x1

1
. . .

nil
x1

2
. . .

nil

xn
1
nil

nil
xn

1
xm

2
nil

nil
nil

x
x1

1
. . .

nil
x1

2
. . .

nil

xn
1
nil

nil
nil

xm
2
nil

nil
xm

2

while the set µS sl
AB(p) contains trees of the first above form, but not the second.

We are concerned with the following entailment problem: given an inductive system S and
predicates pσ1...σm , qσ1...σm

1 , . . . ,qσ1...σm
n , is it true that µS sl(p) ⊆

⋃n
i=1 µS sl(qi)? We denote entail-

ment problems as p |=sl
S q1, . . . ,qn.

Example 3 Given the least solution of the SAB inductive system from Example 2, observe that
the entailment p |=sl

SAB
q holds, while q |=sl

SAB
p does not.

2.3 Tree Automata Inclusion as Cyclic Proof Search

We consider top-down nondeterministic finite tree automata (NFTA), where a tree over a ranked
alphabet F is either a symbol a ∈ F of rank (or arity) 0, or f (t1, . . . , tn) such that f ∈ F is of
rank n and t1, . . . , tn are, in turn, trees. The actions of an NFTA are described by transition rules

AVoCS 2018 4 / 21

ECEASST

q f−→ (q1, . . . ,qn), with the following meaning: if the automaton is in state q and the input is a
tree f (t1, . . . , tn), then it moves simultaneously on each ti changing its state to qi, for all i ∈ [n]. A
tree is accepted by an automaton A if each leaf can be eventually read by a transition of the form
q a−→ (). The language of a state q in A, denoted L(A,q), is the set of trees accepted by A starting
with state q.

An NFTA can be naturally viewed as an inductive system, where predicates represent states
and predicate rules are obtained directly from transition rules. For instance, q f−→ (q1, . . . ,qn) can
be written as 〈{x≈ f (x1, . . . ,xn), q1(x1), . . . ,qn(xn)},q(x)〉, where variables range over trees and
the function symbols are interpreted in the canonical (Herbrand) sense. To further obtain an SL
inductive system, an encoding of the constraints in each predicate rule using SL connectives is
required.

Example 4 The SL inductive system SAB from Example 1 encodes two NFTA A and B with
states {p, p1, p2} and {q,q1,q2}, respectively, where p and q are initial states, using the alphabet

{ f (,),g(),a,b} and having the transition sets {p
f→ (p1, p2), p1

g→ p1, p1
a→ (), p2

g→ p2, p2
b→

()} and {q f→ (q1,q2),q
f→ (q2,q1),q1

g→ q1,q1
a→ (),q2

g→ q2, q2
b→ ()}, respectively. We en-

coded the binary symbol f as x 7→ (x1,x2), the unary symbol g as x 7→ (x1,nil), and the constant
symbols a and b as x 7→ (nil,x) and x 7→ (nil,nil), respectively, where x, x1 and x2 are always
allocated, thus different from nil.

Since language inclusion is decidable for NFTA [CDG+05, Corollary 1.7.9], we leverage an
existing algorithm for this problem by Holı́k et al. [HLSV11] to build a set of inference rules and
derive a proof search technique. This algorithm searches for counterexamples of the inclusion
problem L(A, p)⊆

⋃n
i=1 L(B,qi) by enumerating pairs (r,{s1, . . . ,sm}), where r is a state that can

be reached via a series of transitions from p, and {s1, . . . ,sm} are all the states that can be reached
via the same series of transitions from q1, . . . ,qk. A counterexample is found when reaching a

pair (r,{s1, . . . ,sm}) such that there exists a transition r
f→ (r1, . . . ,rk), but there is no transition

si
f→ (s1

i , . . . ,s
k
i) for any i ∈ [m].

Example 5 Consider the NFTA A and B from Example 4. To check L(A, p)⊆ L(B,q), we start
with (p,{q}). A possible run is:

(p,{q})

((p1, p2),{(q1,q2),(q2,q1)})

(p1,{q1,q2}) (p1,{q1}) (p2,{q2}) (p2,{q2,q1})

((),{()}) (p1,{q1,q2}) ((),{()}) (p1,{q1}) ((),{()}) (p2,{q2}) ((),{()}) (p2,{q2,q1})

f

a g a g b g b g

The algorithm performs two types of moves: transitions and split actions. The arrows labeled
by symbols f ,g,a and b are transitions, for instance the arrow labeled by f takes p into the
tuple (p1, p2) by the transition p f−→ (p1, p2) and {q} into the set of tuples {(q1,q2),(q2,q1)},

5 / 21 Volume 076 (2019)

An Entailment Checker for Separation Logic with Inductive Definitions

by the transitions q f−→ (q1,q2) and q f−→ (q2,q1). However, the pair ((p1, p2),{(q1,q2),(q2,q1)})
is problematic because it asserts that L(A, p1)×L(A, p2) ⊆ L(B,q1)×L(B,q2)∪L(B,q2)×
L(B,q1). Using several properties of the Cartesian product [HLSV11, Theorem 1] there are
multiple ways to split this proof obligation into several simpler conjunctive subgoals. If at least
one split move leads to a proof, then the inital proof obligation holds. The split move used
above simultaneously considers (p1,{q1,q2}), (p1,{q1}), (p2,{q2}) and (p2,{q2,q1}), together
asserting that L(A, p1)⊆ L(B,q1) and L(A, p2)⊆ L(B,q2). The other options are:

(1) (p1,{q1,q2}) (p1,{q1}), (p1,{q2}), and (p2,{q2,q1});

(2) (p1,{q1,q2}), (p2,{q1}), (p1,{q2}), and (p2,{q2,q1});

(3) (p1,{q1,q2}), (p2,{q1}), (p2,{q2}), and (p2,{q2,q1}).

The algorithm does not expand nodes (p,S) with p ∈ S, for which inclusion holds trivially, or
having a predecessor (p,S′) with S′ ⊆ S (enclosed in dashed boxes), since any counterexample
that can be found from (p,S) could have been discovered from (p,S′).

2.4 A Proof Search Semi-algorithm

(IR)
Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

side
conditions

.... C

Γp ` ∆p

We denote sequents as Γ ` ∆, where Γ and ∆ are sets of
formulae and commas are read as set union, thus con-
traction rules are not necessary. We omit braces and a
sequent of the form p(x) ` q1(x), . . . ,qn(x) is called ba-
sic. An inference rule schema IR is a possibly infinite
set of inference rules, called instances of the schema, sharing the same pattern. An inference
rule has antecedents Γ1 ` ∆1, . . . ,Γn ` ∆n, and a consequent Γ ` ∆. We write > for an empty
antecedent list and an inference rule without antecedents may have a pivot Γp ` ∆p, which is an
ancestor of the consequent or, in other words, a sequent preceding the consequent in the transitive
closure of the consequent-antecedent relation. The sequence of inference rules applied along the
path between the pivot and the consequent is subject to a pivot condition C.

A proof system is a set R of inference rule schemata. A derivation built with R is a possibly
infinite tree D = (V,v0,S,R,P,B), where V is a set of vertices (or nodes) and v0 ∈ V is the root.
Every v ∈V is labeled with sequent S(v) and an inference rule schema R(v) ∈ R such that S(v)
is the consequent of the instance of R(v) applied at v. Moreover, B(v) ∈ V is a node such that
S(B(v)) is the pivot for R(v), if it has one. We call (v,B(v)) a backlink. If v 6= v0, P(v) is the
parent of v in the derivation and S(v) is an antecedent for the instance of R(P(v)) with consequent
S(P(v)). A proof is a finite derivation in which S(v) = > for all leaves v ∈ V – i.e. on every
branch of the derivation, the last inference rule application generates an empty list of antecedents.

Given an inductive system S and predicates pσ1,...,σn , qσ1,...,σn
1 , . . ., qσ1,...,σn

k ∈Pred, a proof sys-
tem R is: (i) sound if, for any proof D = (V,v0,S,R,P,B) with S(v0) = p(x) ` q1(x), . . . ,qn(x),
we have p |=sl

S q1, . . . ,qn, (ii) complete if p |=sl
S q1, . . . ,qn implies the existence of a proof D =

(V,v0,S,R,P,B) with S(v0) = p(x) ` q1(x), . . . ,qn(x).
A sequence π = v1, . . . ,vn of vertices is a trace if, for any i ∈ [n− 1], either vi = P(vi+1)

or vi+1 = B(vi). π is path if only the former condition holds and, moreover, a direct path if
v1 = B(vn). We denote by Λ(π) = R(v1), . . . ,R(vn−1) the sequence of inference rule schemata

AVoCS 2018 6 / 21

ECEASST

applied between v1 and vn. An inference rule schema IR is applicable on vn and π if there exists
an instance ir of IR whose consequent matches S(vn) and whose pivot (if it exists) matches S(vi)
for some i < n, such that both the side conditions of ir are satisfied and and Λ(vi, . . . ,vn) abides
by its pivot condition. A strategy is a set S of inference rule schemata sequences. A sequence s
is a valid prefix for S if there exists another sequence s′ such that their concatenation s · s′ ∈ S. A
derivation (proof) D is an S-derivation (S-proof) if, for each maximal path π in D , Λ(π) ∈ S.

Algorithm 1 Proof search semi-algorithm.
data structure: Node(sequent,rule,parent,pivot,children), where:
• sequent is the sequent that labels the node,
• rule is the inference rule with consequent sequent.
• parent is the link to the parent of the node,
• pivot is the pivot for the instance of rule applied on sequent
• children is the list of children nodes

input: inductive system S , sequent p(x) ` q1(x), . . . ,qn(x), proof system R , strategy S
output: an S-proof built with R , whose root is labeled with sequent p(x) ` q1(x), . . . ,qn(x)

1: Root← Node(p(x) ` q1(x), . . . ,qn(x),null,null,null, [])
2: WorkList←{Root}
3: while WorkList 6= /0 do
4: remove N from WorkList
5: let π be the path between Root and N
6: let RN ⊆ R be the inference rule schemata applicable on N and π

7: let R 0
N ⊆ RN be the subset of RN with empty antecedent lists

8: if Λ(π) · IR is a valid prefix of S for some IR ∈ R 0
N then

9: let ir be an instance of IR such that N.sequent is the consequent of ir
10: N.rule← IR
11: if ir has pivot N′.sequent for some N′ ∈ π then N.pivot← N′

12: mark N as Closed
13: if N not Closed and Λ(π) · IR is a valid prefix of S for some IR ∈ RN then
14: let ir be an instance of IR such that N.sequent is the consequent of ir
15: for each antecedent Γ′ ` ∆′ of ir do
16: N′← Node(Γ′ ` ∆′,null,N,null, [])
17: add N′ to N.children and to WorkList
18: if N.children is empty then mark N as Closed

Given an input sequent p(x) ` q1(x), . . . ,qn(x), a set R of inference rules and a strategy
S, the proof search semi-algorithm 1 uses a worklist iteration to build a derivation of p(x) `
q1(x), . . . ,qn(x). When a node is removed from the worklist, it chooses (non-deterministically)
an inference rule and an instance whose consequent matches the sequent of the node, if one
exists. To speed up termination, inference rule schemata without antecedents are considered ea-
gerly (line 8). If a proof of the input sequent exists, then there exists a finite execution of the
semi-algorithm 1 leading to it.

7 / 21 Volume 076 (2019)

An Entailment Checker for Separation Logic with Inductive Definitions

2.5 The Set R sl
Ind of Inference Rules for Separation Logic Entailments

Figure 1 gives a set R sl
Ind of inference rule schemata for the entailment problem in SL, which

generalize the transitions and split actions performed by the NFTA language inclusion algorithm
described in §2.3. To shorten the presentation, we write 〈Γi ` ∆i〉ni=1 for Γ1 ` ∆1, . . . ,Γn ` ∆n.
(LU) and (RU) unfold a predicate atom p(x) by replacing it with the set of predicate rules

p(x) :=S R1(x) | . . . | Rn(x), with goal variables x and fresh subgoal variables. The left unfolding
yields a set of sequents, one for each Ri(x) with i ∈ [n], that must be all proved, whereas the right
unfolding replaces p(x) with the set of formulae obtained from R1(x) | . . . | Rn(x) in which the
subgoal variables are existentially quantified.

(LU)
〈Ri(x,yi),Γ\ p(x) ` ∆〉ni=1

Γ ` ∆

p(x)∈Γ, p(x):=S R1(x,y1)|...|Rn(x,yn)

y1,...,yn fresh variables

(RU)
Γ ` {∃yi .∗Ri(x,yi)}n

i=1 ,∆\ p(x)
Γ ` ∆

p(x)∈∆, y1,...,yn fresh
p(x):=S R1(x,y1)|...|Rn(x,yn)

(RD)
p1(x1), . . . , pn(xn) ` {Q jθ | θ ∈ S j}i

j=1

φ(x,x1, . . . ,xn), p1(x1), . . . , pn(xn) ` {∃y j .ψ j(x,y j)∗Q j(y j)}k
j=1

φ|=sl∧i
j=1 ∃y j.ψ j

φ6|=sl∨k
j=i+1 ∃y j.ψ j

S j⊆Sk(φ,ψ j), j∈[i]

(AX) >
Γ ` ∆
∗Γ|=sl∨∆

(ID) >
Γθ ` ∆′θ

θ flat injective substitution

∆⊆ ∆′
.... (R sl

Ind)
∗·LU·(R sl

Ind)
∗

Γ ` ∆

(SP)
〈pı̄ j(x) ` {q`ı̄ j

(x) | ` ∈ [k], f j(Q `) = ı̄ j}〉n
k

j=1

p1(x1), . . . , pn(xn) ` Q1(x1, . . . ,xn), . . . ,Qk(x1, . . . ,xn)

∀i, j∈[n] .xi∩x j= /0, ı̄∈[n]n
k

Qi=∗n
j=1 qi

j(x j),Q i=〈qi
1,...,q

i
n〉

F (Q 1,...,Q k)={ f1,..., fnk}
Figure 1: The set R sl

Ind of inference rule schemata for inductive entailments in SL.

(RD) eliminates constraints from both sides of a sequent. The existentially quantified variables
on the right-hand side are replaced using a (subset of) the finite set Sk(φ,ψ j) = {θ :

⋃k
i=1 yi→

{nil}∪x∪
⋃n

i=1 xi) | φ |=sl ψ jθ} of substitutions that witness the entailments φ(x,x1, . . . ,xn) |=sl

∃y j .ψ j between the left and right constraints.
A transition move in the language inclusion algorithm of [HLSV11] (Example 5) performs

(LU), (RU) and (RD) all at once. This is natural because the transition rules of tree automata
are controlled uniquely by the function symbols labeling the root of the current input tree, which
can be matched unambiguously. When considering more general constraints, matching amounts
to discovering non-trivial substitutions that prove an entailment between existentially quantified
constraints.

(SP) generalizes the split moves performed by the language inclusion algorithm of [HLSV11]
and breaks a sequent p1(x1), . . . , pn(xn) ` Q1(x1, . . . ,xn), . . . ,Qn(x1, . . . ,xn) into basic sequents.
Given tuples {Q 1, . . . ,Q k} ⊆ Predn with n≥ 1, a choice function f maps each tuple Q i into an
index f (Q i) ∈ [n] corresponding to a position in the tuple. Let F (Q 1, . . . ,Q k) be the set of such
choice functions, having cardinality nk ≤ n||Pred||n . Given a tuple ı̄ ∈ [n]n

k
, associating a value in

[n] to each choice function f ∈ F (Q 1, . . . ,Q k), there exists an application of (SP) generating nk

antecedents with left hand-side pı̄ j(xı̄ j), j ∈ [nk] and right hand-side consisting of all predicate

AVoCS 2018 8 / 21

ECEASST

atoms q`ı̄ j
(xı̄ j), ` ∈ [k] obtained from predicates at position ı̄ j in the tuples Q ` which are mapped

to ı̄ j by the choice function f j. In order to obtain a proof, there must exist some application of
(SP) – and, therefore, some ı̄ ∈ [n]n

k
– for which all the generated antecedents can be proven.

As shown in [HLSV11, Section 3], the tuples ı̄ ∈ [n]n
k

encode the transformation of a formula
from CNF to DNF and, as such, not all are relevant. More precisely, any ı̄ for which there exists
j ∈ [nk] such that ı̄ j 6∈ img(f j) can be discarded.

(AX) closes the current branch of the proof if the sequent can be proved using a decision
procedure for the underlying constraint logic, by treating predicate symbols as uninterpreted
boolean functions. This is a generalization of encountering a pair (p,S) with p ∈ S in the NFTA
language inclusion algorithm of [HLSV11].
(ID) introduces backlinks in a derivation, from the consequent Γθ ` ∆′θ to a pivot Γ ` ∆.

The pivot condition (R sl
Ind)
∗ ·LU · (R sl

Ind)
∗ requires that (LU) must be applied on the direct path

between the pivot and the consequent. Observe that, if Γθ ` ∆′θ denotes a non-valid entailment,
there exists (ν,h) ∈ µS sl(∗Γθ)\µS sl(

∨
∆′θ). Since θ is surjective by construction and injective

by the side condition, the restriction of θ to FV(Γ∪∆′) has an inverse and, because ∆′ ⊆ ∆, we
obtain that (ν◦θ−1,h) ∈ µS sl(∗Γ)\µS sl(

∨
∆) is a counterexample for the pivot.

The local soundness of R sl
Ind \ {ID} is given by [IS17, Lemma 15], whereas the soundness of

proofs containing (ID) is established by [IS17, Theorem 6] through the following argument. If
the root sequent of a proof denotes an entailment that admits a counterexample, then, by the local
soundness, there exists a path in the proof on which this counterexample can be propagated. This
path may not end with an application of (AX), as it would violate its side condition, and, thus,
must end with an application of (ID), which allows it to be extended to an infinite trace. Then,
using the reasoning above to additionally propagate counterexamples through a backlinks, we
obtain that the counterexample for the root sequent can also be propagated along a trace with an
infinite number of direct paths [IS17, Proposition 1]. We use an additional ranking assumption
given by a pre-established well-founded ordering of the counterexamples. In SL, we consider
the subheap ordering, where h1 �h2 iff there exists h ∈ Heaps such that h2 = h1]h and h1 �h2
if, moreover, h 6= /0. An SL inductive system is ranked if the constraints of every predicate
rule with at least one subgoal do not admit an empty heap model. Since (LU) is required on
each direct path, this leads to an infinite sequence of counterexamples (ν1,h1),(ν2,h2), . . . with
strictly decreasing heaps h1 � h2 � . . . (see [IS17, Lemma 15] and the proof of [IS17, Theorem
6]). However, since the subheap ordering is well-founded, the existence of such sequences is
prohibited. We have reached a contradiction and may conclude that there was no counterexample
to begin with.

Analogously, the language inclusion algorithm of [HLSV11] stops expanding a branch in the
search tree whenever it has discovered a pair (p,S) that has a predecessor (p,S′), with S′ ⊆ S.
Just as for the (ID) inference rules, backtracking relies on the Infinite Descent principle [Bus18],
that forbids infinitely descending sequences of counterexamples.

Example 6 Given the system SAB from Example 1, we can use R sl
Ind to build a proof for p(x) `

q(x), partially shown below – we only include the subproof for the first sequent obtained after
split. Note the similarities with the proof tree in Example 5.

9 / 21 Volume 076 (2019)

An Entailment Checker for Separation Logic with Inductive Definitions

p1(x) ` q1(x),q2(x)

x 7→ (nil,x) ` q1(x),q2(x)

x 7→ (nil,x)`x 7→ (nil,x),q2(x),
∃y1 .x 7→ (y1,nil)∗q1(y1)

>

x 7→ (x1,nil), p1(x1) ` q1(x),q2(x)

x 7→ (x1,nil), p1(x1) ` x 7→ (nil,x),∃y1 .x 7→ (y1,nil)∗q1(y1),q2(x)

x 7→ (x1,nil), p1(x1)`x 7→ (nil,x),∃y1 .x 7→ (y1,nil)∗q1(y1),
x 7→ (nil,nil),∃y1 .x 7→ (y1,nil)∗q2(y1)

p1(x) ` q1(x),q2(x)

>

LU

RU

AX

RU

RU

RD

ID

p(x) ` q(x)

x 7→ (x1,x2), p1(x1), p2(x2) ` q(x)

x 7→ (x1,x2), p1(x1), p2(x2)`∃y1,y2 .x 7→ (y1,y2)∗q1(y1)∗q2(y2),
∃y1,y2 .x 7→ (y1,y2)∗q2(y1)∗q1(y2)

p1(x1), p2(x2) ` q1(x1)∗q2(x2),q2(x1)∗q1(x2)

p1(x) ` q1(x),q2(x) p1(x) ` q1(x) p2(x) ` q2(x) p2(x) ` q2(x),q1(x)

LU

RU

RD

SP

For (SP), let Q 1 = (q1,q2) and Q 2 = (q2,q1) be the tuples of predicates on the right-hand side.
The set of choice functions is F (Q 1,Q 2)= { f1 = {(Q 1,1),(Q 2,1)}, f2 = {(Q 1,1),(Q 2,2)}, f3 =
{(Q 1,2),(Q 2,1)}, f4 = {(Q 1,2),(Q 2,2)}}. Out of the 16 index choice tuples for F (Q 1,Q 2),
only (1,1,1,2), (1,1,2,2), (1,2,1,2) and (1,2,2,2) are relevant. To obtain the above proof, we
chose ı̄ = (1,1,2,2).

Only the ranking assumption is necessary to ensure soundness of R sl
Ind. Three additional restric-

tions required for completeness are given in [IS17, Section 4.2]. Effectively checking whether a
given inductive system satisfies these restrictions requires the existence of a decision procedure
for the ∃∗∀∗-quantified fragment of the underlying logic. In general, this problem is undecidable
for SL [EIP18, Theorem 1], but the fragment decribed in §2.1 omits the −−∗ operator (primarily
responsible for loss of decidability), while the 7→ operator only maps elements in L to tuples in
Lk. As such, the satisfiability of ∃∗∀∗-quantified formulae is PSPACE-complete in the fragment
we consider [EIP18, Theorems 2 and 3]. A suitable decision procedure for this fragment of SL
is given in [RIS17]. Completeness is then assured for entailments involving inductive definitions
which generate matching coverage trees of the heap (see [IS17, Section 4.3]).

Example 7 Consider the following definitions for doubly-linked lists:
dlls(hd, p, tl,n) :=S hd ≈ tl∧hd 7→ (p,n)

| hd 7→ (p,x),dlls(x,hd, tl,n)
dllsr(hd, p, tl,n) :=S hd ≈ tl∧hd 7→ (p,n)

| tl 7→ (n, tl′),dllsr(hd, p,x, tl)

t1 = {(1,〈0,2〉)}

{(2,〈1,3〉)}

{(3,〈2,4〉)}

t2 = {(3,〈2,4〉)}

{(2,〈1,3〉)}

{(1,〈0,2〉)}

The predicate dlls unfolds the list starting at the head, while dllsr unfolds it starting at the tail.
Both dlls |=sl

S dllsr and dllsr |=sl
S dlls hold, but they cannot be proven using our inference rules.

Take, for instance, the tuple ` = 〈0,1,3,4〉 and the heap h = {(1,〈0,2〉),(2,〈1,3〉),(3,〈2,4〉)}.
The pair (`,h) belongs to both µS sl(dlls) and µS sl(dllsr), but dlls generates the coverage tree t1
for h, while dllsr generates the coverage tree t2. Since the trees do not match, R sl

Ind cannot built
proofs for either entailment.

AVoCS 2018 10 / 21

ECEASST

3 An Inductive Entailment Checker for Separation Logic

In this section we describe Inductor, an entailment checker tool that implements the proof-search
semi-algorithm 1 from §2.4, using the set R sl

Ind of inference rules for inductive entailments in SL.
Inductor is written in C++ and uses the DPLL(T)-based SMT solver CVC4 [BCD+11] as a back-
end that it queries in order to establish the satisfiability of SL formulae, in which the occurrences
of inductive predicates are treated as uninterpreted functions. More specifically, these queries
are handled by the decision procedures provided in [RISK16, RIS17] and integrated into CVC4.

The inputs mainly handled by Inductor are SMT-LIB scripts, abiding by the SMT-LIB Stan-
dard: Version 2.6 [BFT17]. Theory and logic files are loaded automatically, based on the logic
set in the input script being handled. Additionally, proof strategies are specified as nondetermin-
istic finite word automata (NFA), in a language similar to that accepted by libVATA [LSV+] (for
more details, see Appendix A.1). The front-end interprets these input files using custom parsers
constructed with Flex1 and Bison2.

3.1 A Breadth-First Proof Search Implementation

The proof search method sketched by algorithm 1 is reliant on the choice of IR made at lines 8
and 13. Whenever there are more than one applicable inference rules, only one is selected and
the rest are discarded. Furthermore, as is the case for SP, some inference rules can have multiple
possible instances for the same sequent, where only one is required to succeed in obtaining a
proof. Algorithm 1 again only chooses one of them. In our implementation, we wanted to
explore all the potential derivations resulting from the inference rule instances available at any
point. Moreover, since we use a queue for the nodes still needing to be explored, we generate
derivations in a breadth-first fashion. Thus, proofs or counterexample are obtained from the
shortest possible paths.

We use a different tree-like structure to compactly store all the derivations explored. This
structure accepts two types of nodes, depicted in Figure 2, which represent sequents (SNode)
and inference rule instances (RNode), respectively. The node types alternate in the tree, thus an
SNode only has RNode children, and vice-versa.

SNode { sequent : A sequent Γ ` ∆, RNode { rule : An inference rule schema
states : A list of states in the strategy pivot : SNode pivot for this rule instance,
parent : RNode parent of the current node parent : SNode parent of the current node,
children : A list of RNode children } children : A list of SNode children }

Figure 2: The data structures representing sequents and inference rule instances

With these new data structures, we say that an inference rule IR ∈ R sl
Ind is applicable on a given

SNode N whenever there exists an instance ir of IR for which: (i) the consequent of ir matches
N.sequent and the pivot of ir matches N′.sequent, for some SNode ancestor N′ of N, such that
the side conditions of ir are satisfied, and (ii) if R1, . . . ,Rn is the RNode sequence extracted from

1 Flex – The Fast Lexical Analyzer, github.com/westes/flex
2 GNU Bison – The Yacc-compatible Parser Generator, www.gnu.org/software/bison

11 / 21 Volume 076 (2019)

An Entailment Checker for Separation Logic with Inductive Definitions

the path starting at N′ and ending at N, then the sequence R1.rule, . . . ,Rn.rule satisfies the pivot
condition of ir.

Algorithm 2 Sketch of our exhaustive proof search implementation
input: an SL inductive system S , a basic sequent p(x) ` q1(x), . . . ,qn(x),

and a proof strategy NFA S = (QS,R sl
Ind,TS,q0,FS)

output: VALID and an S-proof starting with p(x) ` q1(x), . . . ,qn(x), built with R sl
Ind;

INVALID and a counterexample for p(x) ` q1(x), . . . ,qn(x);
UNKNOWN and the proof search tree constructed by the algorithm

1: Root← SNode(p(x) ` q1(x), . . . ,qn(x), [q0],null, [])
2: Queue←{Root}
3: while Queue 6= [] and Root is Unknown do
4: dequeue N from Queue
5: let QIR

N = {q′ | (q, IR)→ q′ ∈ TS and q ∈ N.states} for any IR ∈ R sl
Ind

6: let RN = {IR | QIR
N 6= /0 and IR applicable on N}

7: if AX ∈ RN and QAX
N ∩FS 6= /0 then

8: R← RNode(AX,null,N, []) and add R to N.children
9: N′← SNode(>,QAX

N ,R, []), add N′ to R.children and mark it as Closed
10: else if ID ∈ RN and QID

N ∩FS 6= /0 then
11: R← RNode(ID,N′,N, []) for some pivot N′ of ID and add R to N.children
12: N′← SNode(>,QID

N ,R, []), add N′ to R.children and mark it as Closed
13: else
14: for each instance ir of each IR ∈ RN do
15: R← RNode(IR,null,N, []) and add R to N.children
16: let k be the number of antecedents generated by ir
17: if k = 0 and QIR

N ∩FS 6= /0 then
18: N′← SNode(>,QIR

N ,R, []), add N′ to R.children and mark it as Closed

19: for each antecedent Γi ` ∆i of ir with i ∈ [k] do
20: Ni← SNode(Γi ` ∆i,QIR

N ,R, []) and add Ni to R.children
21: if ∆i = /0 then mark Ni as Failed
22: if R is not Failed then enqueue N1, . . . ,Nk in Queue

23: if Root is Closed then
24: return VALID and ExtractProof(Root)
25: else if Root is Failed then
26: return INVALID and ExtractCounterexamples(Root)
27: else return UNKNOWN and Root

Both types of nodes are marked with either a Closed, Failed or Unknown status. All nodes are
initially Unknown. The status of an SNode can be changed to Closed whenever: (i) its sequent
is >, or (ii) at least one of its RNode children is Closed. An RNode becomes Closed when all
of its SNode children are Closed. Conversely, an SNode is marked as Failed whenever: (i) its
sequent is of the form Γ ` /0, or (ii) all of its RNode children are Failed. An RNode is marked
Failed when at least one of its SNode children is Failed. Changing the status of a node prompts

AVoCS 2018 12 / 21

ECEASST

a status update for all of its ancestors.
Algorithm 2 sketches our proof search implementation for R sl

Ind, which, given an input sequent
p(x) ` q1(x), . . . ,qn(x) and an NFA S = (QS,R sl

Ind,TS,q0,FS) describing the proof strategy, ex-
plores all derivations rooted at the input sequent. The default strategy is (LU ·RU∗ ·RD ·SP?)∗ ·
LU? ·RU∗ · (AX | ID) from [IS17, Theorem 7]. We construct a node Root and add it to the work
queue. While the work queue is not empty and the status of Root is Unknown, we dequeue an
SNode N. We denote by QIR

N the set of states in S towards which we transition from N.states by
applying IR, and build a set RN of applicable inference rule schemata that are also accepted by
the strategy.

If AX or ID are in RN and, moreover, their application leads S to transition to some final
states, then this branch of the derivation has been successful. We add a > leaf, which is marked
as Closed. Otherwise, for each IR ∈ RN we consider each instance ir of IR with antecedents
Γ1 ` ∆1, . . . ,Γk ` ∆k. If k = 0 and we reach some final state in S by transition with IR, then this
branch is successful and we add a > leaf that we mark as Closed. Otherwise, if k > 1, we create
an RNode R for ir and an SNode Ni for each of its antecedents. If ∆i = /0 for some i ∈ [k], then
Ni is marked as Failed. If this is not the case for any i ∈ [k], then we add N1, . . . ,Nk to the work
queue and continue.

When the status of Root changes to Closed, then a proof has been obtained. The proof is
extracted from the proof search tree and offered as a certificate. Otherwise, if it changes to
Failed, then at least one counterexample has been discovered. We extract the counterexamples
from the proof search tree and give them as witnesses. If the work queue becomes empty, but
the status of Root is still Unknown, then the proof search was inconclusive and our entire proof
search tree is returned as justification.

3.2 Case Study: Binary Trees

Consider the following ranked definitions for binary trees. The predicate tree accepts any tree
model, tree+

1 accepts trees with at least one node, and tree+

2 accepts trees with at least one node
in which the children of a node are either both allocated or both nil.

tree(x) :=St x≈ nil∧ emp | x 7→ (l,r), tree(l), tree(r)
tree+

1(x) :=St x 7→ (nil,nil) | x 7→ (l,r), tree+

1(l), tree(r) | x 7→ (l,r), tree(l), tree+

1(r)
tree+

2(x) :=St x 7→ (nil,nil) | x 7→ (l,r), tree+

2(l), tree+

2(r)

The entailments tree+

1 |=sl
St

tree, tree+

2 |=sl
St

tree and tree+

2 |=sl
St

tree+

1 hold, facts corroborated by
Inductor. A branch of the proof for tree+

2(x) ` tree+

1(x) is depicted below. However, the reversed
entailments do not hold and the counterexamples provided are:
• x≈ nil∧ emp for tree(x) ` tree+

1(x) and tree(x) ` tree+

2(x);
• x 7→ (l0,r0)∗ tree+

1(l0)∗ (r0 ≈ nil∧emp) for tree+

1(x) ` tree+

2(x). Note that predicate atoms
can occur within counterexamples and indicate that they can be substituted by any model
to obtain a more concrete one. In this case, an immediate substitution with the base case
of tree+

1(l0) gives us x 7→ (l0,r0) ∗ l0 7→ (nil,nil) ∗ (r0 ≈ nil∧ emp), which can be further
simplified to x 7→ (l0,nil)∗ l0 7→ (nil,nil).

13 / 21 Volume 076 (2019)

An Entailment Checker for Separation Logic with Inductive Definitions

tree+
2 (x) ` tree+

1 (x)

x 7→ (l0,r0), tree+
2 (l0), tree+

2 (r0) ` tree+
1 (x)

x 7→ (l0,r0), tree+
2 (l0), tree+

2 (r0)`x 7→ (nil,nil),∃l1∃r1 .x 7→ (l1,r1)∗ tree+
1 (l1)∗ tree(r1),

∃l1∃r1 .x 7→ (l1,r1)∗ tree(l1)∗ tree+
1 (r1)

tree+
2 (l0), tree+

2 (r0) ` tree+
1 (l0)∗ tree(r0), tree(l0)∗ tree+

1 (r0)

tree+
2 (l0) ` tree(l0)

l0 7→ (l00,r00), tree+
2 (l00), tree+

2 (r00) ` tree(l0)

l0 7→ (l00,r00), tree+
2 (l00), tree+

2 (r00)` l0 7→ (nil,nil),∃l11∃r11 . l0 7→ (l11,r11)∗ tree(l11)∗ tree(r11)

tree+
2 (l00), tree+

2 (r00) ` tree(l00)∗ tree(r00)

tree+
2 (l00) ` tree(l00)

>

LU

RU

RD

SP

LU

RU

RD

SP

ID

3.3 Case Study: Possibly Cyclic and Acyclic List Segments

Consider the following ranked definitions for possibly cyclic and acyclic list segments.

ls(x,y) :=Sl x≈ y∧ emp | x 7→ z, ls(z,y) lsa(x,y) :=Sl x≈ y∧ emp | ¬(x≈ y)∧ x 7→ z, lsa(z,y)

Naturally, the entailment lsa |=sl
Sl

ls holds, while ls |=sl
Sl

lsa does not. The proof for the former case
is shown below. In the latter case, the counterexample provided by Inductor for ls(x,y) ` lsa(x,y)
is x≈ y∧x 7→ z0∗ ls(z0,y), from which we can obtain the more concrete one x≈ y∧x 7→ z0∗(z0≈
y∧ emp), further simplified to x 7→ x.

lsa(x,y) ` ls(x,y)

x≈ y∧ emp ` ls(x,y)

x≈ y∧ emp`x≈ y∧ emp, ls(x,y)

>

¬(x≈ y)∧ x 7→ z0, lsa(z0,y) ` ls(x,y)

¬(x≈ y)∧ x 7→ z0, lsa(z0,y)`x≈ y∧ emp,∃z1.x 7→ z1 ∗ ls(z1,y)

lsa(z0,y) ` ls(z1,y)

>

LU

RU

AX

RU

RD

ID

3.4 Case Study: List Segments of Even and Odd Length

Consider the following ranked definitions for list segments of even and odd length, together with
two alternate definitions of list segments with at least one element.

lse(x,y)←Seo x≈ y∧ emp | x 7→ z, lso(z,y)
lso(x,y)←Seo x 7→ y | x 7→ z, lse(z,y)

ls+(x,y)←Seo x 7→ y | x 7→ z, ls+(z,y)

l̂s
+

(x,y)←Seo x 7→ z, lse(z,y) | x 7→ z, lso(z,y)

The entailments lso |=sl
Seo

l̂s
+

, ls+ |=sl
Seo

l̂s
+

, ls+ |=sl
Seo

lse, lso and l̂s
+

|=sl
Seo

lse, lso hold, while en-

tailments such as lse |=sl
Seo

l̂s
+

, lse |=sl
Seo

lso, ls+ |=sl
Seo

lse or l̂s
+

|=sl
Seo

lso do not. A branch of the

proof for ls+(x,y) ` l̂s
+
(x,y) is shown below. For the invalid entailments, Inductor gives the

counterexamples: x ≈ y∧ emp for both lse(x,y) ` l̂s
+

(x,y) and lse(x,y) ` lso(x,y); x 7→ y for
ls+(x,y) ` lse(x,y); x 7→ z0 ∗ z0 7→ y for l̂s

+

(x,y) ` lso(x,y).

AVoCS 2018 14 / 21

ECEASST

ls+(x,y) ` l̂s
+
(x,y)

x 7→ z0, ls+(z0,y) ` l̂s
+
(x,y)

x 7→ z0, ls+(z0,y)`∃z1 .x 7→ z1 ∗ lse(z1,y),∃z1 .x 7→ z1 ∗ lso(z1,y)

ls+(z0,y) ` lse(z0,y), lso(z0,y)

z0 7→ z00, ls+(z00,y) ` lse(z0,y), lso(z0,y)

z0 7→ z00, ls+(z00,y) ` z0 ≈ y∧ emp,∃z01 .z0 7→ z01 ∗ lso(z01,y), lso(z0,y)

z0 7→ z00, ls+(z00,y)`z0 ≈ y∧ emp,∃z01 .z0 7→ z01 ∗ lso(z01,y),z0 7→ y,∃z11 .z0 7→ z11 ∗ lse(z11,y)

ls+(z00,y) ` lso(z00,y), lse(z00,y)

>

LU

RU

RD

LU

RU

RU

RD

ID

3.5 Case Study: Lists of Possibly Cyclic and Acyclic List Segments

We adapt our definitions from §3.3 to a fragment in which each memory location points to a pair
of locations, and use them to define lists whose elements point at possibly cyclic or acyclic list
segments. The last elements of these list segments are, in turn, linked backwards and the last
element of the primary list points to the last element of the last secondary list segment.

ls(x,y) :=Sll x≈ y∧ emp | x 7→ (z,nil), ls(z,y)

lsa(x,y) :=Sll x≈ y∧ emp | ¬(x≈ y)∧ x 7→ (z,nil), lsa(z,y)

lls(x,v) :=Sll x≈ v∧ emp | x 7→ (z,u)∗w 7→ (v,nil), ls(u,v), lls(z,w)

llsa(x,v) :=Sll x≈ v∧ emp | x 7→ (z,u)∗w 7→ (v,nil), lsa(u,v), llsa(z,w)

The entailment llsa |=sl
Sll

lls holds, while its reverse lls |=sl
Sll

llsa does not. Part of the proof for
llsa(x,v) ` lls(x,v) is shown below. The subproof for lsa(u0,v) ` ls(u0,v) is mostly skipped as it
is identical to the one from §3.3 modulo a variable renaming.

llsa(x,v) ` lls(x,v)

x 7→ (z0,u0)∗w0 7→ (v,nil), lsa(u0,v), llsa(z0,w0) ` lls(x,v)

x 7→ (z0,u0)∗w0 7→ (v,nil), lsa(u0,v), llsa(z0,w0)`x≈ nil∧ emp,
∃z1∃u1∃w1 .x 7→ (z1,u1)∗w1 7→ (v,nil)∗ ls(u1,v)∗ lls(z1,w1)

lsa(u0,v), llsa(z0,w0) ` ls(u0,v)∗ lls(z0,w0)

lsa(u0,v) ` ls(u0,v)

...

lsa(u00,v) ` ls(u00,v)

>

llsa(z0,w0) ` lls(u0,w0)

>

LU

RU

RD

SP

LU

ID

ID

The counterexample provided by Inductor for lls(x,v)` llsa(x,v) is x 7→ (z0,u0)∗w0 7→ (v,nil)∗
(u0 ≈ v∧ u0 7→ (u00,nil) ∗ ls(u00,v)) ∗ lls(z0,w0), from which we obtain the more concrete one
x 7→ (z0,u0)∗w0 7→ (v,nil)∗(u0 ≈ v∧u0 7→ (u00,nil)∗(u00 ≈ v∧emp))∗(z0 ≈w0∧emp), further
simplified to x 7→ (z0,v)∗ z0 7→ (v,nil)∗ v 7→ (v,nil).

15 / 21 Volume 076 (2019)

An Entailment Checker for Separation Logic with Inductive Definitions

3.6 Experimental results

Table 1 summarizes the experimental results obtained for the entailments discussed in §3.2-3.5.
All experiments were run on a 2.10GHz Intel R© CoreTM i7-4600U CPU machine with 4MB of
cache. For each case, we indicate: (i) the result (column R), which can be V for VALID or I for
INVALID, (ii) the total number of sequent nodes (column Seq), the maximum number of sequent
nodes along a branch (column H) and the maximum number of (LU) and (SP) applications
along a branch (columns HLU and HSP) of the tree structure defined in Figure 2, which encodes
the derivation, (iii) the run time for the proof search algorithm (column T), and (iv) the total
number of calls to CVC4 (column CVC4).

LHS RHS R Seq HSeq HLU HSP T CVC4 LHS RHS R Seq HSeq HLU HSP T CVC4

tree+

1 tree V 34 7 2 1 0.096s 9 tree tree+

1 I 7 4 1 0 0.033s 7
tree+

2 tree V 21 7 2 1 0.053s 7 tree tree+

2 I 7 4 1 0 0.028s 5
tree+

2 tree+

1 V 1477 11 3 2 5.515s 37 tree+

1 tree+

2 I 38 8 2 1 0.096s 14
lsa ls V 8 5 1 0 0.014s 2 ls lsa

I 7 4 1 0 0.015s 2
llsa lls V 21 9 2 1 0.048s 4 lls llsa

I 20 8 2 1 0.043s 4
lso l̂s

+

V 10 6 1 0 0.032s 5 lse l̂s
+

I 7 4 1 0 0.024s 4
ls+ l̂s

+

V 16 8 2 0 0.049s 9 lse lso
I 7 4 1 0 0.030s 5

ls+ lse, lso
V 8 5 1 0 0.020s 4 ls+ lse

I 13 6 2 0 0.075s 8
l̂s

+

lse, lso
V 9 5 1 0 0.028s 8 l̂s

+

lso
I 20 9 3 0 0.143s 12

Table 1: Experimental results

As shown by the T column in both halves of the table, the execution times are fairly low. The
size of the derivations is influenced by how elaborate the inductive definitions are. For instance,
tree+

1 is defined by three predicate rules, thus when encountered on the left-hand side of an
entailment will generate a larger number of nodes due to left-unfolding. On the right-hand side,
the number of predicate rules in a definition and the number of subgoals in each predicate rule
both influence the complexity of (SP), which can lead to higher execution times than expected,
given the size of the derivation, since all instances of (SP) need to be generated and then checked.

4 Conclusions

We describe an entailment checker tool called Inductor, which implements a cyclic proof system
for Separation Logic with inductive definitions and utilizes dedicated decision procedures in the
SMT solver CVC4 to establish the satisfiability of quantifier-free or ∃∗∀∗-quantified Separation
Logic formulae. The tool outputs a proof whenever an entailment is found to be valid, or coun-
terexamples when it is not. Soundness is warranted by imposing a ranking restriction on the
inductive system given as input. It is possible, although the results may be inconclusive, to use
Inductor outside of these boundaries. We discuss several case studies and provide experimental
results showing fairly low execution times and moderate sizes for the derivations built by the tool
in order to obtain proofs or counterexamples.

Our inference rules build cyclic proofs with backlinks in similar fashion as CYCLIST [BGP12],

AVoCS 2018 16 / 21

ECEASST

closing recurring branches of a proof with (ID). We restrict backlinks to ancestral nodes, which
allows us to embed the condition necessary to ensure progress along an infinite trace directly
into (ID). Because we allow disjunctions on the right-hand side of sequents and (RU) introduces
all the cases of an inductive definition – as opposed to CYCLIST and [CJT15], which always
choose only one – Inductor can tackle entailments such as ls+(x,y) |=sl

Seo
l̂s
+
(x,y) in §3.4, which

CYCLIST and [CJT15] cannot prove. However, the cut rule in [CJT15] and the canonical rotation
relation between trees in SLIDE [IRV14] enable these systems to show entailments such as the
ones in Example 7, for which Inductor cannot build proofs. On a different note, the fragment
of inductive definitions that SLIDE can translate to tree automata does not allow disequalities
between variables, thus it cannot handle predicates and entailments such as lsa(x,y) |=sl

Sl
ls(x,y)

in §3.3.
SLEEK [CDNQ12] and SPEN [ELS17, ESW15] go further than Inductor and are able to check

much more complex verification conditions, involving, for instance, concatenations of predi-
cates, formulae equivalent to several unfoldings of a predicate and various combinations of allo-
cated heap cells and predicate calls. Although most of the inductive definitions for data structures
used in these entailments fall into the fragment accepted by Inductor, the entailments themselves
are out of the scope of our current implementation. Multiple extensions of the inference rules
are possible in order to allow the building of proofs for such entailments (e.g. right unfolding
inside the same formula multiple times, reducing any subset of constraints) and are considered
for future work.

Bibliography

[BCD+11] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, C. Tinelli. CVC4. In Gopalakrishnan and Qadeer (eds.), Computer
Aided Verification: 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Pp. 171–177. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[BFT17] C. Barrett, P. Fontaine, C. Tinelli. The SMT-LIB Standard: Version 2.6. Technical
report, Department of Computer Science, The University of Iowa, 2017. Available
at www.SMT-LIB.org.

[BGP12] J. Brotherston, N. Gorogiannis, R. L. Petersen. A Generic Cyclic Theorem Prover.
In Programming Languages and Systems: 10th Asian Symposium (APLAS’12).
Pp. 350–367. Springer, 2012.

[Bus18] W. H. Bussey. Fermat’s Method of Infinite Descent. The American Mathematical
Monthly 25(8):333–337, 1918.

[CDG+05] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison,
M. Tommasi. Tree Automata Techniques and Applications. 2005.
URL: http://www.grappa.univ-lille3.fr/tata.

17 / 21 Volume 076 (2019)

An Entailment Checker for Separation Logic with Inductive Definitions

[CDNQ12] W.-N. Chin, C. David, H. H. Nguyen, S. Qin. Automated Verification of Shape, Size
and Bag Properties via User-defined Predicates in Separation Logic. Sci. Comput.
Program. 77(9):1006–1036, Aug. 2012.
doi:10.1016/j.scico.2010.07.004
http://dx.doi.org/10.1016/j.scico.2010.07.004

[CJT15] D. Chu, J. Jaffar, M. Trinh. Automatic Induction Proofs of Data-Structures in Im-
perative Programs. In Proc. of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015.
Pp. 457–466. ACM, New York, NY, USA, 2015.

[EIP18] M. Echenim, R. Iosif, N. Peltier. On the Expressive Completeness of Bernays-
Schönfinkel-Ramsey Separation Logic. ArXiv e-prints, feb 2018.
https://arxiv.org/abs/1802.00195v2

[ELS17] C. Enea, O. Lengál, M. Sighireanu, T. V. . SPEN: A Solver for Separation Logic.
In Barrett et al. (eds.), NASA Formal Methods. Pp. 302–309. Springer International
Publishing, Cham, 2017.

[ESW15] C. Enea, M. Sighireanu, Z. Wu. On Automated Lemma Generation for Separa-
tion Logic with Inductive Definitions. In Automated Technology for Verification and
Analysis: 13th International Symposium, ATVA 2015, Shanghai, China, October 12-
15, 2015, Proc. Pp. 80–96. Springer International Publishing, Cham, Switzerland,
2015.

[HLSV11] L. Holı́k, O. Lengál, J. Simácek, T. Vojnar. Efficient Inclusion Checking on Explicit
and Semi-symbolic Tree Automata. In ATVA 2011, Proc. Pp. 243–258. 2011.

[IRV14] R. Iosif, A. Rogalewicz, T. Vojnar. Deciding Entailments in Inductive Separation
Logic with Tree Automata. In Automated Technology for Verification and Analysis:
12th International Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-
7, 2014, Proc. Pp. 201–218. Springer International Publishing, Cham, Switzerland,
2014.

[IS17] R. Iosif, C. Serban. Complete Cyclic Proof Systems for Inductive Entailments. CoRR
abs/1707.02415, 2017.
http://arxiv.org/abs/1707.02415

[LSV+] O. Lengál, J. Simácek, T. Vojnar, M. Hruska, L. Holı́k. libVATA - A C++ library for
efficient manipulation with non-deterministic finite (tree) automata.
URL: https://github.com/ondrik/libvata.

[Rey02] J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Proc. of LICS. Pp. 55–74. 2002.

[RIS17] A. Reynolds, R. Iosif, C. Serban. Reasoning in the Bernays-Schönfinkel-Ramsey
Fragment of Separation Logic. In Verification, Model Checking, and Abstract In-
terpretation: 18th International Conference, VMCAI 2017, Paris, France, January

AVoCS 2018 18 / 21

http://dx.doi.org/10.1016/j.scico.2010.07.004
http://dx.doi.org/10.1016/j.scico.2010.07.004
https://arxiv.org/abs/1802.00195v2
http://arxiv.org/abs/1707.02415

ECEASST

15–17, 2017, Proc. Pp. 462–482. Springer International Publishing, Cham, Switzer-
land, 2017.

[RISK16] A. Reynolds, R. Iosif, C. Serban, T. King. A Decision Procedure for Separation
Logic in SMT. In Artho et al. (eds.), Automated Technology for Verification and
Analysis: 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20,
2016, Proceedings. Pp. 244–261. Springer International Publishing, 2016.

[Ser17] C. Serban. Inductor: an entailment checker for inductive systems.
URL: https://github.com/cristina-serban/inductor, 2017.

[SOR+13] A. Stump, D. Oe, A. Reynolds, L. Hadarean, C. Tinelli. SMT Proof Checking Using
a Logical Framework. Formal Methods in System Design 42(1):91–118, 2013.
doi:10.1007/s10703-012-0163-3

19 / 21 Volume 076 (2019)

http://dx.doi.org/10.1007/s10703-012-0163-3

An Entailment Checker for Separation Logic with Inductive Definitions

A Additional Material

A.1 Specifying Proof Strategies as Automata

Inductor can also accept a proof strategy as input – if no proof strategy is given, then S =
(LU ·RU∗ ·RD ·SP?)∗ ·LU? ·RU∗ · (AX | ID) from [IS17, Theorem 7] will be used as default.
By Kleene’s Theorem, it is known that, given a regular expression, there exists an equivalent
nondeterministic finite word automaton (NFA), possibly with ε-transitions (NFA-ε). Figure 3
depicts a straightforward NFA-ε that is equivalent to S.

q0start q1 q2 q3 q4 q5
LU

RU

RD SP LU

RU
AX

ID
ε

ε ε

ε

Figure 3: An NFA-ε equivalent to our default proof strategy S

We are more interested in such a representation because, after applying a certain inference
rule, we want to easily check which inference rules that comply with the strategy could be ap-
plied next. However, given an NFA-ε, the ε-transitions are cumbersome and, thus, we prefer an
equivalent NFA – which is guaranteed to exist, since the two classes of automata are known to be
equivalent. As such, the proof strategies that Inductor accepts as input are given as NFA, rather
than regular expressions. The definition of such an NFA is specified in a language inspired by
the simplicity of the one used by libVATA [LSV+] and whose grammar is depicted in Listing 1.

<file> : ’Rules’ <rule_list> <automaton>
<rule_list> : <rule> <rule> ...
<automaton> : ’Automaton’ string ’States’ <state_list>
’Initial State’ <state> ’Final States’ <state_list>
’Transitions’ <trans_list>
<state_list> : <state> <state> ...
<state> : string
<trans_list> : <trans> <trans> ...
<trans> : ’(’ <state> ’,’ <rule> ’)’ ’->’ <state>
<rule> : string

Listing 1: Grammar for files specifying proof strategies as NFA

Using this language, Listing 2 defines an NFA that is equivalent with the NFA-ε from Figure 3,
and consequently, is also equivalent with our default proof search strategy.

Rules LU RU RD SP ID AX
Automaton Default States q0 q1 q2 q3 q4 q5
Initial state q0 Final states q5
Transitions
(q0, LU) -> q1 (q1, RD) -> q3 (q2, RI) -> q3 (q3, LU) -> q4
(q0, LU) -> q4 (q1, RD) -> q4 (q2, RI) -> q4 (q3, RU) -> q4

AVoCS 2018 20 / 21

ECEASST

(q0, RU) -> q4 (q2, LU) -> q1 (q2, SP) -> q0 (q3, AX) -> q5
(q0, AX) -> q5 (q2, LU) -> q4 (q2, SP) -> q3 (q3, ID) -> q5
(q0, ID) -> q5 (q2, RU) -> q4 (q2, SP) -> q4 (q4, RU) -> q4
(q1, RU) -> q1 (q2, RI) -> q0 (q2, AX) -> q5 (q4, AX) -> q5
(q1, RD) -> q0 (q2, RI) -> q2 (q2, ID) -> q5 (q4, ID) -> q5
(q1, RD) -> q2

Listing 2: The definition of the NFA corresponding to the default proof search strategy

21 / 21 Volume 076 (2019)

	Introduction
	Cyclic Proofs for Inductive Entailments in Separation Logic
	Preliminaries
	Inductive Systems of Predicates in Separation Logic
	Tree Automata Inclusion as Cyclic Proof Search
	A Proof Search Semi-algorithm
	The Set RIndsl of Inference Rules for Separation Logic Entailments

	An Inductive Entailment Checker for Separation Logic
	A Breadth-First Proof Search Implementation
	Case Study: Binary Trees
	Case Study: Possibly Cyclic and Acyclic List Segments
	Case Study: List Segments of Even and Odd Length
	Case Study: Lists of Possibly Cyclic and Acyclic List Segments
	Experimental results

	Conclusions
	Additional Material
	Specifying Proof Strategies as Automata

