
Electronic Communications of the EASST
Volume 12 (2008)

Formal Modeling of
Adaptive and Mobile Processes

Using Resources as Synchronizers to Manage
Mobile Process Adaptation

Paolo Bottoni, Fabio De Rosa and Massimo Mecella

20 pages

Guest Editors: Julia Padberg, Kathrin Hoffmann
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/�

ECEASST

Using Resources as Synchronizers to Manage
Mobile Process Adaptation

Paolo Bottoni1, Fabio De Rosa1 2 and Massimo Mecella2

1 [bottoni,derosa]@di.uniroma1.it
Dipartimento di Informatica

“SAPIENZA” Università di Roma, Italy

2 [derosa,mecella]@dis.uniroma1.it
Dipartimento di Informatica e Sistemistica

“SAPIENZA” Università di Roma, Italy

Abstract: Process management in Mobile Ad-hoc NETworks (MANETs) has to
deal with different types of tasks and resources. Teams can be formed with specific
goals, such as recognition of a damaged area for disaster assessment, where each
member of a team is assigned some task to be performed according to some policy.
However, in real situations, it is possible that task assignments and policies have to
be revised due to different causes. In addition to typical causes for dynamic changes
in adaptive workflows, mobility introduces some specific problems, e.g. the need for
new connectivity-maintaining tasks, or reassignment of tasks originally for members
who have become unreachable, or who have no sufficient resources to complete the
original plan. As these modifications occur dynamically, it is difficult to manage
them through hard-coded programs. Rather, we propose the use of a rule-based for-
malism, expressed in terms of multi-set rewriting. This supports a resource-centered
view, in which both data-dependencies between tasks and plan-dependent ordering
of tasks are expressed as production and consumption of resources of different types.
In turn, rules are themselves seen as resources, so that they are prone to the same
rewriting process, in order to redefine process schemas. The paper illustrates these
notions and formalisms, and shows some cases of their application.

Keywords: Mobile ad hoc networks, adaptive workflows, multiset rewriting.

1 Introduction

Process management in Mobile Ad-hoc NETworks (MANETs [AZ03]) has to deal with different
types of tasks as well as of resources involved. MANETsare networks of mobile devices commu-
nicating via wireless links. They are an alternative to infrastructure-based networks whenever
an infrastructure has never been available, is no longer available, or cannot be used, as in emer-
gency/disaster situations. In such scenarios, generally, teams are formed with specific goals
where each member of a team is assigned some task. When a team is working, it is possible that
tasks not related to the original plan must be performed or that the execution order of some tasks
has to be modified, so that some alternative assignment of tasks is required.

1 / 20 Volume 12 (2008)

mailto:[bottoni,derosa]@di.uniroma1.it�
mailto:[derosa,mecella]@dis.uniroma1.it�

Resources as synchronizers

As an example, Figure 1(a) shows a process schema for a team (e.g., of the Homeland Security
Department), equipped with mobile devices (laptops and PDAs), to carry out after an earthquake
or a hurricane. The process comprises several tasks: swimlanes represent the assignment of
tasks to team members1. In detail, the process requires that, after a visual analysis of a building,
supported by some map-based application, team member 1 (using his/her device) fills out a
report and enters attributes and graphic data related to the damage. The team leader analyzes
these reports and spatial data with the help of specific software to schedule the next activities.
Team member 3 takes pictures of the precarious buildings, whereas team member 2 is in charge
of processing old and recent photos of the site (e.g. to identify architectural anomalies). In this
situation, matching new pictures with previous ones might be useful. Suppose that, in the team,
there is only one PDA equipped with a photo-camera (e.g., that of team member 3). Therefore,
during process enactment, when the condition of the OR-split (the diamond construct) managed
by team member 1 is true, the member requires the execution of another instance of the task
“Take Pictures”. In general, the two task instances might be carried out in parallel but, since
there is only one member equipped with the needed device, one of the two instances has to be
postponed. Figure 1(b) shows a possible restructuring of the process.

A process management system (PMS) supporting such processes has therefore to deal with
modifications of plans through insertion of new tasks, removal of originally planned tasks, or
redefinition of task ordering, as well as reassignment of tasks from one member to another. As
these modifications occur in a dynamical manner, it is difficult to manage them through hard-
coded programs. Therefore, we propose an ECA (Event/Condition/Action [Pat99]) approach for
adaptation in process management, by specifying which events (e.g. resource unavailability)
can produce possible process restructuring and the set of transformation rules stating the control
actions to be performed for adaptation. Such a rule-based approach is highly flexible, as rules are
able to react to events at any time during process execution without making assumptions about
when these events occur. This is in contrast to the addition of conditional branches to process
definitions [SSO01], which does not fit with frequently changing environments such as MANETs.
Specifically, in this paper we propose the use of a rule-based formalism, expressed in terms of
multi-set rewriting, which supports a resource-centered view, in which both data-dependencies
between tasks and plan-dependent ordering of tasks are modeled through resources of different
types. Rules are themselves seen as resources, so that they are prone to the same rewriting
process, in order to redefine plan management or different ways to achieve the same results.

The paper is structured as follows: in Section 2, the general framework supporting process
adaptation in MANET is presented. In Section 3, we give an overview of the WIPPOG language
and its computation model, which is used as the language for rule definition. Section 4 details
on the proposed rule-based formalism, while Section 5 applies the rewriting machinery to the
scenario above. Finally, in Sections 6 and 7 we discuss related work and conclude the paper.

1 Tasks belonging to swimlanes with the same name are intended to be assigned to the same team member (e.g.,
swimlanes of team member 3). We have used this notation only for clarity of presentation.

Adaptive and Mobile Processes 2 / 20

ECEASST

Compile
Questionnaire 1

Photos

Matching

Compile
Report

Result 1

Data Q1

Team LeaderTeam Member 1 Team Member 2 Team Member 3

Take Pictures Compile
Questionnaire 2

Data Q2

Team Member 3

Take Pictures

Matching

Compile
Questionnaire 3

T F

Data Q3

Photos Result 2

Compile
Questionnaire 1

Photos

Matching

Compile
Report

Result 1

Data Q1

Team LeaderTeam Member 1 Team Member 2 Team Member 3

Take Pictures Compile
Questionnaire 2

Data Q2

Team Member 3

Take Pictures

Matching

Compile
Questionnaire 3

T F

Data Q3

Photos Result 2

(a) Process

Compile
Questionnaire 1

PhotosMatching

Compile
Report Result 1

Data Q1

Team LeaderTeam Member 1 Team Member 2 Team Member 3

Take Pictures
Compile

Questionnaire 2Data Q2

Team Member 3

Compile
Questionnaire 3

Data Q3

Take Pictures

Matching

T F

Photos

Result 2

Compile
Questionnaire 1

PhotosMatching

Compile
Report Result 1

Data Q1

Team LeaderTeam Member 1 Team Member 2 Team Member 3

Take Pictures
Compile

Questionnaire 2Data Q2

Team Member 3

Compile
Questionnaire 3

Data Q3

Take Pictures

Matching

T F

Photos

Result 2

(b) Modified process

Figure 1: Dynamic changes in process coordination due to resource management.

3 / 20 Volume 12 (2008)

Resources as synchronizers

2 General Framework

A process schema is a description of a business process in sufficient detail that it can be directly
executed by a process management system [WMC06]. It consists of a set of tasks to be performed
according to a specified scheduling (control flow), and undertaken by roles, defining organiza-
tional entities, such as humans or devices (actors). An executing instance of a process schema is
called a case or process instance. A task is an atomic unit of work which is run to completion
once initiated. We assume that each process has a unique start task and a unique end task.

Since tasks may be executed in different orders, it is useful to identify conditions enabling
their execution. These can be related to both data and control flows. Therefore, each task has
pre-conditions holding before the task is carried out and post-conditions which should hold after
task execution. As an example, in the sub-process P of Figure 2(c), task tk has (i) a pre-condition
on control flow: ti has to be carried out in order that the execution of tk can start; and (ii) a
pre-condition on data c and b that holds after the execution of both ti and t j.

Control flow occurs via the control channel, which is usually indicated by a solid arrow be-
tween tasks. Control channels represent the business policies of the process; they describe tem-
poral relations among process tasks, i.e. when a task can be carried out with respect to the
execution of other process tasks. As an example, Figure 2(a) describes the business policy of the
process P depicted in Figure 2(c). In this case, both tasks t j and tk must be carried out after the
execution of ti; t j and tk can be carried out concurrently.

There may also be a distinct data channel between process tasks for communicating data
elements between two tasks. Where a distinct data channel is intended, it may be illustrated with
a dotted line. The data channel represents causal relations among process tasks. It describes data
dependencies between two tasks and establishes when data pre-conditions of a task are satisfied
with respect to data obtained from the execution of other tasks. As an example, in Figure 2(b)
data dependencies between tasks are reported. In this case, task t j can be carried out after the
execution of ti (it consumes the data a), but before the execution of tk; moreover, tk can be carried
out only after the execution of ti and t j (it needs both data b and c).

In the model proposed in this paper, the exchange of data between tasks is modelled through
the exchange of data resources: a process schema is associated with a finite multi-set G of data
resources. Each resource d ∈ G has a specific type, and there may be several instances of d in G
at the same time. We usually call G the data resource pool (drp) of the process.

Under this perspective, each task t may be considered as a producer/consumer of data re-
sources. It takes some data resources as input (data pre-conditions) and produces other data
resources as output (data post-conditions), i.e. t : DI (DO. In general, the data pre-conditions
and post-conditions of a task can be considered as finite multi-sets over a specific data alphabet
Π, so that a task t can be modeled as a multi-set rewriter2. Its execution consumes from drp a
multi-set of data resources satisfying its data pre-conditions, and produces a new data resource
pool (drp

′
) according to its data post-conditions. We also say that drp

′
derives from drp through

t, and denote it with drp t=⇒ drp
′
. As regards the input parameters of the process schema,

they constitute the data pre-conditions of the start task, whereas the output parameters are the
post-conditions of the end task.

2 In the remainder of the paper, when we refer to a task t we mean t as a multi-set rewriting rule.

Adaptive and Mobile Processes 4 / 20

ECEASST

ti

AND-split

tj tk

AND-join

control preconditions of P

control postconditions of P

P ti

AND-split

tj tk

AND-join

control preconditions of P

control postconditions of P

P

(a) Temporal relation.

ti

tj

tk

a

b

c

data preconditions of P

data postconditions of P

P

ti

tj

tk

a

b

c

data preconditions of P

data postconditions of P

P

(b) Causal relation.

a

b

c

data preconditions of P

data postconditions of P

P ti

AND-split

tj tk

AND-join

control preconditions of P

control postconditions of P

a

b

c

data preconditions of P

data postconditions of P

P ti

AND-split

tj tk

AND-join

control preconditions of P

control postconditions of P

ti

AND-split

tj tk

AND-join

control preconditions of P

control postconditions of P

(c) Example of process schema.

Figure 2: Example of business policies and data dependencies in process schema (dotted lines
represent data dependencies).

5 / 20 Volume 12 (2008)

Resources as synchronizers

The same idea can be applied for process execution with respect to control flow. The execution
of a process P is modelled as producing/consuming special synchronization (synch) resources
representing its progress state. Consumption and production of synch resources follows the
scheduling defined in the process schema. A process task is ready to be carried out (is enabled)
at a certain time of the process execution if its enabling synch resources are present in the synch
resource pool (srp) of the process. According to this vision, a process task t : SI (SO can be
considered as a rewriter of synch resource multi-sets; specifically, it consumes a multi-set of
synch resources satisfying its control pre-conditions SI from a synch resource pool (srp), and
produces new resources in the synch pool (srp

′
) according to its control post-conditions SO.

Again, we say that srp
′
derives from srp through t, and we denote it with srp t=⇒ srp

′
.

The combination of data and control flow specifications defines the order for task execution,
by identifying data and synch conditions enabling their execution. Therefore, the enactment of a
process is concurrently driven by both specifications, usually given through different notations.

To give a uniform and coherent representation of both data and control flow specifications
of a process P, we consider a correspondent set of multi-set rewriting rules P, named PMR-
system (Process Multi-set Rewriting system), by taking the union of the two multi-set rewriting
systems defined by the data and control flows (we assume resources are named differently in the
two systems). Moreover, in modelling process adaptation, PMR-system rules are also seen as
resources, and a set of high-level rewriting rules consumes/produces them in order to redefine
the schema. Specifically, if PMRS is a PMR-system associated with a process schema P, and RP

and RP′ are the sets of rules describing P before and after, respectively, the adaptation a, then
the execution of a produces a change from RP to RP′ . We also denote this with RP

a=⇒RP′ .

3 WIPPOG Model and Environment

In this section we give an overview of the WIPPOG (WHEN, IF, PROCESSES, PRODUCES,
OUTS, and GETS) language and computation model [BDD+04], used here to describe rules
representing both process schemas and process adaptations.

WIPPOG provides a common framework for specifying transitions expressed through different
visual notations. It is based on the notion of a process transition and details out different aspects
of its pre- and post- conditions. Processes are assumed to occur within entities taking part in
some computational system, called agents. An agent is endowed with a set of rules defining its
possible behaviours, and a pool of resources describing its state at any given time. A resource is
an item with a type t in a set T , an identifier uniquely defining it, and an optional set of attributes
with values on well-established domains. The set of all resources on T is called W (T).

The effect of a transition is modelled as consumption/production of resources as specified
by WIPPOG rules. WIPPOG distinguishes internal resources, which have to be present in the
agent, from external resources that an agent has received from its environment. In a similar way,
resources may be produced to remain in the pool defining the agent state, or to be spread out in
the environment, possibly to be exploited by other agents.

Transition preconditions may include checks on attribute values of internal or external re-
sources to be consumed. New attribute values may be produced by means of a dedicated function
component of the transition. Variables may be used in the transition to refer to attribute values,

Adaptive and Mobile Processes 6 / 20

ECEASST

S1 S2
a

S1 S2
a

(a) A transition in a finite state automata.

Task a

p_1

p_2

p_32

1

1

Task aTask a

p_1

p_2

p_32

1

1

(b) A transition in a Place/Transition net.

Figure 3: Examples of transition systems modelled by WIPPOGrules.

and matching is performed against values of existing resources.
A WIPPOG rule is thus formed by the following six components:

WHEN: internal resources which have to be available to the process. Attributes can appear, with
either a constant value or a variable name.

GETS: externally produced resources which have to be available to the process. Attributes can
appear, with either a constant value or a variable name.

IF: a predicate in which variables appearing in the WHEN or GETS components can occur.

PROCESSES: computational activities associated with the transition. They are considered to
be always successful. Assignments to attribute values for the new resources produced by the
transition are specified here.

PRODUCES: resources which have to be internally created as result of the transition execution.
If variables appear, their names have to be present either in the WHEN or GETS components, or
in the left-hand side of an assignment in the PROCESS component.

OUTS: resources which are externally available as a result of the transition execution. If variables
appear, their names have to be present either in the WHEN or GETS components, or in the left-
hand side of an assignment in the PROCESS component.

The application of a WIPPOG rule (i) matches resources mentioned in the WHEN and GETS
components with resources from the (resp., internal and input) resources pools; (ii) if a match
exists and also satisfies the conditions in the IF component, then: (a) removes the matched re-
sources; (b) executes the activities specified in the PROCESSES component; and (c) produces
(either for internal or external use) the resources specified in the PRODUCES and OUTS com-
ponents, placing them in the internal or output resource pools, respectively. An agent cannot
directly add something to its own input pool, nor can it remove anything from its output pool.

As an example, Figure 3(a) shows a transition from state S1 to state S2 on input a in a finite
state automata. By using a resource current to indicate the current state and a resource input to
wrap symbols from the automata alphabet, we have the following WIPPOG rule:

WHEN: current(name = ‘‘S1’’)

7 / 20 Volume 12 (2008)

Resources as synchronizers

Rules
WIPPOG
Activator

WIPPOG Machine

WIPPOG
Interpreter

Input

Output

Resource Pool

Rules
WIPPOG
Activator

WIPPOG Machine

WIPPOG
Interpreter

Input

Output

Resource Pool

Figure 4: The architecture of a WIPPOGmachine.

GETS: input(value = ‘‘a’’)
PRODUCES: current(name = ‘‘S2’’)

Figure 3(b) specifies a Place/Transition Petri net, in which a transition consumes two tokens
from place p 1, one token from place p 2, and produces one token in place p 3. Using an
integer-valued attribute tokens to denote the number of tokens in a place, and a resource place
to indicate the places involved in the transition, the following WIPPOG rule results:

WHEN: place(id = p 1; tokens as X),
place(id = p 2; tokens as Y),
place(id = p 3; tokens as Z)

IF: X ≥ 2, Y ≥ 1
PROCESSES: X1 := X−2,Y 1 := Y −1,Z1 := Z +1
PRODUCES: place(id = p 1; tokens as X1),
place(id = p 2; tokens as Y 1),
place(id = p 3; tokens as Z1)

The modification of a given resource is modelled in WIPPOG by presenting the resource with
the same identifier in both the WHEN and the PRODUCES components. Attributes in such
resources maintain their values, if not specified otherwise.

A WIPPOG machine (WM) provides a computational environment to execute WIPPOG rules. It
consists of (see Figure 4): a WIPPOG Interpreter, applying one WIPPOG rule at a time, from those
present in the Rules base, coherently with the role of the different components and according to
an activation policy managed by the WIPPOG Activator. The WIPPOG execution process acts on
both the Resource Pool which contains the resources describing the state of the agent, and the
Input and Output compartments of the WM, which allow its communication with other processes.
An interpreter tries the activation of a rule every time it is requested by an activator; the WIPPOG

Activator is therefore responsible for implementing policies and managing the resources pool,
thus realizing a transition step.

In order to manage both process execution and adaptation, we use a hierarchical set of WIPPOG

Adaptive and Mobile Processes 8 / 20

ECEASST

WML

Adaptation level

WM1

WM2
WMN

. . .

Local level
Team Member 1’s

Device

Team Member N’ s
DeviceTeam Member 2’ s

Device

Team Leader’s
DeviceWML

Adaptation level

WM1

WM2
WMN

. . .

Local level
Team Member 1’s

Device

Team Member N’ s
DeviceTeam Member 2’ s

Device

Team Leader’s
Device

Figure 5: The hierarchical set of WIPPOGmachines modelling the proposed framework.

machines (WMs) (see Figure 5): a WM at the adaptation level and WMs at the local level.
The high-level WM manages dynamic changes which can occur during process enactment, by
executing specific WIPPOG rules needed to adapt the process. With respect to our scenario, such
a machine should be running on the team leaders’ device. On the other hand, local WMs are
concerned with the actual execution of tasks, and should be running on devices belonging to
other team members. Therefore, in our system we have multi-set rewriting rules which act at
two levels i.e., at the adaptation level and at the execution (local) level.

WIPPOG is relatively small (∼250Kb), so that it can be loaded on a powerful PDA running a
Java Virtual Machine. However, if some member has not sufficient power, an image of its policy
pool can be kept at the team’s leader device and managed from there.

4 The Rule-based Formalism

Before describing local and adaptation rules, we give concepts and terms about multi-sets and
rules, matches and direct derivations. We set this work in the context of High-Level Replacement
Systems, of which multisets are an instance [GPS98] .

A multi-set G over an alphabet Π is a function from Π into the natural numbers N such that
only a finite number of elements from Π is assigned a non-zero function values, i.e.: G : Π→N ,
and a ∈ G if and only if G(a) > 0. Here, elements in multi-sets are terms [BN98], i.e., Π =
T (Σ,X), where T (Σ,X) denotes the set of all Σ-terms over the set of variables X , such that Σ ∩
X = /0. With T (Σ, /0)⊂ T (Σ,X) we denote the set of all ground terms over Σ (the constant terms),
and with M (Π) the set of all finite multi-sets of terms over Π. In addition, if σ is a substitution
function, then Gσ is the multi-set obtained by applying σ to each term belonging to G.

A rewriting rule p has three components: an antecedent L, a consequent R, and an interface
K which describes what is to be preserved through the application of a rule. Formally, a rule
p = (L l←− K r−→ R) is defined by a span of morphisms l and r. Applying a rule means finding
a match m : L → G for L in a source object G and replacing the matched occurrence of L with

9 / 20 Volume 12 (2008)

Resources as synchronizers

an occurrence of R, thus producing a target object H. This process is denoted as the direct
transformation G

t,m
=⇒ H via a rule t and match m. Moreover, rules have no side effects, i.e., H

differs from G only for the removal of elements present in L but not mentioned in K, and the
insertion of elements mentioned in R, but not present in L. Here, the involved category CAT has
multisets of terms in T (Σ,X) as objects and injective maps as morphisms. A rule t : L (R, is

now modeled as t : L l←− K r−→ R with K,L and R collections of WIPPOG resources in M (Π).
In particular, resources which are preserved (i.e. their identifiers appear both in WHEN and in
PRODUCES), appear in K, L, and R; those to be consumed only in L; and the produced ones
only in R. Resources in GETS and OUTS appear only in L and R respectively, and the IF and
PROCESSES components are expressed through application conditions.

A rule t is enabled in G if and only if there exists a substitution σ : X →Π, such that Lσ vGσ ,
where v, t, u, \ denote inclusion, union, intersection and difference between two multi-sets,
respectively. In this case we say that there is a match-inclusion m: L→ G through σ that fixes an
occurrence of L in G, and G

t,m,σ
=⇒ H denotes the direct derivation from G to H by rule t, match m

and substitution σ , where the derived multi-set Hσ is obtained by replacing the occurrence of Lσ
in Gσ by Rσ , i.e.: Hσ = (Gσ \ (Lσ \Kσ))t (Rσ \Kσ). Here, Kσ is given by the intersection of
Lσ and Rσ (i.e., (Lσ uRσ) = Kσ), and l and r are two injective match-inclusion functions from
Kσ into Lσ and Rσ , respectively. This guarantees the gluing condition in multi-set rewriting;
specifically the identification condition is always satisfied [TFKV99].

4.1 Local Rules

We give now the definition of a PMR-system RP (the local rules) representing a process schema
P3. Here, the admitted set of synch resources is composed of: the start(name = ‘‘t’’)
synch resource enabling the execution of task t which indicates that task t is ready to be carried
out (its control flow pre-conditions are satisfied); the completed(name = ‘‘t’’) synch
resource indicating the termination of task t; finally, the special synch resources INIT and STOP

are required to be produced/consumed by the unique start and end tasks of a process P.
A Process Multi-set Rewriting system (PMR-system) PMRS for a process schema P is a pair

PMRS = 〈RP, {INIT, start(name = ‘‘P’’)}〉, where RP is the set of WIPPOG rules rep-
resenting P, and {INIT,start(name = ‘‘P’’)} is the start multi-set for RP.

A sequence of direct derivations ∆ = {INIT, start(name = ‘‘P’’)} r1=⇒ rp1
r2=⇒ ··· rn=⇒

rp, with rpi = drpi t srpi, for i≥ 0, is a derivation of PMRS, also denoted by {INIT, start(name
= ‘‘P’’)} =⇒∗ rp4. The language L (PMRS) generated by the PMR-system PMRS is the
set of all multi-sets rp such that {INIT,start(name = ‘‘P’’)} =⇒∗ rp. An execution of
PMRS is a derivation {INIT,start(name = ‘‘P’’)} =⇒∗ {STOP}.

3 A detailed procedure used to define a set of WIPPOG rewriting rules starting from both data and control flow
specifications can be found in [De 07].
4 drpi and srpi are the data and synch resource pools of the process schema P at the step i of the derivation.

Adaptive and Mobile Processes 10 / 20

ECEASST

Rdss
>>

Q2Q1

Q

>>

QCQ1

Q2

>>Q

Qp

Rdss
>>

Q2Q1

Q
>>

Q2Q1

>>

Q2Q1

Q

>>

QCQ1

Q2

>>Q

Qp >>

QCQ1

Q2

>>Q

Qp

(a) CTT diagrammatic notation of the rule

GETS: change(type = “RDSS”; name as Q)

WHEN: rule(id = SQ; prod as PDSQ),
rule(id = EQ11; prod as PDEQ1),
rule(id = SQ1)
rule(id = EQ1)

IF: SQ==“START_”+Q.label() AND EQ11==“END_”+Q.1().1 ().label()
AND SQ1==‘‘START_’’+Q.1().label() AND EQ1==‘‘END_’’ +Q.1().label()

PROCESSES: PDSQc := (PDSQ ⊕ {start(name = Q.1().1().label())})
- {start(name = Q.1().label())},

PDEQ1c := (PDEQ1 ⊕ {start(name = Q.2().label())})
- {start(name = Q.1().2().label())}

PRODUCES: rule(id = SQ; prod as PDSQc),
rule(id = EQ11; prod as PDEQ1c)

(b) Rule in WIPPOG language

Figure 6: A WIPPOG rule for downsizing adaptation: sequence delete in sequence construct.

4.2 Adaptation Rules

High-level rewriting rules are used to adapt processes during their enactments. They modify the
process flow on the basis of the causal relations between tasks and the policy established within
the process management system, e.g., maximizing the number of tasks executed in parallel,
or reducing the number of tasks performed in parallel (for example, by saving resources), or
other policies. In [De 07], a complete set of rewriting rules for adaptation has been defined. By
following the categorization proposed in [EM97], rules are classified in: (i) downsizing, reducing
the set of traces (i.e. possible executions of tasks according to the process control flow) in the
new adapted process; and (ii) upsizing, extending the set of traces with respect to the old process.

Rules consume/produce special resources taken/put from/into a rule resource pool (rrp) by
the process management system when change events take place. These resources represent rules
belonging to the PMR-system representing a process schema; when a change request resource

11 / 20 Volume 12 (2008)

Resources as synchronizers

>>

Q2Q1

Riss

>>

QNQ1

Q2

>>
Q Q

Q’1

>>

Q2Q1

Riss

>>

QNQ1

Q2

>>>>

Q2Q1

>>

Q2Q1

Riss

>>

QNQ1

Q2

>>

>>

QNQ1

Q2

>>
Q Q

Q’1

(a) CTT diagrammatic notation of the rule

GETS: change(type = “RISS”; name as Q; new as N)

WHEN: rule(id = SQ; prod as PDSQ),
rule(id = EQ1; prod as PDEQ1)

IF: SQ == “START_”+Q.label() AND EQ1 == “END_””+Q.1 ().label()

PROCESSES: PDSQc := (PDSQ - {start(name = Q.1().label())}) ⊕ {start(name = N.label())},
WSQ’1 := {start(name = N.label())},
PDSQ’1 := {start(name = Q.1().label())},
PDEQ’1 := {start(name = Q.2().label())},
WEQ’1 := {completed(name = N.2().label())},
PDEQ1c := (PDEQ1 - {start(name = Q.2().label())}) ⊕ {start(name = N.2().label())}
SQ’1 := “START_” + N.label(), EQ’1 := “END_”+N.label ()

PRODUCES: rule(id = SQ; prod as PDSQc),
rule(id = SQ’1; when as WSQ’1; prod as PDSQ’1),
rule(id = EQ1; prod as PDEQ1c),
rule(id = EQ’1; when as WEQ’1; prod as PDEQ’1)

(b) Rule in WIPPOG language

Figure 7: A WIPPOG rule for upsizing adaptation: sequence insertion in sequence construct.

is produced (i.e., the change event takes place), some rules are removed from rrp and new
ones are added into it, yielding a new rule resource pool rrp′ representing the adapted process.
Specifically, the high-level rewriting system manages (rewrites) multi-sets which are composed
by the following elements (resources) expressed in WIPPOG. As these are resources, they have
identifier attributes, which we will omit when not needed.

• rule(id, when, gets, if, proc, prod, outs) is a resource for a WIPPOG

rule in the PMR-system realizing the process schema P. The attribute id refers to the
identifier associated with the rule, whereas the other attributes specify each component of
the corresponding rule;

• change(id, type, name, new) is a resource for a change event (described by its
type) involving the rule (the part of the process) named by name. It represents the event
which starts process adaptation. The attribute new describes the possibly empty set of
rules (the new sub-process) to be added.

Hence, a High-level Process Multi-set Rewriting system (HPMR-system) HPMRS for a PMR-

Adaptive and Mobile Processes 12 / 20

ECEASST

system PMRS = 〈RP, {INIT, start(name = ‘‘P’’)}〉 and a set ADAPT of rules for adapta-
tion, is the pair HPMRS = 〈ADAPT,RP〉. A sequence of direct derivations High∆ = RP

a1=⇒RP1
a2=⇒ ··· an=⇒ RPn , is a derivation of the HPMR-system HPMRS, also denoted by RP =⇒∗ RPn .

The language L (HPMRS) generated by the HPMR-system HPMRS is the set of all multi-sets
RPn such that RP =⇒∗ RPn .

Figures 6 and 7 show examples of high-level downsizing and upsizing rules, respectively. In
the upper side of the Figures, a simplified version of the CTT diagrammatic notation [MPS02],
is used to indicate the synchronization constraint imposed on the process. The operator “>>”
denotes sequentiality and indicates that the tasks in the right subtree can be executed only after
those in the left subtree have been completed. Leaves represent elementary tasks. Specifically,
the rule with type Rdss in Figure 6 (Sequence Delete in Sequence Construct) deletes a sequential
sub-process (identified by the label obtained through the method label() of the object con-
tained in the variable Q) from a sequence construct. In detail: the GETS component contains the
change request resource needed to enable the rule, whereas the WHEN component identifies the
local rules to be changed / removed from rrp. The rules are identified by concatenation of the
strings “START ” or “END ” with unique labels associated to each node belonging to process
tree. The methods 1() and 2() return the left and right child, resp., of a subtree Q. On the other
hand, the PROCESSES component contains the computational activities to be executed with the
transition: in particular, some synch resources5 are removed and added from the PRODUCES
components of the rules involved during the adaptation. Finally, the PRODUCES component
produces the new rule resources representing the adapted process, which is the result of applying
the high-level rule.

5 Applying the Model

In this section we apply the rewriting machinery to the scenario described in Section 1. We
recall that restructuring is needed when the condition of the OR-split construct present in the
process schema becomes true. In fact, in this case, the process instance requires the execution
of another instance of the task “Take Pictures”, and, since there is only one PDA (resource)
equipped with photo-camera in the team (i.e., the PDA of the team member 3), one of the two
instances has to be postponed with respect to the other.

The left-hand side of Figure 8 shows the process of Figure 1 (a) as a binary tree in the simpli-
fied CTT notation. A tree node with value “–” represents the null operation in the false branch of
the OR-split construct. When the process management system produces a resource unavailability
event for team member 3 (a change resource is produced), the inference engine module changes
the PMR-system 〈RP, S〉 into the new one < RP′′ ,S >, by (i) removing tasks “Take Pictures”
and “Matching” within the OR-Split construct in sequence the tasks “Compile Questionnaire 1”
and “Compile Questionnaire 3”, and (ii) adds these tasks before “Compile Report”.

This mechanism can exploit a layered organization analogous to that proposed in [PHE+07],
so that a mobility layer can signal disconnection events for the workflow layer to rearrange the
attribution of tasks in the work layer. Specifically, the process engine consumes two change

5 With the notation start(name = Q) we denote the synch resource start associated with the sub-process Q.

13 / 20 Volume 12 (2008)

Resources as synchronizers

<R P’ , S>
Rdss

<R P , S>

P P’>>

| |

>>

M| |

CR

TPCQ2

>>

>>

CQ1

CQ3

TP

[]

M

-->>

Q

Qp

Q1
Qc

Q2

>>

| |

>>

M| |

CR

TPCQ2

>>

CQ1 CQ3

Q

Q1 Q2

“E1”

“E2”

“E3” “E7”

“E8”
“E4”

“E5”

“E6”

“E3”

“E2”

“E1”

“E7”

“E8”

<R P’ , S>
Rdss

<R P , S>

P P’>>

| |

>>

M| |

CR

TPCQ2

>>

>>

CQ1

CQ3

TP

[]

M

-->>

Q

Qp

Q1
Qc

Q2

>>

| |

>>

M| |

CR

TPCQ2

>>

CQ1 CQ3

Q

Q1 Q2

<R P’ , S>
Rdss

<R P , S>

P P’>>

| |

>>

M| |

CR

TPCQ2

>>

>>

CQ1

CQ3

TP

[]

M

-->>

Q

Qp

Q1
Qc

Q2

>>

| |

>>

M| |

CR

TPCQ2

>>

>>

CQ1

CQ3

TP

[]

M

-->>

Q

Qp

Q1
Qc

Q2

>>

| |

>>

M| |

CR

TPCQ2

>>

CQ1 CQ3

Q

Q1 Q2

>>

| |

>>

M| |

CR

TPCQ2

>>

CQ1 CQ3

Q

Q1 Q2

“E1”

“E2”

“E3” “E7”

“E8”
“E4”

“E5”

“E6”

“E3”

“E2”

“E1”

“E7”

“E8”

Figure 8: Process Transformation 1: Sequence Delete in Sequence Construct.

request resources produced by a specific predictive module which alerts about resource unavail-
ability (these resources are put in the GETS component of the WM running on the device of the
team leader): firstly, a change request resource change(id = “ce1”, type = “RDSS”; name =
“E4”;) is consumed, where “RDSS”is the rule type to be applied, and “E4” denotes the name of
the rule which is going to be changed in the PMR-system; secondly, a change request resource
change(id = “ce2”, type = “RISS”; name = “E1”; new = “E4”) is taken from the change re-
source pool. “E1” is the name of the rule to be changed, and “E4” is the name of rule to be added
in the PMR-system together with all rules representing the sub-tree with root node “E4”.

In consuming the two change resources, the adaptive process engine applies the relative rewrit-
ing rules belonging to the high-level rewriting system. The matches to the local rules are con-
strained by the values of the attributes in the change request events. Specifically, in the first
case, it applies rule Rdss (Sequence Delete in Sequence Construct), and in the second case rule
Riss (Sequence Insertion in Sequence Construct). In particular, in both cases the high-level rules
consume rule resources associated to specific branches of the process schema and produce new
ones according to the adopted rewriting rule.

The rule resource pool after the application of the two adaptation rules Rdss and Riss is as
follows 6:
RP = RP0 t
{ rule(id = ‘‘START E3’’; ...),
rule(id = ‘‘START CQ1’’; ...),
rule(id = ‘‘START E4’’; ...),
rule(id = ‘‘END E4’’; ...)

6 In describing the resources associated to rules, we have reported in bold or omitted part of them (gets, if,
proc, outs components) not relevant for understanding the rewriting process.

Adaptive and Mobile Processes 14 / 20

ECEASST

}

RP′ = RP0 t
{ rule(id = ‘‘START E3’’;

when = start(name = ‘‘E3’’);
gets = msgs for E3;
if = conds for E3;
proc = procs for E3;
prod = start(name = ‘‘CQ1’’);
outs = msgs from E3),

rule(id = ‘‘START CQ1’’; ... ;
prod = start(name = ‘‘CQ3’’); ...)

}

RP′ = RP1 t
{ rule(id = ‘‘START E1’’; ...),
rule(id = ‘‘END E4’’; ...)
rule(id = ‘‘END E2’’; ...)
rule(id = ‘‘START E4’’; ...)

}

RP′′ = RP1 t
{ rule(id = ‘‘START E1’’;

when = start(name = ‘‘E1’’);
gets = msgs for E1;
if = conds for E1;
proc = procs for E1;
prod = start(name = ‘‘E4’’);
outs = msgs from E1),

rule(id =‘‘END E4’’; ...;
prod = start(name = ‘‘CR’’); ...)

rule(id =‘‘START E4’’; ...;
prod = start(name = ‘‘E2’’); ...)

rule(id =‘‘END E2’’; ...;
prod = start(name = ‘‘E5’’); ...)

}

The application of both rules yields the new processes depicted in the right-hand side of Fig-
ure 8 (note the new subtree with root node “>>” and children “CQ1” and “CQ2”) and Fig-
ure 9. The PMR-system (< RP,S >) defining the process before the translations is changed into
(< RP′′ ,S >) in which some WIPPOG rules are altered as required by Rdss and Riss. Note that, in
this case, the process does not add or remove rules, but only changes activation conditions.

15 / 20 Volume 12 (2008)

Resources as synchronizers

<R P’’ , S>
Riss<R P’ , S>

P’
>>

| |

>>

M| |

CR

TPCQ2

>>

CQ1 CQ3

Q

Q1 Q2

P’’
>>

CR>>

| |

>>

M| |

TPCQ2

>>

CQ1 CQ3 TP

[]

-->>

M

Q

Q1

Q2Q’1

QN

“E1”

“E2”

“E3”

“E7”

“E8”

“E1”

“E4”

“E2”

“E3” “E7”

“E8”

“E5”

“E6”

<R P’’ , S>
Riss<R P’ , S>

P’
>>

| |

>>

M| |

CR

TPCQ2

>>

CQ1 CQ3

Q

Q1 Q2

P’’
>>

CR>>

| |

>>

M| |

TPCQ2

>>

CQ1 CQ3 TP

[]

-->>

M

Q

Q1

Q2Q’1

QN

<R P’’ , S>
Riss<R P’ , S>

P’
>>

| |

>>

M| |

CR

TPCQ2

>>

CQ1 CQ3

Q

Q1 Q2

P’
>>

| |

>>

M| |

CR

TPCQ2

>>

CQ1 CQ3

Q

Q1 Q2

P’’
>>

CR>>

| |

>>

M| |

TPCQ2

>>

CQ1 CQ3 TP

[]

-->>

M

Q

Q1

Q2Q’1

QN

P’’
>>

CR>>

| |

>>

M| |

TPCQ2

>>

CQ1 CQ3

>>

| |

>>

M| |

TPCQ2

>>

CQ1 CQ3 TP

[]

-->>

MTP

[]

-->>

M

Q

Q1

Q2Q’1

QN

“E1”

“E2”

“E3”

“E7”

“E8”

“E1”

“E4”

“E2”

“E3” “E7”

“E8”

“E5”

“E6”

Figure 9: Process Transformation 2: Sequence Insertion in Sequence Construct.

6 Related Work

The adaptation of processes to possible exceptional cases or to changes in management poli-
cies has been soon recognised as a necessity for practical uses of process management systems
[EKR95, VA97, BCC+99]. Solutions to the related problem of dynamic change i.e., how to
transform the process without suspending all its instances or waiting for all instances to have
come to conclusion, with the possibility of creating inconsistent states of process instances have
been studied in formal frameworks, typically defined by Petri nets, such as: WF-nets [AWW03],
Flow Nets [EK95], and MILANO nets [AM00] (i.e. marked, acyclic Free-Choice Petri Nets).

Moreover, adaptation of single process instances becomes necessary when exceptional situa-
tions occur or the structure of a process dynamically evolves. When the needed changes and their
scope for process evolution are known at design time, adaptations can be pre-planned and auto-
mated [HJKW96, LC93, MGR04]. In contrast ad-hoc changes have to be applied as response to
unforeseen exceptions [RD98].

Ad-hoc change in process management is handled in the ADEPT, Breeze, WASA2, e-Flow
systems [RD98, SMO00, Wes01, CS01], in which the issue of manually modifying process
schemas and then automatically migrating active process instances to the new schema is ad-
dressed, and the AGENTWORK one [MGR04], which is one of the few examples of process
management system in which adaption is not manual, but automatic and pre-planned, on the basis
of a rule-base approach based on ECA (Event/Condition/Action) model to automatically detect
logical failures and to determine necessary process changes. The previous approaches are tar-
geted to infrastructure-based workflows, in which modifications of the schemas are less frequent,
but the number of running instances is very high, so that they are less suited to MANETcontext,
in which adaptation concerns a single instance of workflow, under constant possible need for
change. For a detailed discussion of these approaches, see [RRD04, RR06].

Adaptive and Mobile Processes 16 / 20

ECEASST

Several algebraic approaches to rewriting supporting flexibility and adaptability for Petri net
classes can be found in the literature (see [Hof06] for a survey). The recent proposal of Algebraic
Higher-Order (AHO) Nets [Hof06] is a novel modeling technique combining the advantages
of the well-researched classes of Coloured Petri Nets [Jen92] and Algebraic High-Level Nets
[EHP+02]. AHO-Nets can be seen as a formal approach for Higher-Order Object Nets [Han97],
which are well-established for modeling process schemas. Specifically, high-level net classes
are obtained by combining Petri nets with an appropriate data type part. While the net structure
of AHO-Nets is graphically modeled by Petri nets, the concept of higher-order partial algebras
turned out to be well-suited data type part for AHO-Nets. The combination of these techniques
is achieved by the inscription of net elements with terms over the given data type part. All these
algebraic approaches are very suitable when used at the design-time (they are useful during a
design-time reasoning phase on probable deadlock situations of the system), but they are not
adequate for modeling run-time aspects, such as unforeseen events during the process execution.

The approach proposed in this work is situated in the framework of the algebraic approach to
rewriting, which has been widely used for term rewriting, graph transformations, higher-order
structures, and put to work in several contexts (for surveys, see [CMR+97, EEKR99]). In par-
ticular, the DPO approach has been applied to the description of several types of process, to
describe both the behaviour of systems and changes in their structures. For example, Distributed
Graph Transformations exploit a hierarchical view of distributed systems, where high-level “net-
work” graphs define the overall architecture of a distributed system, while low-level “specifi-
cation” ones refer to the specific implementation of local systems [TFKV99]. The approach is
similar to that presented in this work; there, rules act at two levels, i.e., a modification of the
network graph must be accompanied by a consequent transformation in the associated specifica-
tion graphs. Moreover, low-level graphs must agree on transformations of interface nodes i.e.,
nodes which represent common objects or relations. This approach has been applied to manage
dynamic change in distributed databases in [TGM98].

7 Conclusion and Future Work

We have presented a rule-based formalism for modelling the complex processes involved in the
activity of a team cooperating over a MANETand their adaptations. The formalism, expressed in
terms of multi-set rewriting, supports a resource-centered view in which both data-dependencies
between tasks and plan-dependent ordering of tasks are expressed as production and consump-
tion of resources of different types. Moreover, rules themselves are seen as resources, so that
they are prone to the same rewriting process, in order to redefine process schemas.

Generally, process schemas are modeled through Petri nets with an initial marking, called
place/transition (P/T) systems, which lend themselves to simple visualizations of processes and
their executions. With respect to the formalism proposed in this work, it is possible to asso-
ciate a non-hierarchical coloured Petri-net (CP-net) for each PMR-system representing a process
schema. Thus, by the P/T-net theory (Theorem 2.16 in [Jen92]), for each non-hierarchical CP-
net, it is possible to construct an equivalent P/T-net, i.e., a P/T net which has exactly the same
behaviour as the non-hierarchical CP-net. In [De 07] a procedure to construct a non-hierarchical
CP-net starting from a PMR-system is given.

17 / 20 Volume 12 (2008)

Resources as synchronizers

Furthermore, we will consider organizational issues such as assignment of tasks to team mem-
bers within the proposed framework, and a thorough study will be done to relate this formalism
to the general framework of [BRMH06], based on Algebraic Higher-Order Nets (AHO-Nets)
[Hof06], which is an high-level net class combining Petri nets and a suitable higher-order data
type part. Differently from the multi-set rewriting model presented in this work, the AHO-
Nets framework provides an implicit distinction between the four phases of the system for pro-
cess adaptation – i.e., process execution, process suspending, process changing, and process
re-execution – throughout the machinery of the Petri net, while our approach explicitly distin-
guishes between these activities.

An adaptive process management system for MANETs is being implemented, specifically tar-
geted to emergency teams equipped with PDAs and laptops (i.e., teams with not too powerful
devices). Such a system, referred to as MOBIDIS, is partly realized7, and will be completed and
then validated in the context of the research project IST FP6 WORKPAD8. This prototype will
be used also for validating the algebraic approach presented in this work.

Finally, transformations between workflow patterns9 can be studied, in which high-level rules
will represent possible changes between them.

References

[AM00] A. Agostini, G. D. Michelis. A light workflow management system using simple
process models. IJCC 9(34):335–363, 2000.

[AWW03] W. van der Aalst, M. Weske, G. Wirtz. Advanced topics in workflow management:
Issues, requirements, and solutions. IJIDP 7:49–77, 2003.

[AZ03] D. Agrawal, Q. Zeng. Introduction to wireless and mobile systems. Thomson
Brooks/Cole, 2003.

[BCC+99] L. Baresi, F. Casati, S. Castano, I. Mirbel, B. Pernici. WIDE workflow development
methodology. In Proc. WACC. Pp. 19–28. 1999.

[BDD+04] P. Bottoni, M. De Marsico, P. Di Tommaso, S. Levialdi, D. Ventriglia. Definition
of visual processes in a language for expressing transitions. JVLC 15(3):211–242,
2004.

[BN98] F. Baader, T. Nipkow. Term rewriting and all that. Cambridge University Press,
1998.

[BRMH06] P. Bottoni, F. D. Rosa, M. Mecella, K. Hoffmann. Applying algebraic approaches for
modeling workflows and their transformations in mobile networks. IJMIS 2(1):51–
76, 2006.

7 http://www.dis.uniroma1.it/pub/mecella/projects/MobiDIS/
8 www.workpad-project.eu
9 www.workflowpatterns.org

Adaptive and Mobile Processes 18 / 20

ECEASST

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe. Algebraic
approaches to graph transformation; basic concepts and double pushout approach.
In G. Rozenberg (eds.) Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations 1, 1997.

[CS01] F. Casati, M. Shan. Dynamic and Adaptive Composition of e-Services. IS 26(3):143–
163, 2001.

[De 07] F. De Rosa. Adaptive process management in mobile and dinamic scenarios. PhD
thesis, SAPIENZA - Università di Roma, Department of Computer Science, Italy,
2007.

[EEKR99] H. Ehrig, G. Engels, H. Kreowski, G. Rozenberg. Handbook of Graph Grammars
and Computing by Graph Transformation: Applications, Languages and Tools. Vol-
ume 2. World Scientific, 1999.

[EHP+02] H. Ehrig, K. Hoffmann, J. Padberg, P. Baldan, R. Heckel. High-Level Net Processes.
In Formal and Natural Computing. LNCS 2300, pp. 191–219. 2002.

[EK95] C. Ellis, K. Keddara. A workflow change is a workflow. In Proc. BPM. Pp. 201–217.
1995.

[EKR95] C. Ellis, K. Keddara, G. Rozenberg. Dynamic change within workflow systems. In
Proc. COOCS. Pp. 10–21. 1995.

[EM97] C. Ellis, C. Maltzahn. The Chautauqua workflow system. In Proc. ICSS. Pp. 427–
428. 1997.

[GPS98] M. Große-Rhode, F. P. Presicce, M. Simeoni. Spatial and temporal refinement of
typed graph transformation systems. In Proc. MFCS’98. LNCS 1450, pp. 553–561.
1998.

[Han97] Y. Han. Software Infrastructure for Configurable Workflow System - A Model-Driven
Approach Based on Higher-Order Nets and CORBA. PhD thesis, Technische Uni-
versität Berlin, 1997.

[HJKW96] P. Heimann, G. Joeris, C. Krapp, B. Westfechtel. DYNAMITE: dynamic task nets
for software process management. In Proc. 18th ICSE. Pp. 331–341. 1996.

[Hof06] K. Hoffmann. Formal Approach and Applications of Algebraic Higher Order Nets.
PhD thesis, Technical University Berlin, 2006.

[Jen92] J. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Springer-Verlag, 1992.

[LC93] C. Liu, R. Conradi. Automatic replanning of task networks for process model evo-
lution. In Proc. ESEC, LNCS 717. Pp. 434–450. 1993.

19 / 20 Volume 12 (2008)

Resources as synchronizers

[MGR04] R. Müller, U. Greiner, E. Rahm. AGENTWORK: a workflow-system supporting
rule-based workflow adaptation. DKE 51(2):223–256, 2004.

[MPS02] G. Mori, F. Paternò, C. Santoro. CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. IEEE TSE 28(8):797–813, 2002.

[Pat99] N. Paton (ed.). Active rules in database systems. Springer, 1999.

[PHE+07] J. Padberg, K. Hoffmann, H. Ehrig, T. Modica, E. Biermann, C. Ermel. Maintaining
Consistency in Layered Architectures of Mobile Ad-Hoc Networks. In Proc. FASE
2007. LNCS 4422, pp. 383–397. Springer, 2007.

[RD98] M. Reichert, P. Dadam. ADEPT f lex supporting dynamic changes of workflows with-
out losing control. JIIS 10:93–129, 1998.

[RR06] S. Rinderle, M. Reichert. Data-Driven process control and exception handling in
process management systems. In Proc. CAISE 2006. Pp. 273–287. 2006.

[RRD04] S. Rinderle, M. Reichert, P. Dadam. Correctness criteria for dynamic changes in
workflow systems - a survey. DKE 50:9–34, 2004.

[SMO00] S. Sadiq, O. Marjanovic, M. Orlowska. Managing change and time in dynamic work-
flow processes. IJCIS 9(1-2):93–116, 2000.

[SSO01] S. Sadiq, W. Sadiq, M. Orlowska. Pockets of flexibility in workflow specification. In
Proc. ER 2001. LNCS 2224, pp. 513–526. 2001.

[TFKV99] G. Taentzer, I. Fischer, M. Koch, V. Volle. Visual design of distributed systems by
graph transformation. In Ehrig et al. (eds.), Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 3: Concurrency, Parallelism, and Dis-
tribution. World Scientific, 1999.

[TGM98] G. Taentzer, M. Goedicke, T. Meyer. Dynamic change management by distributed
graph transformation: Towards configurable distributed systems. In Proc. TAGT’98.
LNCS 1764, pp. 179–193. 1998.

[VA97] M. Voorhoeve, W. van der Aalst. Ad-hoc workflow: problems and solutions. In Proc.
8th DEXA. Pp. 36–37. 1997.

[Wes01] M. Weske. Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In Proc. HICSS’01. Pp. 7051–7052. 2001.

[WMC06] WMC. Workflow Management Coalition Terminology & Glossary. Technical re-
port WFMC-TC-1011, WFMC, March 2006.

Adaptive and Mobile Processes 20 / 20

