
Electronic Communications of the EASST
Volume 39 (2011)

Graph Computation Models
Selected Revised Papers from the
Third International Workshop on

Graph Computation Models (GCM 2010)

Construction of Pushout Complements in the Category of Hypergraphs

Marvin Heumüller, Salil Joshi, Barbara König, Jan Stückrath

20 pages

Guest Editors: Rachid Echahed, Annegret Habel, Mohamed Mosbah
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Construction of Pushout Complements in the Category of
Hypergraphs

Marvin Heumüller1, Salil Joshi2, Barbara König1, Jan Stückrath1

1 Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany

2 Carnegie Mellon University, USA

Abstract: We describe a concrete construction of all pushout complements for two
given morphisms f : A→ B, m : B→ D in the category of hypergraphs, valid also
for the case where f ,m are non-injective. It is based on the generation of suitable
equivalence relations. We also give a combinatorial interpretation and show how
well-known coefficients from combinatorics, such as the Bell numbers, can be re-
covered. Furthermore we present a formula that can be used to compute the number
of pushout complements for two given morphisms.1

Keywords: graph transformation, pushout complements, combinatorics

1 Introduction

Pushout complements are an integral part of double-pushout rewriting [2, 4, 5]: they implement
the deletion of elements, whereas the creation of new elements is implemented via a pushout.
Hence the construction of pushout complements is needed for many tools based on double-
pushout graph rewriting. Most of the time the left leg of a rule is considered to be injective
and thus the construction of pushout complements is greatly simplified compared to the general
case, where both morphisms might be non-injective. A thorough study of the expressiveness of
injective and non-injective rules and matches can be found in [6].

In [7] we considered a backwards analysis technique for graph transformation systems where
rewriting steps have to be applied backwards. That is we are interested in all predecessors of
a given graph, which is a common scenario in verification techniques. In this setting pushout
complements have to be constructed for the right leg of a rule and in many applications this
morphism is not injective, especially in cases where graph nodes and edges are fused by rewrit-
ing. In [7] we considered in fact single-pushout rewriting [3] with pushouts in the category of
partial morphisms. The problem of computing such pushout complements can be reduced to the
construction of pushout complements for total morphisms, hence the construction given in this
paper can also be adapted to the scenario in [7].

Taking pushout complements for morphisms which are non-injective means—intuitively—to
“unmerge” or split nodes in all possible ways, which can lead to a combinatorial explosion and
serious efficiency problems.

1 Research supported by the DFG project GaReV.

1 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

In the literature the general case has so far received little attention. In the 70s the papers in-
troducing and studying the notion of pushout complement [4, 5, 9] restricted themselves to cases
where either a vertical or a horizontal morphism is injective. Furthermore there are some in-
vestigations into taking pushout complements in more general categories [1, 8], but they usually
assume that the first morphism is a mono or consider only the minimal pushout complement.
Since a construction of general pushout complements does not seem to be available in the lit-
erature, we specified this construction ourselves and found it surprisingly complex. Hence we
believe that it is of general interest.

We will in the following define the construction which computes all pushout complements
for two given morphisms f : A→ B, m : B→ D. This is done by defining an auxiliary graph
A⊕ D̃ which is the disjoint union of A and a disjoint collection of all nodes and edges of D,
which are not in the image of m. Then we enumerate all equivalences on A⊕ D̃ satisfying certain
conditions and factor through these equivalences. In this way we obtain all pushout complements
and our main theorem proves this fact. Furthermore—since the enumeration of all equivalences
on A⊕ D̃ is very costly and there are serious issues with efficiency—we consider optimizations.
We show how some coefficients from combinatorics, such as Bell numbers or Stirling numbers
of the second kind arise as the number of pushout complements for certain pairs of arrows. This
also shows that there can be a combinatorial explosion in the number of constructed pushout
complements. Finally we present a general formula that can be used to compute the number of
pushout complements for two given morphisms.

2 Preliminaries

We first define the usual notions of hypergraph and hypergraph morphism.

Definition 1 (Hypergraph) Let Λ be a finite set of labels and a function ar : Λ→N0 that assigns
an arity to each label.

A (Λ-)hypergraph is a tuple (VG,EG,cG, lG) where VG is a finite set of nodes, EG is a finite
set of edges, cG : EG→V ∗G is a connection function and lG : EG→ Λ is the labelling function for
edges. We require that |cG(e)|= ar(lG(e)) for each edge e ∈ EG.

Definition 2 (Hypergraph morphism) Let G, G′ be (Λ-)hypergraphs. A hypergraph morphism
(or simply morphism) ϕ : G→G′ consists of a pair of functions (ϕV : VG→VG′ ,ϕE : EG→ EG′)
such that for every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and ϕV (cG(e)) = cG′(ϕE(e)).

In the following, we will simply use graph to denote a hypergraph.
We will work extensively with equivalence relations and one required operation is equivalence

closure that turns an arbitrary relation into an equivalence.

Definition 3 (Equivalence closure) Let A be a set and R be a relation R⊆ A×A. The equiva-
lence closure R of R is the smallest equivalence containing R.

In the following, equivalence closure is mainly used if R is the union of two equivalences
≡1,≡2 on A, i.e., R = ≡1 ∪ ≡2. In this case R is simply the transitive closure of ≡1 ∪ ≡2 and

GCM 2010 2 / 20

ECEASST

can be written as

R = {(x,y) ∈ A×A | ∃x1,y1, . . . ,xn,yn ∈ A :

x = x1 ≡1 y1 ≡2 x2 ≡1 · · · ≡1 yn−1 ≡2 xn ≡1 yn = y}

Definition 4 (Pushout) Let A,B,C be graphs with graph morphisms f : A→ B and n : A→C.

A

n
��

f
// B

m
�� m

��

C
g
//

g ++

D
h

D′

The graph D together with g : C→ D and m : B→ D is a pushout of f ,n if the following condi-
tions are satisfied:

(1) m◦ f = g◦n.

(2) For all m : B→ D′, g : C→ D′ satisfying m ◦ f = g ◦ n there exists a unique morphism
h : D→ D′ such that h◦m = m and h◦g = g.

There is a well-known construction of pushouts [5] in the category of hypergraphs, where
pushouts are obtained by taking the disjoint union of B and C and factoring through an equiva-
lence obtained from the morphisms f ,n.

Proposition 1 (Pushout via equivalence classes) Let A,B,C be graphs with graph morphisms
f : A→ B, n : A→C. We also assume that all node and edge sets are disjoint.2

Let ≡ be the equivalence closure of the relation ≡̃ on VB∪EB∪VC ∪EC which is defined as
f (x)≡̃n(x) for all x ∈VA∪EA. The gluing of B,C over A (written as D = (B⊕C)/≡) is defined
as D = (VD,ED,cD, lD) with:

• VD = (VB∪VC)/≡,

• ED = (EB∪EC)/≡,

• cD : E→V ∗ where cD([e]≡) = [v1]≡ . . . [vk]≡ and v1 . . .vk =

{
cB(e) if e ∈ EB

cC(e) if e ∈ EC

• lD : E→ Λ where lD([e]≡) =
{

lB(e) if e ∈ EB

lC(e) if e ∈ EC

The resulting morphisms are m : B→ D, g : C→ D with:

g(x) = [x]≡ m(x) = [x]≡

Then D together with the morphisms g,m is the pushout of f ,n.

2 Disjointness can be achieved easily by renaming.

3 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

Note that the functions cD and lD in Proposition 1 are well-defined due to the morphism prop-
erties of Definition 2.

Definition 5 (Pushout complement) Given morphisms f : A→ B, m : B→ D a pushout com-
plement of f ,m is a graph C and a pair of morphisms n : A→C, g : C→ D such that g,m form
the pushout of f ,n. We say that two pushout complements Ci with ni : A→Ci, gi : Ci→ D for
i= 1,2 are isomorphic if there exists an isomorphism j : C1→C2 with j◦n1 = n2 and g2◦ j = g1.

There is a well-known characterization of the existence of pushout complements (see for in-
stance Proposition 3.3.4 of [2]).

Proposition 2 (Existence of pushout complements) A pushout complement of f ,m exists if and
only if the following two conditions are satisfied:

• Identification condition: for all x,y ∈VB∪EB with m(x) = m(y) there exist x′,y′ ∈VA∪EA

with f (x′) = x, f (y′) = y.

• Dangling condition: for every node v∈VB where m(v) is attached to an edge e∈ ED which
is not in the range of m, there exists a node v′ ∈VA with f (v′) = v.

3 Construction of pushout complements

In this section we will give a concrete construction for pushout complements, i.e., given mor-
phisms f : A→ B and m : B→ D, we construct all pairs of morphisms n : A→C, g : C→ D and
graphs C (up to isomorphism) such that the resulting square is a pushout.

A
f
//

n
��

B

m
��

C
g
// D

We use the following abbreviations: since it is often not necessary to distinguish between
edges and nodes of a graph, we will use x ∈ A as shorthand for (x ∈ EA or x ∈ VA) and f (x) as
shorthand for fV (x) if x ∈VA and fE(x) if x ∈ EA respectively.

Construction 1 (Pushout complements)

(1) Construct a graph D̃ as follows:

• For every node v ∈ VD that is not in the range of m, add a copy of v to D̃. The copy
of v will be denoted by v′.

• For every edge e ∈ ED that is not in the range of m, add a copy of e with the same
arity, attached to fresh nodes, to D̃. (This is done also if some of the nodes attached
to e are in the range of m.) The copy of e will be denoted by e′ and the fresh nodes
by (e′, i), i ∈ {1, . . . ,ar(lD(e))}.

GCM 2010 4 / 20

ECEASST

This means that D̃ is a collection of disjoint nodes and edges.

(2) Now construct A⊕ D̃, the disjoint union of A and D̃, with morphisms n′ : A→ A⊕ D̃,
g′ : A⊕ D̃→ D as follows:

• n′ is the canonical embedding of A into A⊕ D̃.

• For an item x of A⊕ D̃ we define g′(x) = m(f (x)) if x is contained in A. If x = y′

for some item y of D we define g′(x) = y. Finally if x = (e′, i) for some edge e of D
we have g′((e′, i)) = [cD(e)]i.3 (See Step (1) of this construction where items of the
form y′ were created.)

Clearly g′ ◦n′ = m◦ f .

(3) Define two equivalences on the items of A⊕ D̃:

• x≡g′ y if and only if g′(x) = g′(y).

• x≡ f y if either x = y or x,y are both items of A and f (x) = f (y).

It can easily be seen that ≡ f is a refinement of ≡g′ , i.e., x≡ f y implies x≡g′ y.

(4) Now consider all equivalences ≡ on A⊕ D̃ such that ≡g′ is the equivalence closure of
≡ f ∪≡. Furthermore whenever e1 ≡ e2 for two edges e1,e2, we require that [cA⊕D̃(e1)]i ≡
[cA⊕D̃(e2)]i for all 1≤ i≤ ar(lG(e1)) = ar(lG(e2)). For each such equivalence≡ construct
the graph C = (A⊕ D̃)/≡ with morphisms n : A→C, g : C→ D as specified below:

n(x) = [n′(x)]≡ g([x]≡) = g′(x)

Note that g is well-defined since ≡ refines ≡g′ .

Example 1 Consider for instance the situation on the left below. We have a single binary edge,
which is unlabeled (labels do not play a role for this example). The identities of nodes and edges
are illustrated by the letters next to them.

A B

D

f

m

b

a

c

d

a,b

c,d

f

e

A B

A⊕ D̃ D

f

n′ m

g′

b

a

c

d

a,b

c,d

b

a

c

d

(e′,1) (e′,2)

e′
f

e

3 For a sequence s we denote by [s]i the i-th element of s.

5 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

On nodes we have the equivalences ≡g′ , ≡ f , represented by their equivalence classes:

• ≡g′ : {a,b,c,d,(e′,1),(e′,2)}

• ≡ f : {a,b}, {c,d}, {(e′,1)}, {(e′,2)}

Now there are many possible equivalences ≡. First, we have to relate at least one node from
{a,b} to one node from {c,d}. Furthermore we have to relate each of the two nodes (e′,1), (e′,2)
to an equivalences class containing one of a,b,c,d. For instance the following three equivalences
≡ are all permissible:

• {a,c},{b,(e′,1)},{d,(e′,2),}

• {a,c,(e′,1),(e′,2)},{b},{d}

• {a,b,c,d,(e′,1),(e′,2)}

This results in the following three graphs:

e′

a,c

b,(e′,1) d,(e′,2)

a,c,(e′,1),(e′,2) e′

b

d

e′a,b,c,d,(e′,1),(e′,2)

But there are many more possibilities. In order to enumerate them more systematically we
consider all 15 equivalences on the set {a,b,c,d}, given by equivalence classes (a better way of
enumeration is describes in Section 4.2). The ones that do not satisfy the requirement above are
crossed out.

{a,b,c,d} {a},{b,c,d} {b},{a,c,d} {c},{a,b,d} {d},{a,b,c}
{a,b},{c,d} {a,c},{b,d} {a,d},{b,c} {a,b},{c},{d} {a,c},{b},{d}

{a,d},{b},{c} {b,c},{a},{d} {b,d},{a},{c} {c,d},{a},{b}
{a},{b},{c},{d}

Now for k equivalence classes there are k2 possibilities to associate (e′,1) and (e′,2) to these
equivalence classes. Hence in total there are 1+6 ·22 +4 ·32 = 61 equivalences. Some of them
result in isomorphic graphs, however they are all non-isomorphic in the sense of Definition 5
(see also Proposition 4). How the equivalences can be counted in the arbitrary case is further
discussed in Section 5.

We now show that every graph C constructed as specified in Construction 1 is a pushout
complement and that all pushout complements can be obtained in this way.

Proposition 3 Assume that f : A→ B, m : B→ D are given and that the conditions of Propo-
sition 2 are satisfied. Then every equivalence relation ≡ created by Construction 1 generates a
pushout complement.

GCM 2010 6 / 20

ECEASST

Proof. Assume that≡ is one of the equivalences of Construction 1 and that C and n,g have been
obtained by factoring A⊕ D̃ through this equivalence.

As a first step we show that m◦ f = g◦n, i.e., the resulting square commutes: because n′ is the
canonical embedding of A into A⊕ D̃ (and therefore injective) and g′(x) is defined as m(f (x)) if
x ∈ A, m(f (x)) = g′(n′(x)) holds. Furthermore by definition of n,g we have:

m(f (x)) = g′(n′(x)) = g([n′(x)]≡) = g(n(x))

Now we show that C is indeed a pushout complement by verifying that the second condition
of Definition 4 are satisfied: we have to prove that for every other commuting pair of morphisms
g : C→D′, m : B→D′ there is a unique morphism h : D→D′ such that h◦g = g and h◦m = m.

A

n
��

f
// B

m
�� m

��

C
g
//

g
++

D
h

D′

We define the required morphism h as follows:

h(x) =
{

g(x̃) if ∃x̃ ∈C : g(x̃) = x
m(x̃) if ∃x̃ ∈ B : m(x̃) = x

By definition of g every element of D has a preimage either under g or m. It remains to be shown
that h is a well-defined morphism, and that it is the unique morphism such that the triangles
commute.

Commutativity. By definition h(m(x)) = m(x) and h(g(x)) = g(x) hold.

Uniqueness. Let h′ be another morphism with h′ ◦ g = g and h′ ◦m = m. Each element of D
has a preimage either under g or m:

(1) if x = g(x′) then h′(x) = h′(g(x′)) = g(x′) = h(g(x′)) = h(x)

(2) if x = m(x′) then h′(x) = h′(m(x′)) = m(x′) = h(m(x′)) = h(x)

Well-definedness. As seen before h is defined for all elements of D. To show well-definedness
it is therefore only necessary to prove that different x̃ having the same image under g or m also
have the same image under g or m.

Every element of C is an equivalence class of ≡. Therefore, let x = [x′]≡ and y = [y′]≡. In the
following we do not strictly distinguish between an element of A and its image under n′ because
n′ is a canonical embedding. Hence for x′ ∈ A⊕ D̃ the property x′ ∈ A holds if and only if x′ has
a preimage under n′.

The first property we show is that g(x) = g(y)⇒ g(x) = g(y) holds for all x,y ∈C. For x 6= y
there are two cases which have to be considered:

7 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

(1) x′,y′ ∈ A, i.e., we assume that the equivalence classes x,y have representatives in A (which
also implies n(x′) = x and n(y′) = y).

x′ ≡g′ y′ holds because of g′(x′) = g([x′]≡) = g(x) = g(y) = g([y′]≡) = g′(y′). Due to this
equivalence there are x1,y1, . . . ,xn,yn ∈A such that x′≡ f x1, xi≡ yi, yi≡ f xi+1 and yn≡ f y′

for 1 ≤ i < n. Using the definition of n and the fact that xi and yi are elements of A it can
be shown that the equivalence xi ≡ yi implies n(xi) = [n′(xi)]≡ = [n′(yi)]≡ = n(yi). These
properties lead to the following equality

m(f (xi)) = g(n(xi)) = g(n(yi)) = m(f (yi)) = m(f (xi+1))

for every i. Together with the equalities g(n(x′)) = m(f (x′)) = m(f (x1)) and g(n(yn)) =
m(f (yn)) = m(f (y′)) = g(n(y′)) it follows that g(x) = g(y).

(2) x contains no elements of A (implying x′ /∈ A)
Because x contains no elements of A, it also has no preimage under n. As already shown
g([x′]≡)= g([y′]≡) implies x′≡g′ y′. Because of this equivalence there are x1,y1, . . . ,xn,yn ∈
A satisfying x′ ≡ f x1, xi ≡ yi, yi ≡ f xi+1, yn ≡ f y′ for 1≤ i < n. Due to the definition of≡ f

it holds that x′ = x1 because x′ is not in A. Also y1 can not be an item of A because other-
wise [x′]≡ would contain items of A. This property can be extended to yi = xi+1 and yn = y′,
which leads to xi ≡ xi+1. Because of x′ = x1 and xn ≡ y′, x′ and y′ are equivalent according
to ≡ and hence x and y must be equal. This clearly implies g(x) = g(y)⇒ g(x) = g(y).

The second property needed for well-definedness is m(x) = m(y)⇒ m(x) = m(y). The identifi-
cation condition (see Proposition 2) states that because of m(x) = m(y) there are x′,y′ ∈ A such
that f (x′) = x and f (y′) = y. Using this and the first property the desired equality can easily be
shown by:

m(x) = m(y) ⇒ m(f (x′)) = m(f (y′)) ⇒ g(n(x′)) = g(n(y′)) ⇒
g(n(x′)) = g(n(y′)) ⇒ m(f (x′)) = m(f (y′)) ⇒ m(x) = m(y)

The last property to show is g(x) = m(y)⇒ g(x) = m(y). We first show that g(x) = m(y) implies
that there is a y′ with f (y′) = y: the only items of D which are in the range of both g and m are
the images of elements of A and nodes in the range of m which are attached to edges which are
not in the range of m. However, due to the dangling condition (see Proposition 2) such nodes
must have a preimage in A. Together with the first property this implies:

g(x) = m(y) ⇒ g(x) = m(f (y′)) ⇒ g(x) = g(n(y′)) ⇒
g(x) = g(n(y′)) ⇒ g(x) = m(f (y′)) ⇒ g(x) = m(y)

Morphism. Finally it is straightforward to prove that h satisfies indeed the morphism prop-
erties. For instance in order to show that h(cD(e)) = cD′(h(e)) for an edge e ∈ D we have to
distinguish two cases: if there exists an edge ẽ∈C with g(ẽ) = e, then—since g is a morphism—
we have g(cC(ẽ)) = cD(e). Hence h(cD(e)) = h(g(cC(ẽ))) = g(cC(ẽ)) = cD′(g(ẽ)) = cD′(h(e))
by definition of h. The case ẽ ∈ B with m(ẽ) = e is analogous.

This proves that every diagram formed by an equivalence generated in the given construction
is a pushout diagram.

GCM 2010 8 / 20

ECEASST

Proposition 4 Assume that f : A→ B, m : B→ D are given. Then every pushout complement
n : A→C, g : C→ D of f ,m can be obtained via Construction 1. Furthermore two isomorphic
pushout complements give rise to the same equivalence ≡.

Proof. Assume that C with morphisms n,g is a pushout complement of f ,m. We will show that
there is an equivalence ≡, as specified by Construction 1, such that C is obtained by factoring
A⊕ D̃ through this equivalence.

A

n
��

f
//

n′

		

B

m
��

C
g
// D

A⊕ D̃
k

<<

g′

;;

For the given pushout of f ,n we will define a surjective morphism k : A⊕ D̃→C (see diagram
above). Our next step is then to define an equivalence relation≡where x,y∈A⊕D̃ are equivalent
if and only if k(x) = k(y). The factorization of A⊕ D̃ through ≡ then results in C and it has to
be shown that the equivalence relation ≡ is one of the equivalence relations obtained by the
presented construction.

Let ≡∗ be the equivalence closure of the relation ≡̃ where f (a)≡̃n(a) for all a ∈ A. Due to
the construction of pushouts using equivalence classes we can assume without loss of generality
that D = (B⊕C)/≡∗ (see Proposition 1). Furthermore for b ∈ B we have m(b) = [b]≡∗ and for
c ∈C we have g(c) = [c]≡∗ .

We define k as follows: if x ∈ A, then k(x) = n(x). If x is of the form y′ for some item y of D,
then — since y is not in the image of m — there must be a c ∈C with g(c) = y. In this case we
define k(x) = c. If x is of the form (e′, i) for some edge e of D, then k(x) = [cC(k(e))]i.

Well-definedness. Problems with well-definedness may arise only in the second case of the
definition of k, where x is of the form y′ for some item y of D. In this case y is not in the range of
m due to the construction of A⊕D̃. Therefore y as an equivalence class does not contain elements
of B. Because of the definition of ≡∗ every equivalence class containing elements of either B or
C (but not both) only contains one element, hence y contains exactly one element c of C. Because
g(c) = [c]≡∗ = y the preimage of y under g is unique and therefore k(x) is well-defined in this
case.

Morphism. Note that k is obviously a morphism on the elements of A. Furthermore D̃ is a
disjoint collection of nodes and edges and the third case in the definition of k ensures that it is
indeed a valid morphism.

Surjectivity. We now show that k is surjective. Let therefore c ∈ C be any element of C and
we distinguish the following two cases:

(1) ∃y ∈ A : n(y) = c: By definition k(y) = n(y) = c.

9 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

(2) @y ∈ A : n(y) = c: Without a preimage under n the equivalence class [c]≡∗ contains only c
because c is not equivalent to any element of B according to ≡∗. Therefore [c]≡∗ is not in
the range of m since otherwise the equivalence class would contain elements of B. Because
of the definition of k there is a y′ ∈ D̃ with g′(y′) = y = [c]≡∗ = g(c), hence k(x) = c.

Commutativity. We have to show that both triangles commute:

(1) We first check that k(n′(x)) = n(x) for any x ∈ A:

As already seen n′(x) = x if x ∈ A. Using the definition of k we obtain k(n′(x)) = k(x) =
n(x).

(2) Now we show that g(k(x)) = g′(x) for any x ∈ A⊕ D̃. There are two cases:

(a) x ∈ A: Using k(x) = n(x) if x ∈ A and m◦ f = g′ ◦n′ due to the definition of g′ and n′

it can be shown that:
g(k(x)) = g(n(x)) = m(f (x)) = g′(n′(x)) = g′(x)

(b) x ∈ D̃: In this case k(x) = c and g(c) = g′(x), therefore g(k(x)) = g(c) = g′(x).

The equivalence ≡ is generated. We will now show that the equivalence ≡, where two ele-
ments x,y∈A⊕D̃ are equivalent if and only if k(x)= k(y), is generated by the given construction.
Hence we have to show that the equivalence closure of ≡ ∪≡ f is ≡g′ , i.e., that ≡ ∪≡ f = ≡g′ .

• ≡ ∪ ≡ f ⊆ ≡g′ :

As already mentioned in Construction 1, ≡ f implies≡g′ , i.e. ≡ f is clearly a subset of≡g′ .

The equivalence ≡ is also a subset of ≡g′ because of:

x≡ y⇒ k(x) = k(y)⇒ g′(x) = g(k(x)) = g(k(y)) = g′(y)

• ≡ ∪ ≡ f ⊇ ≡g′ :

Let x,y be elements of A⊕ D̃ with x ≡g′ y, hence g′(x) = g′(y). As shown above the
equivalence classes g′(x) and g′(y) of ≡∗ contain k(x) and k(y) respectively, therefore
k(x) ≡∗ k(y). Hence there are c0,b1,c1, . . .bm,cm such that bi ≡̃ci for 1 ≤ i ≤ m and
b j+1 ≡̃c j for 0 ≤ j < m with k(x) = c0 and k(y) = cm. Using the definition of ≡̃ leads
to the following properties:

bi ≡̃ci ⇒ ∃ai ∈ A : f (ai) = bi∧n(ai) = ci

bi+1 ≡̃ci ⇒ ∃a′i ∈ A : f (a′i) = bi+1∧n(a′i) = ci

This implies that ai+1 and a′i have the same image under f , hence ai+1 ≡ f a′i, and that ai

and a′i have the same image under n, hence ai ≡ a′i. This leads to x ≡ a′0 ≡ f a1 ≡ a′1 ≡ f

· · · ≡ a′m−1 ≡ f am ≡ y, hence x ≡ ∪≡ f y.

This proves that every pushout complement can be obtained by using the given construction.

GCM 2010 10 / 20

ECEASST

Isomorphism of pushout complements. It is left to show that, given two isomorphic pushout
complements ni : A→Ci, gi : Ci→D with i = 1,2 and an isomorphism j : C1→C2 with j◦n1 =
n2, g2 ◦ j = g1, the corresponding equivalences ≡ are the same. For this it is sufficient to show
that j commutes with the morphisms k1,k2, where ki : A⊕ D̃→ Ci and k1,k2 are constructed
analogously to the morphism k above. That is, we have to show that j ◦ k1 = k2. Then k1,k2 give
rise to the same equivalence ≡.

We distinguish the following cases (as in the definition of k): if x ∈ A, then j(k1(x)) =
j(n1(x)) = n2(x) = k2(x). If x is of the form y′ for some item y of D, then we define ki(x) = ci for
ci with gi(ci) = y. Since g2(j(c1)) = g1(c1) = y we obtain c2 = j(c1). Hence j(k1(x)) = j(c1) =
c2 = k2(x). Finally, if x is of the form (e′, `) for some edge e of D, then ki(x) = [cC(ki(e))]`
and so j(k1(x)) = j([cC(k1(e))]`) = [cC(j(k1(e)))]` = [cC(k2(e))]` = k2(x). This completes the
proof.

The fact that two isomorphic pushout complements give rise to the same equivalence means
that the number of generated (valid) equivalences is exactly the number of different pushout
complements. However, if we consider only isomorphisms on C—without requiring commu-
tativity of the triangles consisting of morphisms j,n1,n2 and j,g1,g2 (in the terminology of
Definition 5)—there will usually be fewer different pushout complements. The examples in Sec-
tions 5.1 and 5.2 are chosen in such a way that both interpretations give rise to the same number.

4 Optimizations

In the given construction there exist several possibilities for optimization. These lie in the con-
struction of A⊕ D̃ and in the method used to enumerate all possible equivalences ≡.

4.1 Possible Simplifications

In Step (1) of Construction 1 the graph D̃ is constructed by inserting all nodes and edges of D
which are not in the range of m. Additionally for every edge e of D for every node connected
with e a new node is inserted. This ensures that every node attached to e is also in D̃. However, if
e is connected to a node x not in the range of m, another copy of this node has been added earlier
to D̃. Both are equivalent with respect to ≡g′ but not with respect to ≡ f since they do not have a
preimage under n′. Therefore these two copies have to be equivalent according to every possible
equivalence ≡. Hence the first copy was superfluous and it was unnecessary to create it in the
first place.

D̃ D alternative D̃

n′ n′′
w1

w2

v2

v3

v1

e

e′

w v

e

e′

w1

w2

v′

e

e′

The previous diagram shows an example graph D̃ generated by the given construction if the
middle graph is D and only w is in the range of m. In the left graph v1, v2 and v3 are all copies of

11 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

v in the middle graph and all have to be in the same ≡-class. The construction would therefore
still be correct if the right graph is generated instead of the left graph.

In general it is only necessary to add one node to A⊕D̃ for every node not in the range of m and
for every node in the range of m as many nodes as there are edges not in the range of m connected
with the node (it depends on f whether the latter copies are really needed). This improvement
can help to manage the combinatorial explosion when determining all possible equivalences ≡.

4.2 Enumerating Equivalences

A problem not addressed earlier is how to generate all permissible equivalences ≡. The straight-
forward way would be to enumerate all possible equivalences over A⊕ D̃ and to store every
equivalence satisfying ≡ ∪≡ f = ≡g′ . This method is however not recommended because of
combinatorial explosion and in addition many of these equivalences will not satisfy the required
conditions. In the following we explain how the generation of equivalences could be handled
more efficiently.

If f is injective there is only one permissible equivalence ≡. This is true since in this case
g must necessarily also be injective and hence ≡ equals ≡g′ (also x ≡ f y⇔ x = y holds). It is
already known that in this case the pushout complement is unique, if it exists [5].

A non-injective morphism f produces several permissible equivalences ≡. In this case it is
sufficient to look at each equivalence class of ≡g′ separately. We further distinguish between
equivalence classes which contain elements of A and those which do not. In either case every
equivalence class of ≡ f is entirely contained in exactly one equivalence class of ≡g′ due to the
definition of g′.

If an equivalence class c of ≡g′ contains no elements of A, every equivalence class of ≡ f

contained in c only contains one element. Therefore c must also be an equivalence class of ≡,
i.e., all elements of c must be merged.

≡ f ≡ f

∈ A

6∈ A

≡ f

≡g′

≡ f

≡ f

≡ f

If an equivalence class c of≡g′ contains elements of A, the equivalence classes of≡ f in c con-
tain either only elements of A or no elements of A (see figure above). Only equivalence classes
of ≡ f containing elements of A can consist of more than one element. Elements already equiv-
alent according to ≡ f do not have to be equated via ≡ because they will anyway be equivalent
after the equivalence closure. It is however necessary to add relations between elements in such a
way that the resulting structure connects all equivalence classes to each other, possibly indirectly.
(One such possibility connecting the three leftmost equivalence classes is indicated by the dashed
ovals in the figure above.) Therefore, in order to calculate all permissible equivalences ≡ for all
elements of c, we first enumerate all equivalences over elements contained in equivalence classes
of≡ f with at least two elements, but keep only those that induce connectivity. We then distribute

GCM 2010 12 / 20

ECEASST

the remaining elements (contained in equivalence classes of ≡ f with only one element) to the
resulting equivalence classes in every possible way. The results are all equivalences ≡ restricted
to elements of c. If we perform these steps for all other equivalence classes of ≡g′ , a complete
equivalence≡ can be obtained by taking arbitrary combinations of such (restricted) equivalences
≡ for each class c.

5 Combinatorial Interpretation

Some coefficients from combinatorics arise naturally as the number of pushout complements for
a (parameterized) pair of arrows. We first present some examples, all of them for hypergraphs
with unary edges only, and later give a formula for calculating the number of pushout comple-
ments arising from given graphs and morphisms.

5.1 Bell Numbers

The n-th Bell number Bn is the number of equivalence relations on the set {1, . . . ,n}. The first
Bell numbers (starting with B1) are: 1, 2, 5, 15, 52, 203, 877, 4140, . . . (see the On-Line Ency-
clopedia of Integer Sequences4).

Now take Λx = {x1, . . . ,xn} as a label set. Assume that XΛx is the graph with n nodes, where
to each node we attach a unary hyperedge and each hyperedge has a different label. Furthermore
ZΛx is the graph with one node to which n hyperedges are attached, where each hyperedge has a
different label.

We consider the unique morphism f : XΛx → ZΛx and the identity m = idZΛx
: ZΛx → ZΛx .

Then—if we apply our construction—the graph A⊕ D̃ will consist only of A = XΛx and all
equivalences≡ on the nodes of XΛx are admissible (for the edges each edge must be in a separate
equivalence class). Hence there are Bn different pushout complements up to isomorphism.

XΛx

f
// ZΛx

m
��

ZΛx

. . .

x1 xn

f
//

xn

x1

. . .

m
��

xn

x1

. . .

5.2 Stirling Numbers of the Second Kind

The Stirling number of the second kind Sn,k is the number of equivalence relations with k equiv-
alence classes on the set {1, . . . ,n}. It holds that Bn = ∑

n
k=1 Sn,k.

The Stirling numbers satisfy the following recursive equation: Sn,k = Sn−1,k−1
+ k · Sn−1,k, which is based on a case distinction according to the element n: either n is in an

4 http://www.research.att.com/˜njas/sequences/

13 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

equivalence class of its own and the remaining n−1 elements have to be grouped in k−1 equiv-
alence classes; or the remaining n− 1 elements have to be grouped in k equivalence classes
and there are k possibilities to assign n to one of these classes. Our implemented method for
enumerating equivalences follows the same pattern.

Now we set Λx = {x1, . . . ,xn}, Λy = {y1, . . . ,ym} and Λ = Λx∪Λy. We take the unique mor-
phism f : XΛx → ZΛx and the unique morphism m : ZΛx → ZΛ.

XΛx

f
// ZΛx

m
��

ZΛ

. . .

x1 xn

f
//

xn

x1

. . .

m
��

xn

x1
. . .

. . .y1

ym

Then A⊕ D̃ is the disjoint union of XΛx and separate copies of m edges which are labelled
y1, . . . ,ym. Now we take all permissible equivalences on the nodes of the copy of XΛx . Assume
that we have k equivalence classes. Then there are km possibilities to distribute the m nodes of
the separate edges over the equivalence classes. Hence the total number of pushout complements
is

n

∑
k=1

Sn,k · km

Note that for the special case of m = 0 we obtain again the Bell numbers.

5.3 Counting pushout complements with only node fusions

With the examples above we have shown the worst cases for the number of pushout complements
by looking at only one equivalence class of ≡g′ . We now present a more accurate formula for
calculating this number, still looking at the classes of ≡g′ individually. We will give this formula
for the general case – independent of our construction – where an equivalence on an arbitrary
set is given and a second, coarser, equivalence is searched for. We will in the following exploit
the fact that the equivalences on a given set X coincide with the partitions on a set and we will
switch between both representations.

Let Pall (X)⊂ P(P(X)) be the set of all partitions of the given set X . We also define Cnt (Y,Z)
as the number of partitions on a set Z, such that the closure of the union of that partition and Y ,
a partition on Z, results in a partition where everything is in the same equivalence class (see also
Section 4.2, the notion of closure is here straightforwardly extended to partitions). If Y contains
only one element (i.e. Z), any partition on Z will result in {Z} when forming the closure with Y ,
hence Cnt (Y,Z) =B|Z|. The Bell Number B|Z| is thereby also a natural upper bound for Cnt (Y,Z)
regardless of the cardinality of Y . We can group these partitions according to which elements

GCM 2010 14 / 20

ECEASST

of Y they connect, i.e. which partition they induce on Y . For any induced partition I on Y we
can calculate the number of partitions on Z inducing I by calculating the possibilities for each
element of I individually and forming the product of the results. These possibilities can in turn
be calculated by Cnt. For any partition Y of a set Z we obtain the following formula:

B|Z| = ∑
X∈Pall(Y)

∏
N∈X

Cnt

(
N,

⋃
M∈N

M

)

Example 2 Let Y = {{1,2},{3,4},{5}} be a partition on Z = {1,2,3,4,5}. All partitions on
Z will induce one of the partitions (or equivalences) on Y displayed below. For instance the
top right case (where {3,4} and {5} are connected) represents six equivalences: 5 can either
be equivalent to 3, to 4 or to both. In all three cases 1 and 2 can be equivalent or not, but can
not be equivalent to 3, 4 or 5, because this would induce another equivalence. In the end, we
want to count the number of equivalences inducing the top left partition by counting the rest and
subtracting it from the number of all equivalences (given by the Bell numbers).

21 3 4

5

21 3 4

5

21 3 4

5

21 3 4

5

21 3 4

5

If Cnt (Y,Z) is the number of partitions to be counted, we obtain the following proposition by
reorganizing the formula above to obtain a recursive formula. We obtain Cnt (Y,Z) by subtracting
the partitions not resulting in {Z} when constructing the closure from the upper bound B|Z|.

Proposition 5 For any set Z and any partition Y on Z the number of partitions on Z which
result in {Z} when constructing the closure with Y , can be computed by the following recursive
formula:

Cnt ({Z},Z) = B|Z|

Cnt (Y,Z) = B|Z|− ∑
X∈Pall(Y)\{{Y}}

∏
C∈X

Cnt

(
C,
⋃

C′∈C

C′
)

with |Y | ≥ 2

The evaluation of the formula above will always terminate because every C has at most |Y |−1
elements.

We now extend the formula to the case where two equivalences ≡′f and ≡′g′ are given. The
prime indicates that these equivalences are two “normal” equivalences and not a pair of equiva-
lences such as ≡ f , which in our setting consists of ≡V

f and ≡E
f .

We introduce the following auxiliary notation:

15 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

• We define Part (≡) as the partition consisting of the equivalence classes of a given equiv-
alence ≡.

• Let Eqcoll

(
≡′f ,≡′g′

)
be the set of all equivalences such that the equivalence closure of that

equivalence and ≡′f results in ≡′g′ .
Note that the subscript coll stands for “collapsing”, i.e., we want to collapse ≡′f in order
to obtain ≡′g′ . The connection to the earlier notation is the following. For an arbitrary
equivalence ≡ on a set X we have that |Eqcoll (≡,X×X) |=Cnt (Part (≡) ,X).

• Given an equivalence ≡ on a set X and Y ⊆ X , we define [≡]X as the equivalence which
results when we restrict ≡ to elements of X , i.e., [≡]X = ≡ ∩(X×X).

Regardless of ≡′f , only elements in the same class according to ≡′g′ may and must be merged.
Hence we split the calculation and apply the previous formula to the classes of ≡V

g′ individually.
The total number of possibilities is the product of the individual results, resulting in the following
proposition.

Proposition 6 For any pair of equivalences ≡′f and ≡′g′ , where ≡′f is a refinement of ≡′g′ , the
number of equivalences ≡′ with ≡′ ∪ ≡′f = ≡′g′ can be computed as:∣∣Eqcoll

(
≡′f ,≡′g′

)∣∣= ∏
Y∈Part

(
≡′g′
)
∣∣∣Pcoll

(
Part

([
≡′f
]

Y

))∣∣∣
with |Pcoll (Z) |=Cnt

(
Z,
⋃

Z′∈Z

Z′
)

Note that this formula can be used to calculate the equivalences on nodes and on edges. Using
≡V

f and ≡V
g′ as initial values will result in the number of equivalences on nodes, whereas ≡E

f and
≡E

g′ will result in the number of equivalences on edges.
When calculating the number of equivalences on nodes this formula does not take equivalences

on edges into account, and vice versa. Fusion of edges would imply fusion of the connected
nodes because of the properties of morphisms. Hence the number of equivalences on nodes is
only equal to the number of equivalences on nodes and edges, and thus to the correct number of
pushout complements, if no edges are merged. In the next section we will extend this formula to
the general case.

5.4 Counting pushout complements with node and edge fusions

Edges can only be merged if also the connected nodes with equal indices are merged. On the
one hand merging edges can increase the number of possibilities (compared to no merging of
edges) if merging is optional, because every pushout complement, where these edges are not
merged, results in an additional pushout complement, where the edges are merged. This is
demonstrated in Figure 1a, where both graphs are correct pushout complements. On the other
hand merging edges can decrease the possibilities if it is mandatory, because this reduces the
possible equivalences on the nodes. In Figure 1b m merges e1 and e2, therefore this fusion is

GCM 2010 16 / 20

ECEASST

A B

C D

f

n1,n2 m

g1,g2

1 2

3 4

e1 e2

1,2

3,4

e1,2

1,2,3,4 1,2,3,4

e1 e2

e1,2

1,2,3,4

e1,2

(a) optional edge fusion

A B

C D

f

n1,n2 m

g1,g2

1 2

3 4

e1 e2

1,3 2,4

e1 e2

1,2

3,4

1,2,3,4

e1,2

e1,2

1,2,3,4

e1,2

(b) mandatory edge fusion

Figure 1: Examples of edge fusions

mandatory for any possible morphism n resulting in only two possible pushout complements. To
compute the number of possibilities in the general case we first have to consider any possible
equivalences on edges and then the problem can be solved using the results of Section 5.3.

Let V be the node set and E the edge set of the graph on which ≡ f and ≡g′ are defined. Note
that both equivalences are pairs consisting of one equivalence on nodes and one on edges. Taking
into account the connection between these equivalences, we define ind (≡) as an equivalence on
the node set V for an equivalence ≡ on the edge set E as the induced equivalence on the nodes,
i.e. two nodes are equivalent if and only if there are equivalent edges connected to the two nodes
at the same index. Any equivalence we want to consider is coarser than this equivalence.

The computation of all possibilities can be divided into the sum of all possibilities assuming a
valid equivalence on edges. Although each summand corresponds to a different equivalence on
edges, the equivalence on nodes can be the same. For each such equivalence ≡E we have to take
into account the induced equivalence on nodes ind

(
≡E
)

before calculating the actual equiva-
lences. Using Part

(
ind
(
≡E
))

instead of the node set is equivalent to requiring that any possible
equivalence must be coarser than ind

(
≡E
)
. For this ≡V

f has to be extended to Part
(
ind
(
≡E
))

such that two elements of Part
(
ind
(
≡E
))

are equivalent iff they contain some equivalent nodes.
We combine these ideas in the following proposition.

Proposition 7 The number of equivalences on a graph such that the equivalence closure with
≡ f (on nodes and edges) results in ≡g′ , which corresponds to the number of pushout comple-
ments for given morphisms f ,m, can be computed by the following formula:

∑
≡E∈Eqcoll

(
≡E

f ,≡E
g′

)
∣∣∣Eqcoll

(
≡P(≡E)

f ,≡P(≡E)
g′

)∣∣∣
where ≡P(≡E)

h for h ∈ { f ,g′} is the equivalence ≡V
h lifted to the induced partition P(≡E) =

Part
(
ind
(
≡E
))

on nodes, i.e.:

X1 ≡P(≡E)
h X2⇔∃Z ∈ Part

(
ind (≡E)∪ ≡V

h

)
: X1 ⊆ Z∧X2 ⊆ Z for X1,X2 ∈ Part

(
ind
(
≡E
))

.

17 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

Example 3 In the following we apply the above formula to the graphs and morphisms shown
below.

A B

D

f

m

1

2

3

4

5

e1

e2

e3

1,2

3

4,5

e1,2

e3

1,2,3 4,5
e1,2,3

All edges are equivalent according to ≡g′ and only e1 and e2 are equivalent according to ≡ f re-
sulting in three possible equivalences on the edges. These equivalences are listed below together
with their induced equivalence on the nodes and their lifting of ≡ f and ≡g′ . We denote the set
containing the nodes 1 and 2 by S1,2 to indicate that these sets are no longer seen as sets but as
objects (i.e. nodes) for later calculation.

Part
(
≡V

f
)
= {{1,2},{3},{4,5}} Part

(
≡V

g′

)
= {{1,2,3},{4,5}}

• Case 1:

Part
(
≡E

1
)
= {{e1,e2,e3}} Part

(
≡P(≡E

1)
f

)
= {{S1,2,3},{S4,5}}

P(≡E
1) = {S1,2,3,S4,5} Part

(
≡P(≡E

1)
g′

)
= {{S1,2,3},{S4,5}}

In this case every equivalence class of ≡P(≡E
1)

g′ contains only one element, hence nothing
can be merged and only one equivalence is possible, because the edge fusions force the
nodes to be merged as well. The resulting pushout complement is then identical to D,
where n = m◦ f and g is the identity.

• Case 2:

Part
(
≡E

2
)
= {{e1,e3},{e2}} Part

(
≡P(≡E

2)
f

)
= {{S1,3,S2},{S4,5}}

P(≡E
2) = {S1,3,S2,S4,5} Part

(
≡P(≡E

2)
g′

)
= {{S1,3,S2},{S4,5}}

Any valid equivalence can relate S1,3 and S2 but need not because they are already related

by ≡P(≡E
2)

f . Nothing can be merged in the second class of ≡P(≡E
2)

g′ , hence there are two
possibilities in this case resulting in the pushout complements below:

GCM 2010 18 / 20

ECEASST

C1

1,3

2

4,5

e1,3

e2

C2

1,2,3 4,5

e1,3

e2

• Case 3:

Part
(
≡E

3
)
= {{e1},{e2,e3}} Part

(
≡P(≡E

3)
f

)
= {{S1,S2,3},{S4,S5}}

P(≡E
3) = {S1,S2,3,S4,S5} Part

(
≡P(≡E

3)
g′

)
= {{S1,S2,3},{S4,S5}}

For {S1,S2,3} equivalence is similar to that of case two. Additionally S4 and S5 can either
be merged or not merged resulting in four different equivalences.

All in all we get seven possible equivalences on nodes and edges resulting in seven different
pushout complements.

6 Conclusion

We have shown how to construct pushout complements when both given morphisms might be
non-injective. Such a construction is necessary for performing backwards analysis and com-
puting the set of predecessors of a given graph. We have implemented this construction (in a
tool that performs backwards search in well-structured transition systems, based on [7]) and we
presented the optimizations that we used in the implementation.

We gave some result on combinatorics that illustrate the potential combinatorial explosion in
the number of pushout complements for an arbitrary pair f ,m of morphisms. The computations
needed to compute this number are quite involved and we tried to simplify the formulas as much
as possible. It is unclear whether any further simplification or an easier theory is feasible.

Furthermore it is an open question whether the construction could be transferred to a more
categorical setting, similar to [1].

Acknowledgements: We would like to thank Benjamin Braatz for our discussions on this topic.

Bibliography

[1] Benjamin Braatz, Ulrike Golas, and Thomas Soboll. How to delete categorically - two
pushout complement constructions. Journal of Symbolic Computation, 46(3):246–271,
March 2011.

[2] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic ap-
proaches to graph transformation—part I: Basic concepts and double pushout approach. In
G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Vol. 1: Foundations, chapter 3. World Scientific, 1997.

19 / 20 Volume 39 (2011)

Construction of Pushout Complements in the Category of Hypergraphs

[3] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini. Algebraic
approaches to graph transformation—part II: Single pushout approach and comparison with
double pushout approach. In G. Rozenberg, editor, Handbook of Graph Grammars and
Computing by Graph Transformation, Vol.1: Foundations, chapter 4. World Scientific, 1997.

[4] H. Ehrig, M. Pfender, and H. Schneider. Graph grammars: An algebraic approach. In Proc.
14th IEEE Symp. on Switching and Automata Theory, pages 167–180, 1973.

[5] Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In Proc. 1st Inter-
national Workshop on Graph Grammars, pages 1–69. Springer-Verlag, 1979. LNCS 73.

[6] Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph transformation
revisited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.

[7] Salil Joshi and Barbara König. Applying the graph minor theorem to the verification of
graph transformation systems. In Proc. of CAV ’08, pages 214–226. Springer, 2008. LNCS
5123.

[8] Yasuo Kawahara. Pushout-complements and basic concepts of grammars in toposes. Theo-
retical Computer Science, 77:267–289, 1990.

[9] Barry K. Rosen. Deriving graphs from graphs by applying a production. Acta Informatica,
4:337–357, 1975.

GCM 2010 20 / 20

	Introduction
	Preliminaries
	Construction of pushout complements
	Optimizations
	Possible Simplifications
	Enumerating Equivalences

	Combinatorial Interpretation
	Bell Numbers
	Stirling Numbers of the Second Kind
	Counting pushout complements with only node fusions
	Counting pushout complements with node and edge fusions

	Conclusion

