
Electronic Communications of the EASST
Volume 58 (2013)

Proceedings of the
12th International Workshop on Graph Transformation

and Visual Modeling Techniques
(GTVMT 2013)

A Pattern-based Approach for Initial Diagram Layout

Sonja Maier and Mark Minas

14 pages

Guest Editors: Matthias Tichy, Leila Ribeiro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

A Pattern-based Approach for Initial Diagram Layout

Sonja Maier1 and Mark Minas2

1 sonja.maier@unibw.de 2 mark.minas@unibw.de
Universität der Bundeswehr München

Abstract: In a diagram editor, one can distinguish initial from incremental diagram
layout. The former computes a diagram layout from scratch, whereas the latter
adjusts an existing layout after diagram modifications.

In previous work, we have proposed a pattern-based approach as a solution for in-
cremental diagram layout in visual language editors. Each LP encapsulates certain
layout behavior. A diagram’s layout is then defined by simultaneously applying
several LPs to the diagram. This solution has been designed for an interactive en-
vironment where the user may select and alter the layout behavior at runtime. This
paper describes an extension of this approach that now supports initial diagram lay-
out, too. While the old version only enabled freehand editing, the extended version
now supports diagram import and structured editing as well.

Keywords: layout, diagram editor, freehand & structured editing, diagram import

1 Introduction

A layout engine usually runs continuously within diagram editors and improves the layout in
response to user interaction in real-time. Layout improvement includes all sorts of changes
concerning the position or shape of diagram components. A powerful and flexible layout engine
is needed in order to enable or to improve the usability of different modes of operation, such
as freehand editing, structured editing or diagram import. We have developed a pattern-based
approach [MM12, Mai12], which is tailored to such an interactive environment. Layout patterns
(LPs) allow to encapsulate different kinds of layout algorithms and make them easily reusable for
many different types of diagrams. The approach depends on a control algorithm for computing
a diagram layout that is determined by different LP instances. With the help of the approach, the
complex task of layout computation can be split up into rather small pieces.

The layout of a diagram is defined by applying LPs to selected sub-diagrams. Applying an LP
to a sub-diagram means creating an LP instance and binding it to this sub-diagram. The LP in-
stance then contributes to automatic layout, i.e., its layout algorithm adjusts component variables
according to the pattern’s specification. We distinguish two modes of operation which can be
used simultaneously in the same diagram: Automatic application selects LPs and sub-diagrams
automatically, controlled by the specification of the diagram syntax. For user-controlled appli-
cation, the editor user selects diagram components that he would like to be arranged according to
an LP and applies the corresponding LP to the sub-diagram consisting of this set of components.

In a diagram editor, we distinguish different ways, a user can create and modify a diagram.
Structured editing means that the user uses editing operations that transform correct diagrams

1 / 14 Volume 58 (2013)

mailto:sonja.maier@unibw.de
mailto:mark.minas@unibw.de


A Pattern-based Approach for Initial Diagram Layout

Figure 1: Class Diagram Editor

into other correct diagrams. Freehand editing, on the other side, means that the editor user may
arrange diagram components on the screen without any restrictions. The third way a user can
create a diagram, is importing a diagram from an abstract representation. This mode of operation
is called diagram import in the following. We further distinguish initial from incremental (di-
agram) layout. The former computes a diagram layout from scratch, i.e., without any previous
layout information available, whereas the latter adjusts an existing layout after diagram modifi-
cations. Freehand editing requires incremental layout, whereas diagram import requires initial
layout. Structured editing requires both initial as well as incremental layout.

Up to now, the layout approach was used in the context of freehand editing only, and hence it
solely supported incremental layout. In order to support initial layout, we extended the approach,
mainly by generalizing the control algorithm. In this paper, we show that the slightly adapted
approach is useful in the context of diagram import. We further present a small case study, which
gives evidence that the approach works well in the context of model refactoring, and, hence, in
the context of structured editing. As we will see, although the approach was primarily designed
for incremental layout, the adapted version is also useful in the context of initial layout, and even
can be utilized for a combination of both.

Class diagrams (cf. Figure 1) are the visual language that serves as a running example in this
paper. This visual language is a “real-world” example: The abstract syntax of the visual language
is described by a predefined meta-model, the UML2 Ecore model [SBPM09]. This meta-model

Proc. GTVMT 2013 2 / 14



ECEASST

is more or less aligned with OMG’s EMOF (Essential MOF), which comprises the essential parts
of OMG’s MOF. MOF is a so-called closed meta-modeling architecture, which defines the UML.
Since class diagrams may contain a huge variety of different components, their Ecore model is
quite complex. To keep the example simple, only a subset of components is considered in this
paper, namely packages, classes, attributes, generalizations and associations. As can be seen in
Figure 1, these components are visualized as usual.

The paper is structured as follows: Section 2 discusses related work. The extended pattern-
based approach is sketched in Section 3. Section 4 gives details of how to utilize our approach
in the context of diagram import as well as in the context of structured editing. Section 5 finally
concludes the paper.

2 Related Work

Design patterns [GHJV95] serve as the formal basis of our pattern-based approach. In VL-Eli
[Sch06], an editor generation framework, patterns are also used as a formal basis. In their ap-
proach, tree grammars are used as the basis for specifying visual languages and layout, whereas
we use meta-models instead. This design decision was made, because nowadays, meta-models
are more widely used than grammars. In contrast to our approach, their approach does not sup-
port freehand editing, and provides completely automatic layout only.

Dunnart [Wyb08] is an interactive system for drawing graph-based diagrams. Similar to our
approach, their approach also has its strengths in the area of incremental layout, and also supports
some sort of automatic and user-controlled layout.

A variety of layout algorithms exist that are tailored to one specific visual language. Most of
these special-purpose layout algorithms are designed for completely automatic diagram layout
only. In [Eig03], for instance, a topology-shapes-metrics approach for the automatic layout of
UML class diagrams is presented. In [FSMH10], for instance, automatic layout and structure-
based editing of UML diagrams is described.

Code refactorings are well known in software engineering. In case of class diagrams, the
concepts can easily be lifted to models, which leads to model smells as well as model refactorings
[Lan07]. Tools, such as EMF Refactor [Ecl12], enable, amongst others, the application of model
refactoring operations. One weakness of such tools is often the integrated layout engine.

3 Pattern-based Layout Approach

In the following, an overview of the extended pattern-based approach is given. The approach
was described in detail in [Mai12]. A brief overview of the approach and its integration into
an editor is given in [MM12]. The cornerstones of the approach are the concept of LPs and an
algorithm that controls the combination of different LPs. As shown in Figure 2, a diagram is
internally represented by a language-specific model (LM), which is an instance of a language-
specific meta-model (LMM). The LMM defines the abstract syntax and aspects of the concrete
syntax of the visual language. The current layout of a diagram is represented by the LM, whereas
the layout behavior of a diagram editor is defined by a set of LP instances. Each LP, in turn,
encapsulates certain layout behavior.

3 / 14 Volume 58 (2013)



A Pattern-based Approach for Initial Diagram Layout

After the user has edited a diagram, the diagram’s LM is automatically created (updated).
Furthermore, several LP instances are created (updated). Based on the LM and the LP instances,
the new layout of the diagram is automatically computed, and the diagram is updated accordingly.

Editor

Diagram

Language-Specific
Model (LM)

represented by

Language-Specific
Meta-Model (LMM)

instance of

Edge Connector Pattern

LP Instance

Horizontal Alignment (Top) Pattern

LP Instance LP Instance

corr. corr. corr.

instance of instance of instance of

uses

Figure 2: Overview of the Approach

3.1 Concept of Layout Patterns (LPs)

A LP encapsulates certain layout behavior. An example is the edge connector pattern, which
ensures that “edges” are correctly connected to “nodes”. Another example is the horizontal
alignment (top) pattern, which makes sure that a set of “nodes” is horizontally aligned at the top.

As can be seen in Figure 2, after the user has edited a diagram, several LP instances are
created, and a correspondence between the LM and each of these LP instances is established.
A LP may be instantiated one or more times for the same diagram. Its instantiation is either
performed automatically, or it is triggered by the user. For instance, the edge connector pattern
is instantiated automatically. For the diagram shown in Figure 1, one pattern instance is created
for the classes A, B, C, D and E together with the three generalizations and the association. In
contrast, the instantiation of the horizontal alignment (top) pattern is triggered by the user. For
the diagram shown in Figure 1, for instance, two pattern instances could be created - one for the
classes A and E, and one for the classes B, C and D.

We distinguish two different types of LPs, namely continuously-applied LPs (CA-LPs) and
temporarily-applied LPs (TA-LP). The difference is that CA-LPs are continuously applied, where-
as TA-LPs are applied for a certain time interval. The instantiation of CA-LPs is always per-
formed automatically, whereas the instantiation of TA-LPs is either performed automatically or
it is triggered by the user. In the course of LP instantiation, pattern matching is performed in
order to determine the parts of the (sub-)diagram, for which the LP is instantiated. In case of
CA-LP and TA-LP instantiation, pattern matching is either performed on the whole diagram or
on a sub-diagram. More precisely, pattern matching is performed on the LM that represents the
diagram - either the whole LM or the part of the LM that corresponds to the sub-diagram.

Proc. GTVMT 2013 4 / 14



ECEASST

LP

P-Constraint

Predicate

associated
*

Rule

defined on
top of PMM

LP Instance PM

associated
*

instance of instance of

Figure 3: Layout Pattern (LP)

A LP (cf. Figure 3) is defined on top of a pattern-specific meta-model (PMM). It has one or
more associated p-constraints (pattern-constraints), and each p-constraint consists of one predi-
cate, which in turn has one or more associated rules. The predicates of all LP instances present
in a diagram assure layout properties of the diagram. The layout of a diagram is correct if all
predicates hold. The layout of a diagram is incorrect and needs to be updated if one or more
predicates are broken. Each rule describes how the layout can be adjusted such that the broken
predicate is repaired. The most commonly used types of rules are graph drawing algorithms,
constraint-based (layout) algorithms and rule-based (layout) algorithms. Rule-based (layout) al-
gorithms were introduced in [Mai12], and are specifically tailored to the interactive nature of
diagram editors.

For instance, the horizontal alignment (top) pattern has the associated predicate c1.y = c2.y.
c1 and c2 are two components to be aligned. c1.y is the y-position of the first component, and c2.y
is the y-position of the second component. The predicate has the two associated rules c1.y := c2.y
and c2.y := c1.y, which are rather trivial. For the example mentioned above, the predicate as well
as the associated rules are “instantiated” several times: For the alignment of the classes A and
E, they are instantiated for the pair of components {A,E}. For the alignment of the classes B, C
and D, they are instantiated for the pairs of components {B,C} and {C,D}.

3.2 Control Algorithm for Pattern Combination

The control algorithm for pattern combination is essentially a local propagation-based constraint
solver that uses backtracking. The idea is that modifications made by the user, i.e., attribute
changes because of user activity - e.g. moving a class - are “propagated” in the diagram. Its pur-
pose is to find a valid layout after user modification, and hence, to compute a variable assignment
for which all p-constraints (i.e. all predicates) are satisfied.

The control algorithm allows for the computation of the layout in the context of freehand
editing. The generalized version of the control algorithm now enables the computation in the
context of diagram import and structured editing as well. In the generalized version, the markings
toCheck and frozen are introduced, which have the following meaning: All p-constraints that
involve at least one variable marked as toCheck are potentially violated, and need to be checked
by the control algorithm. Once a variable is marked as frozen, it may not be changed by the
control algorithm anymore. The marking frozen avoids a cyclic behavior, and assures that the
control algorithm terminates. Backtracking makes sure that the rules are applied in an order that
leads to a valid layout, if existent.

5 / 14 Volume 58 (2013)



A Pattern-based Approach for Initial Diagram Layout

Prior to the execution of the control algorithm, some variables are marked as toCheck, and
some are marked as toCheck and frozen. The marking depends on the user interaction that
triggers the execution of the control algorithm, and will be described in Section 4. During the
execution of the control algorithm, some additional variables are marked as toCheck and frozen.

Starting with the variables that were marked as toCheck, all p-constraints are checked that
involve these variables. For each violated p-constraint, meaning that the associated predicate
is not satisfied, one of the corresponding rules is executed. These rules change one or more
variables. All variables that are involved in the layout computation are marked as toCheck and
frozen. Again, all p-constraints are checked that involve the variables marked as toCheck. This
procedure is continued until all p-constraints that need to be checked are satisfied. Backtracking
is used if necessary. The first result found is chosen and the control algorithm stops immediately.
If no solution can be found, the control algorithm signals a failure.

In one step, it might be the case that more than one p-constraint needs to be repaired, and
hence, more than one rule needs to be executed. For that purpose, the control algorithm deter-
mines an ordered list of these p-constraints based on a prioritization scheme, which is defined
by the editor developer. Furthermore, if a p-constraint is violated, there might be several rules
available to “repair” this violation. To do so, the control algorithm determines an ordered list of
these rules based on a prioritization scheme, which is also defined by the LP creator. Starting
with the ordered list of p-constraints and the ordered lists of rules, the rules are tried out by back-
tracking until the control algorithm terminates either by finding a new assignment satisfying all
p-constraints, or by signaling a failure.

3.3 Layout in the Class Diagram Editor

In the class diagram editor, several LPs are available. The application of the following ones is
automatically performed: The node overlap removal pattern makes sure that components do not
overlap. It is automatically applied to classes and packages on the same level, i.e. inside the
same package. The edge connector pattern makes sure that edges are correctly connected. It
is automatically applied to classes, together with generalizations and associations. The minimal
size component pattern makes sure that components are larger than a minimal size. It is auto-
matically applied to classes as well as packages. The list pattern makes sure that components
inside a container are arranged as a list and that they are correctly contained in the container. It is
automatically applied to the attributes inside a class. The rectangular containment pattern makes
sure that components are correctly nested. It is automatically applied to classes and packages.

The application of the following LPs is controlled by the user: The layered layout pattern
arranges components by the help of a layered layout algorithm. It may be applied to classes
together with generalizations. The equal horizontal distance pattern as well as the equal vertical
distance pattern make sure that components are placed equally distant to each other. They may
be applied to packages and classes. The equal height pattern as well as the equal width pattern
make sure that components have the same width or height. They may be applied to classes
and packages. The align in a row pattern and the align in a column pattern make sure that
components are aligned in a row or in a column. They may be applied to classes and packages.
The horizontal alignment pattern and the vertical alignment pattern make sure that components
are aligned horizontally or vertically. They may be applied to classes and packages.

Proc. GTVMT 2013 6 / 14



ECEASST

4 Diagram Import, Structured Editing & Model Refactoring

As mentioned in Section 3, user interactions trigger the execution of the control algorithm. Be-
fore extending our approach, the control algorithm was executed after the user had performed
freehand editing, i.e. after he had created, modified or deleted one or more components. It was
also executed after the user had applied a TA-LP to a user-selected set of components. After
extending our approach, the control algorithm is now also executed after the user has imported
a diagram from an abstract representation, or after the user has performed a structured editing
operation. Prior to the execution of the control algorithm, some variables are marked as toCheck,
and some as toCheck and frozen, depending on one of the following situations:

• Freehand editing: All variables of all components that are modified by the user are marked
as toCheck and frozen.
• User applies a TA-LP: All variables of one of the components, the TA-LP is applied to,

are marked as toCheck and frozen. This component is (usually) the component that was
selected first by the user. All variables of the other components, the TA-LP is applied to,
are marked as toCheck.
• Diagram import: The imported diagram consists of several components. All variables of

all these components are marked as toCheck.
• Structured editing: Several components take part in the structured editing operation. All

variables of all these components are marked as toCheck. Some of them are (optionally)
marked as frozen as well.

During the execution of the control algorithm, usually only a small subset of p-constraints that
are present in the diagram needs to be checked. In case of diagram import, all p-constraints need
to be checked, and hence, performance seems to be an issue. But this is only a minor issue, as
the control algorithm only needs to be executed once after diagram import.

4.1 DiaMeta Architecture

The class diagram editor, our running example, was built by the help of DiaMeta [Min06], an
editor generation framework. An overview of the architecture of a DiaMeta editor is shown
in Figure 4. The abstract syntax and some aspects of the concrete syntax of the diagram are
represented by the graph model. The graph model is internally transformed into the LM, which
forms the basis for layout computation. Freehand editing operates on the diagram itself, whereas
diagram import as well as structured editing both operate on the graph model.

After the editor user draws a diagram, the graph model is created on the basis of the diagram.
An LMM instance LM is created on the basis of this graph model. Based on the LM, all LP
instances are created. Some of these instances are automatically created, whereas others are
created by the editor user. The layout engine gets the LM as well as all LP instances as input
and computes the layout. After layout computation, all variable changes are collected, and the
diagram is updated. Based on the changed diagram, the graph model, and the LM are updated
automatically.

In the graph model, arrangements of diagram components are described by spatial relation-
ships between them: Each diagram component has several attachment areas at which it can be

7 / 14 Volume 58 (2013)



A Pattern-based Approach for Initial Diagram Layout

Diagram

Graph Model

LM

transformed

represented by

LP InstanceLP Instance Layout Engine

edits (freehand editing)

edits
(structured editing
& diagram import)

creates
(TA-LP)

creates (CA-LP & TA-LP)

updates
variable
values

correspondence

input

Figure 4: Integration into DiaMeta

(a) Diagram (b) Graph Model

Figure 5: Internal Representation of a Class Diagram

connected to other diagram components. In class diagrams, a class, for instance, has its border as
attachment area, and an association has its start point and its end point as attachment areas. Con-
nections can be established by spatially related attachment areas. In class diagrams, for instance,
an association has to start or end at the border of a class in order to be connected to this class.
In the graph model, each component is modeled by a node (component node). Each attachment
area is also modeled by a node (attachment node). Edges (attachment edges) connect component
nodes with all attachment nodes that belong to this component node. Furthermore, edges (rela-
tionship edges) connect attachment nodes that are in relationship with each other. Figure 5(b)
shows the graph model of the diagram shown in Figure 5(a). Attachment nodes are drawn as
black circles, component nodes as gray rectangles, attachment edges as thin black arrows and
relationship edges as thick blue arrows.

4.2 Diagram Import

The pattern-based approach was designed for a context in which previous layout information is
available. In case of diagram import, no previous layout information is available, which means
that an initial layout has to be computed. In order to create an initial layout, the following
procedure turned out to be reasonable: All variables are initialized with the value 0, and all
instances of all CA-LPs are automatically created. In addition, one or more instances of one or
more TA-LPs are also automatically created. Based on the initial values of the variables and all
LP instances, the layout engine computes the initial layout as usual.

Proc. GTVMT 2013 8 / 14



ECEASST

The diagram import module is specified by the editor developer. The specification consists of
two parts: It is defined how the graph model is created from an abstract representation. Besides,
it is specified which TA-LPs are applied to which parts of the diagram.

For the diagram that is represented in Figure 6(a), all variables are initialized with the value 0.
The following instances of CA-LPs are automatically created: Instances of the minimal size
component pattern are created for the sets {A}, {B}, {C}, {D} and {E} of components. An
instance of the edge connector pattern is created for the set {A,B,C,D,E,g1,g2,g3,a1} of com-
ponents. g1 is the generalization between A and B, g2 the one between A and C, g3 the one
between A and D, and a1 the association between A and E. An instance of the list pattern is
created for the set {A,attribute1,attribute2} of components. In addition, an instance of a TA-
LP is also automatically created, namely an instance of the layered layout pattern for the set
{A,B,C,D,E,g1,g2,g3} of components. The diagram is arranged as can be seen in Figure 6(b).

(a) Abstract Representation (b) Initial Layout

(c) Specification

Figure 6: Diagram Import

Discussion In the example presented, the described procedure leads to an acceptable layout.
But this may not be the case for other examples. In general, the quality of the produced layout
depends on the set of LPs that is included in the editor and the specification of the diagram im-
port module, i.e., which TA-LPs are additionally applied. The existence of cases in which an
unacceptable layout is produced gives evidence that the layout specification is incomplete, and
that it should be extended. For instance, in class diagrams, the nesting of packages and classes
presents a challenge. An acceptable layout is produced as follows: For each package, one lay-
ered layout pattern instance is created. The pattern is applied to all classes and generalizations

9 / 14 Volume 58 (2013)



A Pattern-based Approach for Initial Diagram Layout

that are contained in this package. Pattern matching and LP instantiation is performed as shown
in Figure 6(c): For each package, all contained classes (match of M1) and all contained gener-
alizations (match of M2) are collected. For this set of components, one layered layout pattern
instance is created, where classes play the role node and generalizations the role edge.

There might be cases in which it is not possible to compute a valid layout after diagram
import. In such a scenario, in the worst case, a diagram import results in a diagram whose
layout is incorrect. Whether or not such cases exist, again, depends on the set of LPs that is
included in the editor, and the specification of the diagram import module, i.e., which TA-LPs
are additionally applied. The existence of cases in which it is impossible to compute a valid
layout gives evidence that the layout specification is inconsistent, and should be revised.

Up to now, we specified a diagram import module for a graph editor as well as a class diagram
editor. In both cases, the import of an arbitrary diagram leads to a valid and acceptable layout.
This result is promising, but does not give us a guarantee that the described proceeding suffices
for other diagram editors as well. A more detailed evaluation is up to future work.

4.3 Structured Editing & Model Refactoring

Structured editing is quite interesting in terms of layout as it requires a combination of initial and
incremental layout. In the context of structured editing, in most cases, the application of CA-LPs
results in a valid and acceptable layout. In some cases, it makes sense to also automatically apply
one or more TA-LPs to the sub-diagram, the structured editing operation is applied to.

Structured editing operations are defined by the editor developer. The specification consists
of three parts: The structured editing operation itself is defined. Besides, it is specified which
TA-LPs are applied to the sub-diagram, the structured editing operation is applied to. Finally, it
is defined which variables are marked as frozen prior to the execution of the control algorithm.

Model refactoring can be considered as structured editing with sophisticated editing opera-
tions. In a small case study, several model refactoring operations were defined and integrated
into the class diagram editor. The model refactoring operations remove (inline) associated class,
remove (inline) superclass, remove (inline) subclass, push up (pull down) attribute, or push up
(pull down) method required CA-LPs only. In contrast, the model refactoring operations create
(extract) associated class, create (extract) superclass, or create (extract) subclass required the
automatic application of TA-LPs in addition to the application of CA-LPs. These were the ones
that incorporated the creation of classes and (or) packages.

CA-LPs only For most model refactoring operations, the automatic creation of all instances
of all CA-LPs turned out to be sufficient. An example is shown in Figure 7(a): The user has
selected attribute attribute1 of type int and has chosen the operation pull down attribute. As a
consequence, the attribute attribute1 is deleted. Three new attributes are added to the classes B,
C, and D, all of them with the name attribute1 and the type int, and all of them located at the po-
sition (0,0). During layout computation, several instances of several CA-LPs are automatically
created. Amongst others, three instances of the list pattern are created. These instances make
sure that the three attributes are located at the “correct” position within their containing classes
after layout computation, as shown in Figure 7(b).

Proc. GTVMT 2013 10 / 14



ECEASST

Figure 8(a) shows the graph model of the diagram before the model refactoring operation is
performed, and Figure 8(b) afterwards, but before the layout is updated. Before layout com-
putation, all variables that are shown in the right figure are marked as toCheck. During layout
computation, the variables colored in red will be initialized by the layout engine, the variables
colored in green will be updated by the layout engine, and the variables colored in black remain
unchanged.

(a) Before (b) After (c) Before (d) After

Figure 7: Model Refactorings: Pull Down Attribute & Create Superclass

(a) Before Refactoring (b) After Refactoring, Before Layout Computation

Figure 8: Pull Down Attribute - Graph Model

11 / 14 Volume 58 (2013)



A Pattern-based Approach for Initial Diagram Layout

CA-LPs & TA-LPs In certain situations, the automatic creation of all instances of all CA-LPs
may lead to an unacceptable or invalid layout. To improve this situation, the editor developer,
who specifies the structured editing operation, has the possibility to define which TA-LP in-
stances are automatically created. An example is shown in Figure 7(c) and Figure 7(d): The user
has selected class C and has chosen the operation create superclass. That is why the generaliza-
tion between the classes C and A gets deleted. Furthermore, the class X , and the generalizations
g1 between X and A and g2 between C and X get created. After creation, the class X is located
at the position (0,0) and has the width and height 0. Both generalizations start and end at the
position (0,0). During layout computation, amongst others, instances of the minimal size com-
ponent pattern and the edge connector pattern are automatically created. In addition, an instance
of a TA-LP is also automatically created, namely an instance of the layered layout pattern for
the set {A,X ,C,g1,g2} of components. The model refactoring operation together with the LP
instantiation is shown in Figure 9: The user-selected class is colored orange. One of the rules
(R1 or R2) is applied, depending on whether or not a superclass exists. In both cases, one layered
layout pattern instance is created.

Figure 9: Create Superclass - Specification

To further improve the situation, the editor developer, who specifies a structured editing op-
eration, has the possibility to define which variables are marked as frozen prior to the execution
of the control algorithm. For instance, in case of the operation create superclass, all variables of
the component that was selected by the user are marked as frozen. In the example, this is class
C. As a consequence, this component remains unchanged during layout computation.

To improve the situation even more, the definition of the structured editing operation itself
can be adapted: In the definition, the editor developer has the possibility to specify which layout
information has to be provided by the editor user. For instance, in case of the operation create
superclass, the structured editing operation is defined as follows: The user is required to select
a class and then choose the operation create superclass. Thereafter, the layout engine updates
the layout. As an alternative, the user could additionally have to choose the position, the newly
created class should (approximately) be placed at. Thereafter, the layout engine updates the
layout as usual.

Proc. GTVMT 2013 12 / 14



ECEASST

Discussion In accordance to diagram import, there might be cases in which an unacceptable
layout is produced after applying a structured editing operation. The existence of such cases
gives evidence that the definition of the structured editing operation is incomplete, and that it
should be extended. Also in accordance to diagram import, there might even be cases in which it
is not possible to compute a valid layout afterwards. The existence of such cases gives evidence
that the layout specification is inconsistent, and should be revised.

As already described, we specified several structured editing operations in the context of the
small case study. The application of these structured editing operations to an arbitrary diagram
leads to a valid and acceptable layout. This result is promising, but does not give us a guarantee
that the described proceeding suffices for other structured editing operations as well. A more
detailed evaluation is up to future work.

One interesting finding of the small case study was that the definition of the layout-part of the
operations turned out to be straightforward. In contrast, the definition of the operations them-
selves turned out to be a bit more challenging: As DiaMeta does not focus on structured editing,
the transformation language provides basic concepts only. Besides, it has some limitations con-
cerning the possible user input. E.g., the selection of an arbitrarily-sized set of components is
not supported. Another interesting finding was that model refactoring operations require a rather
complex user input. E.g., the model refactoring operation extract associated class requires the
user to select a class and an arbitrarily-sized set of attributes and methods of this class.

5 Future Work & Conclusions

In previous work, we have proposed a pattern-based approach as a solution for incremental lay-
out in visual language editors. In this paper, an extension of this approach was described, which
now supports initial layout, too. We showed that our pattern-based approach is also useful in
the context of diagram import. Furthermore, the case study presented gives evidence that the
approach works pretty well in the context of structured editing. With the approach, usually no
“perfect” layout is achievable, but an acceptable one. Our general-purpose layout approach can-
not compete with layout algorithms for diagram import or structured editing that are specifically
designed for a visual language. But the nice thing is that layout support for diagram import and
structured editing can be provided with very small effort.

The usability of our approach in the context of diagram import and structured editing heavily
depends on the LPs that are integrated in the specific diagram editor. Hence, usability can be
improved by defining additional LPs and including them in the diagram editor, or by slightly
adapting one or more of the LPs that are already included in the diagram editor. But defining and
including more and more LPs should not be exaggerated. More LPs means that the layout speci-
fication is more complex, and that it is more challenging to build a consistent one. Furthermore,
performance issues potentially arise.

Our pattern-based approach produces a “nicer” layout in the context of structured editing than
in the context of diagram import. One reason for that is that some previous layout information
is available in the context of structured editing, while it is not in the context of diagram import.
Another reason is that the interactivity of a diagram editor can be utilized in the context of
structured editing: The user can provide some layout information himself, if required.

13 / 14 Volume 58 (2013)



A Pattern-based Approach for Initial Diagram Layout

We have included the layout approach in several DiaMeta- and GEF-editors, and already use
it for diagram import as well as structured editing in three of them. Besides the authors of this
paper, several students helped creating these editors, and experimented with them. This paper
reported on the findings of this informal evaluation. A more formal evaluation is up to future
work. It would include the creation of several editors, the integration of the layout approach into
these editors, and the use of these editors for carefully selected tasks.

At the moment, we plan to extend the approach in two different ways: Up to now, the layout
engine signals a failure if it is not able to compute a valid layout. As an alternative, the layout
engine could also compute a partial layout. The choice, which p-constraints are satisfied after
layout computation, and which ones are not, is a challenging task. We further plan to create
diagram editors that are specifically intended to run on multi-touch enabled devices: Multi-touch
gestures in combination with our layout approach opens up a variety of new possibilities.

Bibliography

[Ecl12] Eclipse: EMF Refactor. http://www.eclipse.org/modeling/. 2012.

[Eig03] M. Eiglsperger. Automatic layout of UML class diagrams: a topology-shape-metrics
approach. PhD thesis, Eberhard-Karls-Universitaet Tuebingen, 2003.

[FSMH10] H. Fuhrmann, M. Spoenemann, M. Matzen, R. von Hanxleden. Automatic layout
and structure-based editing of UML diagrams. In Proceedings of M-BED’10. 2010.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, 1995.

[Lan07] C. Lange. Assessing and improving the quality of modeling: a series of empirical
studies about the UML. PhD thesis, Technical University Eindhoven, 2007.

[Mai12] S. Maier. A Pattern-based approach for the combination of different layout algo-
rithms in diagram editors. PhD thesis, Universitaet der Bundeswehr Muenchen,
2012.

[Min06] M. Minas. Generating meta-model-based freehand editors. In Proceedings of Gra-
BaTs’06. Volume 1. ECEASST, 2006.

[MM12] S. Maier, M. Minas. Integration of a pattern-based layout engine into diagram edi-
tors. In Proceedings of AGTIVE’12. Springer-Verlag, 2012.

[SBPM09] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

[Sch06] C. Schmidt. Generierung von Struktureditoren fuer anspruchsvolle visuelle
Sprachen. PhD thesis, Universitaet Paderborn, 2006.

[Wyb08] M. Wybrow. Using semi-automatic layout to improve the usability of diagramming
software. PhD thesis, Monash University, 2008.

Proc. GTVMT 2013 14 / 14


	Introduction
	Related Work
	Pattern-based Layout Approach
	Concept of Layout Patterns (LPs)
	Control Algorithm for Pattern Combination
	Layout in the Class Diagram Editor

	Diagram Import, Structured Editing & Model Refactoring
	DiaMeta Architecture
	Diagram Import
	Structured Editing & Model Refactoring

	Future Work & Conclusions

