
Electronic Communications of the EASST
Volume 41 (2011)

Proceedings of the
Tenth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GTVMT 2011)

A visual language for temporal specifications based on Spider diagrams

Paolo Bottoni, Andrew Fish

14 pages

Guest Editors: Fabio Gadducci, Leonardo Mariani
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

A visual language for temporal specifications based on Spider
diagrams

Paolo Bottoni1, Andrew Fish2

1 Dipartimento di Informatica, “Sapienza” Università di Roma, Italy, 2School of Computing,
Engineering and Mathematics, University of Brighton, UK

Abstract:

Spider Diagrams are a well-established visual language to specify sets, their rela-
tionships, and constraints on their cardinalities. However, they do not support evo-
lution of specifications, where one wants to state that under certain circumstances
a specification becomes invalid and a new one must be used, nor transformation of
specifications, where one needs operators to manipulate specifications. In this paper,
we attack the first problem by developing a new system of timed Spider Diagrams
which allow modellers to indicate the temporal range of validity of a specification.
The approach is illustrated with examples of policies for library management.

Keywords: Visual constraint language, Time based systems, Spider diagrams.

1 Introduction

Spider Diagrams (SDs) are a diagrammatic logical specification and reasoning system built on
top of Euler Diagrams (EDs), suitable for expressing monadic first order logic with equality
statements [STHT04]. Constraint Diagrams [Ken97, FFH05] are an extension of SDs which
are more expressive (introducing explicit syntax for the expression of quantification and rela-
tions), but come with the trade-off of more complexity in interpretation. They were proposed as
a means for expressing constraints within software system modelling, potentially as a replace-
ment for the textual Object Constraint Language (OCL) within the Unified Modeling Language
(UML). These diagrams can be used to specify static constraints over the model such as a system
invariant, or behavioural specifications in the form of pre and post-condition contracts. An ad-
vantage of using diagrammatic constraint languages is that users become able to display a logical
proof as a sequence of diagrams, thereby enhancing confidence in its correctness.

However, these languages lack an explicit model of system evolution, as no notion of dynam-
ics has been incorporated within them. In particular, time is not a primitive notion in SDs, so
that time-dependent specifications are not directly definable. We develop here a diagrammatic
system, called Timed Spider Diagrams that incorporates temporal constraints expressed as in-
tervals over a time model based on calendars with reference to some granularity layering, e.g.
hours, days, weeks. Intervals can span between some exact moments in calendar time, or de-
fine a duration from an onset. This facilitates the specifications of time-related policies, where
some system state is required to last for some specific time and to be followed by some other
state, again possibly with some specified duration. In particular, we develop the framework for
a diagrammatic system, called Timed Spider diagrams that enables the visualisation of temporal

1 / 14 Volume 41 (2011)

Timed Spider Diagrams

constraints by annotating Spider diagrams with temporal constraints on their validity, and dis-
cuss its properties. We provide a semantics for Timed SDs based on a natural representation of
the evolution of the state of a system over an interval as a sequence of snapshots and use such a
representation to check the consistency of policies specified through several diagrams, possibly
presenting overlapping intervals. Besides developing the basis for such definitions, we use them
to check if a diagram over an interval in a timed-SD-sequence is a valid instance of a model, or if
it is a valid deduction from some such instance (exploiting standard inference figures for SD, as
for example those in [HST05]). The proposed model can also be used to derive transformation
rules from policies, to simulate the behaviour of processes complying with them, thus allowing
both a static and a dynamic analysis of a specification. This opens new avenues of research, such
as: (i) the expansion of diagrammatic logic results into a temporal setting; (ii) the translation of
the underlying model of the temporal constraint language into a graph transformation setting.

In what follows, Section 2 introduces new notions of SD-specifications and instances used for
modelling, their interpretations and the notion of an SD-instance satisfying a SD-specification.
We introduce concepts related to intervals and interval specifications in Section 3, and introduce
timed-SDs in Section 4, providing a notion of SD-stories and semantics of timed-SDs in terms
of SD-stories. Finally, Section 5 discusses related work, whilst Section 6 draws conclusions.

2 Specialisation of SDs for modelling purposes

We adopt a variant to a standard definition of SDs and of their interpretation (see [HMT+01,
HST05]), providing a more direct relation of SDs to modeling in object-oriented terms.

A (concrete) ED is a collection of (labelled) simple closed curves in the plane, called contours,
decomposing it into connected minimal regions. A zone is a region inside one set of contours and
outside all the other ones; zones may be shaded. A (concrete) SD is an ED together with extra
syntax for spiders. These are trees whose vertices (called feet) are placed in zones, with no two
vertices of the same tree lying within the same zone. All diagrams have a “boundary contour”,
drawn as a rectangle and labelled by U (the universe of discourse); all regions are then inside U .

A concrete diagram represents logical statements according to the following intuitive seman-
tics. The interior of a contour represents a set (corresponding to the label) and the regions formed
by taking intersection, union and complement of regions represent the result of the corresponding
set operations. Spiders represent elements in the sets determined by their habitat (the smallest
region containing the spider). Distinct spiders represent distinct elements. Shading places upper
bounds on the cardinality of sets: there are no more elements in the set represented by a shaded
zone than the number of spider feet touching that zone; a shaded zone without feet touching it
represents an empty set. A single diagram is called unitary. Unitary systems can be extended to
compound systems, allowing standard logical connectives between diagrams.

Figure 1 shows an example of two unitary Spider diagrams used for static constraint specifi-
cation; taking the two diagrams in conjunction would yield a compound diagram. Together they
state that the set of users of a library is formed of individuals of two different types: reader and
admin. A reader can be in a state of Active, Suspended or Banned and active readers may be in
only two states: either they have some loan in place, or they are considered idle. A different type
of user, the administrator, is always active, without ever being in a state WithLoan or IsIdle.

Proc. GTVMT 2011 2 / 14

ECEASST

Active

admin

Suspended Banned

reader

WithLoan

IsIdle

Active

reader

admin

Figure 1: An example of two SD-specifications, stating two policy rules for a library.

Definition 1 Let C and S be disjoint sets of labels. A unitary spider diagram d on L =
C ∪S is a tuple (C,Z,sh,S,h) such that: C is a set of curve labels drawn from C , with U ∈C; Z
is a set of zones, each of which is defined as z = (X ,Y), where the sets X and Y form a partition
of C (with U ∈ X and Y possibly empty). X is referred to as the inside set of curves, and Y is
the outside set; sh : Z→ B is a shading function assigning a boolean value to each zone. A zone
z for which sh(z) = true is said to be shaded and Z∗ ⊂ Z denotes the set of shaded zones; S is
a set of spider labels drawn from S ; h is a habitat function h : S→P(Z) that records the set
of zones that each spider touches. Each unique pair (s,z) ∈ S×Z s.t. z ∈ h(s) is called a foot
of spider s, and we call F the set of all feet. A compound spider diagram, D, is any unitary SD
or any construct with unitary SDs as primitives and allowing the unary logical negation operator
not, and the binary logical conjunction and disjunction operators ∧ and ∨ as connectives.

We provide a standard notion of interpretations and models (in a logic sense); see [HST05].

Definition 2 Let d be a SD on L . An interpretation of d is a pair (U,ψ), where U is a set and
ψ is a function that assigns subsets of U to each curve. The map ψ naturally extends to zones,
and is also extended to spiders by mapping them to singleton subsets1 of U . An interpretation is
a model for d if it satisfies the semantics predicate, which states that: missing zones represent the
empty set; each spider represents a unique element in the set represented by its habitat; shaded
zones have cardinality at most the number of spiders touching that zone.

We distinguish between SDs used for system (invariant) specification and SDs used as model
instances. However, we use the same syntax, with restrictions on the form of the labels. We
situate SDs within object oriented specifications, with reference to a type system, assuming ac-
cess to types, classes, and instances via labels. We interpret SD-specifications and SD-instances
by specialising Definition 2, varying the interpretation of ψ on spiders in the two cases: for SD-
specifications a spider represents a set of objects of a given type, whilst in an SD-instance a spider
represents the singleton set containing the named object of a given type. Thus, SD-specifications
place global constraints on a model (in a Software Engineering sense) instance.

Definition 3 An SD-specification is an SD, where C is drawn from the set of class or state
names of the system and S from the set of types. An SD-instance is an SD, where C is drawn
from the set of class or state names of the system, and S are pairs of object names and types.
With d an SD-specification and d′ an SD-instance, an interpretation of d or d′ is a pair (U,ψ)

1 For ease of exposition, we view singleton sets of U and the individual elements as interchangeable.

3 / 14 Volume 41 (2011)

Timed Spider Diagrams

where U is restricted to be a set of objects of the system, and ψ maps curves to the set of objects
of U of a certain class (as determined by the curve label). For an interpretation of d, ψ maps
each spider to the set of objects of type indicated by its label. For an interpretation of d′, ψ maps
each spider to the singleton set containing the object with name and type specified by its label.

2.1 Satisfaction

For an SD-instance to satisfy an SD-specification, the spiders in the instance must only inhabit
zones corresponding to those inhabited by spiders of that type in the specification, and no con-
straint on zone cardinality can be violated. Parts of the specification may be not relevant to the
check, e.g. curves not present in the instance. Hence, a projection of a diagram d onto a set C,
of abstract curves produces a diagram dC with all curves not in C removed. This operation, be-
sides redefining zones and their shading, modifies accordingly the habitat of spiders, coherently
with the adopted semantics for these pieces of syntax. In Figure 2 (top) an SD-specification d
combines the two policies in Figure 1. On the bottom left, an SD-instance d′ indicates that the in-
stance John of type reader is suspended. The bottom right shows the projection d{U,Suspended}

of d onto the curve set of d′. As d′ has a correctly typed individual (John and Susan) in an
admissible zone for each type in d{U,Suspended}, we say that d′ satisfies d.

Active Suspended

WithLoan

IsIdle

Banned

admin

reader

Suspended

John: reader

Model Instance

Combined Policy Specification

Suspended

admin

reader

Projection of Specification

Susan: admin

Figure 2: An example of an SD-instance.

Definition 4 Let C ⊆ C be a set of curves, with U ∈C, and let z = (X ,Y) ∈ Z be a zone. The
projection of z with respect to C, zC, is the pair (X ∩C,Y ∩C). This extends to the projection
of Z with respect to C, denoted by ZC. Let d be a SD with curve set C′, where C ⊆C′. If s is a
spider in d with habitat h(s), then the projection of s with respect to C is spider sC with habitat
h(sC) ⊆ ZC such that z ∈ h(s) =⇒ zC ∈ h(sC) and z′ ∈ h(sC) =⇒ ∃z ∈ h(s) such that z′ = zC.

Proc. GTVMT 2011 4 / 14

ECEASST

The projection of d with respect to C is the diagram, denoted dC, obtained from d as follows:
(1) we replace each zone of d, and each spider of d, by their projection with respect to C; (2) if
z ∈ Z(dC) then z is shaded if and only if every zone z′ ∈ Z(d) such that (z′)C = z is shaded.

When considering an SD-instance satisfying an SD-specification, we allow multiple spiders
of the same type in the SD-instance, but insist that they all satisfy the constraints from the SD-
specification. We also insist that in the SD-instance there is at least one spider of each type
present in the SD-specification; moreover, given a spider in the SD-instance, its habitat is con-
tained in the projection of the habitat of the spider for that type in the SD-specification.

Definition 5 Let d1 be an SD-specification and let d2 be an SD-instance2. We say that d2
satisfies d1, denoted d2 |= d1, if: 1) C2 ⊆C1; 2) Z2 ⊆ (Z1)

C2 ; 3) Z∗2 ⊆ (Z∗1)
C2 ; 4) (Z∗1)

C2 ∩ (Z2 \
Z∗2) = /0; 5) π2(S2) = S1, where πi takes the i-th component of a tuple and is extended to sets; 6)
∀s2 ∈ S2[∃s1 ∈ S1[π2(s2) = s1∧h2(s2)∩ZC2

1 ⊆ h(s1)
C2]].

3 Interval specifications

We extend SDs to enable temporal specifications, associating temporal annotations with the
elements of a SD or with a whole SD, to indicate the time over which the associated con-
straint/situation holds. While several models of time could be utilised, we choose to use a model
based on calendar time, where consecutive integer indexes are used to indicate contiguous time-
intervals each with a duration defined by a granule or time-unit. The intervals we associate with
diagrams have integer endpoints and are interpreted as the sequence of consecutive granules in-
dexed by the integers within the interval, including the endpoints. We are interested in the meet,
during, and overlap relations of Allen’s interval algebra [AF94], and they are adapted for use
with the intervals associated with the diagrams. One can do this by considering Allen’s relations
for the actual time-intervals that are the union of the time-intervals of the consecutive integers
in the interval associated to the diagram. The simple set-up presented here essentially combines
the model of [AF94] with the calendar model adopted in [BBF01].

We use N to denote the set of natural numbers and N0 for N∪{0}. For the granularity of in-
tervals we consider standard time units e.g. seconds, hours, days, with the usual layering among
them. Hence, each granule can be decomposed into finer sub-granules up to some undecom-
posable granule (i.e. our time model is ultimately a discrete one). However, we consider that
significant specifications are expressed with respect to decomposable granules. Time 0 refers to
the system starting time for the model at hand.

Definition 6 Given a time unit u, let a,b ∈ N0 and a ≤ b. We call [a,b]u the time interval in
u, i.e. the ordered sequence of granules indexed by all natural numbers between and including a
and b. The set of all time intervals in u is denoted by Iu. With I1 = [a1,b1]u, I2 = [a2,b2]u ∈Iu,
we say: 1) I1 meets I2, denoted by I1u I2, iff a2 = b1 +1; 2) I1 during I2, denoted by I1 v I2 iff

2 For simplicity we assume here that these are unitary diagrams and that the SD-instance does not contain curves that
are not present in the SD-specification.

5 / 14 Volume 41 (2011)

Timed Spider Diagrams

a1 ≥ a2, b1 ≤ b2
3; 3) I1 overlaps I2, denoted by I1t I2, iff a1 < a2 ≤ b1 < b2. If none of the above

occurs, we say that I1 and I2 are disjoint, with the two cases I1 < I2 and I1 > I2. For non disjoint
I1 and I2, we define their merge I1� I2 as the interval I = [min(a1,a2),max(b1,b2)].

Example 1 We have [0,2]d u [3,6]d ; they merge to give [0,6]d . In this case we use days as
granules, so the interval specifies the 7 consecutive days of a week; the interval [1,1]d , with the
same start and end point, is interpreted as the second day of the week, starting counting at 0.
We also have [1,2]d v [1,4]d , and [1,2]d� [1,4]d = [1,4]d ; [1,3]d t [2,4]d and [1,3]d� [2,4]d =
[1,4]d ; [1,2]d is disjoint from [4,5]d .

Besides simple intervals, we have interval specifications involving expressions on variables.

Definition 7 Given a time unit u, an interval specification in u is a construct [exp1,exp1 +
exp2]u, where exp1 and exp2 are two linear expressions including natural numbers and variables
(with integer coefficients other than zero) that can be evaluated over N0. Var(exp) denotes the
set of variables appearing in exp and Var(I) the cumulative set of variables from exp1 and exp2.
A valuation Val(exp) is a set of assignments to natural numbers for each variable in Var(exp), so
that each occurrence of the same variable name is assigned the same value. Analogously Val(I)
denotes the simultaneous valuation of exp1 and exp2. The value of exp according to Val(exp) is
denoted ‖Val(exp)‖. The interpretation of an interval specification tSpec = [exp1,exp1+exp2]u
is the set of intervals int(tSpec) = {[a,b]u ∈Iu | ∃Val(tSpec),s.t.‖Val(exp1)‖= a,‖Val(exp2)‖
= b−a}. We denote by I ′

u the set of interval specifications in u.

Example 2 Consider an interval specification I = [x+1,x+1+2y]u. Then Var(x+1) = {x},
Var(2y) = {y}, and Var(x+1+2y) = {x,y}=Var(I) are sets of variables. Suppose that we have
valuation functions Val(x+1) such that x 7→ 3, and Val(2y) such that y 7→ 1. Then x 7→ 3,y 7→ 1 is
an assignment of natural numbers to variables in Var(I). The values of the expressions according
to these assignments are: ||Val(x+1)|| = 4, ||Val(2y)|| = 2, ||Val(x+1+2y)||= 6, ||Val(I)|| =
[4,6]u. The interpretation of [x+1,x+1+2y]u is the set of all intervals [a,b]u s.t. a≥ 1 and b−a
is an even number (possibly 0). Note that each valuation of an interval specification, I, fixes it to
be a specific interval.

In the following, we omit the indication of the unit where no ambiguity arises, and deal only
with specifications tSpec s.t. int(tSpec) 6= /0, ruling out specifications such as [x,x− (2x+ 1)].
Two non disjoint intervals I1, I2 in a set of intervals I can be naturally decomposed into a sequence
of at most three contiguous intervals (i.e. meeting and not overlapping) as follows: 1) if I1u I2
do nothing; 2) if I1 v I2 (and it is not the case that I1 starts, finishes or is equal to I2, hence
a1 > a2 and b1 < b2) then build the sequence [a2,a1− 1], [a1,b1], [b1 + 1,b2] (the other cases
being easily derivable); 3) if I1t I2, then build the sequence [a1,a2−1], [a2,b1], [b1 +1,b2]. This
procedure can be iterated on any set of intervals (s.t. no interval is disjoint from all the others)
until each non disjoint pair of intervals meet. It can be proved that the resulting collection of
intervals is unique. Note that this does not create new end or start points other than those in the
set {a2− 1, . . . ,an− 1,b1 + 1, . . . ,bn−1 + 1}. Also note that some intervals can be reduced to a

3 For our purposes, we include in this the special cases defining the relations finishes, starts, or equal in [AF94].

Proc. GTVMT 2011 6 / 14

ECEASST

unitary interval, e.g if a2− 1 = a1 for case 2) above. We extend the decomposition concept to
interval specifications.

Definition 8 Let I = {I1, . . . , In} be a finite set of intervals, for Ii = [ai,bi]∈I , s.t.
⊙

i∈{1,... n} Ii

is defined and equal to [min(ai),max(bi)] for i ∈ {1, . . . ,n}. A non overlapping cover of I is a
finite set of intervals J = {J1, . . . ,Jm}, with Jk = [ck,dk], s.t.: 1)

⊙
i∈{1,...,n} Ii =

⊙
j∈{1,...,m} J j; 2)

for each k ∈ {1, . . . ,m−1}, Jk meets Jk+1 (i.e. ck+1 = dk+1). J is the canonical non overlapping
cover if its set of intervals coincides with the one derived from the procedure described above.
Let I′ = {I′1, . . . , I′n} be a finite set of interval specifications, and let Val be a valuation function
for I′ (i.e. for all of the interval specifications in I′). Then a (canonical) non overlapping cover of
I′ w.r.t. Val is a finite set of interval specifications J′ = {J′1, . . . ,J′m} s.t. ‖Val(J′)‖ is a (canonical)
non overlapping cover of ‖Val(I′)‖.

Example 3 Suppose that I = {I1 = [1,5], I2 = [4,5], I3 = [2,9]}. Then
⊙

i∈{1,2,3} Ii = [1,9].
Let J = {J1 = [1,1],J2 = [2,3],J3 = [4,5],J4 = [6,9]}, so

⊙
k∈{1,2,3,4} Jk = [1,9] and J is the

canonical non-overlapping cover of I. On the contrary, J′ = {[1,2], [3,4], [5,6], [7,9]} is another
non-overlapping cover, which is not canonical as can be easily seen since 7 is an endpoint of J′

not in the set {1,2,3,4,5,6,9}.

4 Timed Spider Diagrams

We introduce timed SDs as associations of SDs with specifications of admissible time intervals
for elements in a diagram and with constraints on variables appearing in the specifications. They
can express fairly complex temporal relations and we wish to facilitate operations such as the
combination of compatible timed-SDs (e.g. stating two parts of a same policy).

Figure 3 shows a compound diagram and introduces variables in SD-specifications. Variables
are used to specify intervals which can start at any time, so that a designated variable is instan-
tiated to define the onset of the interval. Variables are bound to natural numbers, and subject to
constraints. The figure refines the library policy: a user who stays in the Suspended state for a
whole period of 30 days (for example for not paying a fine) becomes banned. In this case the
designated variable x can be instantiated at any time, in correspondence with the moment where
a user enters the Suspended state, while the use of k and of the associated constraint indicates that
being in this state may cease at any time before the deadline of 30 days4. We consider time-valid
diagrams where elements are present only if elements on which they depend are also present,
e.g. a foot can be in a zone only during the existence interval for that zone.

Definition 9 A timed SD is a construct dT = (d,ω,X), where d = (C,Z,sh,S,h) is an SD,
ω : C∪Z∪ (Z×B)∪S∪F→I ′ is a function assigning an interval specification to each object5

in d, and X is a set of linear constraints on the valuations for the specifications assigned by ω ,
where all instances of variables with the same name receive the same value. Let Val(ω) be
a valuation function that consistently evaluates every variable in the image of ω . A valuation

4 For simplicity, we omit here the indication of the time unit.
5 F is the set of feet as derived from h : S→P(Z).

7 / 14 Volume 41 (2011)

Timed Spider Diagrams

Suspended

[x,x+k]

{k <30}

Active

[x+k+1,…]

Suspended Banned

reader

[x+31,…] [x,x+30]

reader

Figure 3: A user either exits from suspension within 30 days or becomes banned.

‖Val(ω(x))‖ = [a,b] satisfies X , denoted ‖Val(ω(x))‖ |= X , if no assignment in Val violates a
constraint in X , and a≤ b. We say that dT is time-valid if ∃Val(ω) s.t.:

1. ∀x ∈C∪Z∪ (Z×B)∪S∪F [‖Val(ω(x))‖ |= X].

2. The following general constraints hold:

• ∀ f = (s,z) ∈ F [‖Val(ω(f))‖ v ‖Val(ω(s))‖];

• ∀ f = (s,z) ∈ F [‖Val(ω(f))‖ v ‖Val(ω(z))‖];

• ∀z ∈ Z[‖Val(ω(z,sh(z)))‖ v ‖Val(ω(z))‖];

• ∀z ∈ Z,c ∈C[‖Val(ω(z))‖ v ‖Val(ω(c))‖].

Given an interval specification [exp1,exp1 + exp2], if there exists a variable x ∈ Var(exp2) \
Var(exp1), s.t. no constraint is explicitly given for x, then we say that exp1 + exp2 is unlimited
and write [exp1, . . .]. In the following, we only deal with time-valid diagrams, and rule out in-
admissible sets of specifications, such as I = {[x,x+y], [z−y,x−z−1]}with X = {y= z,z= 2x}.

Elements in a diagram are present during the specified time-intervals, with any non-assigned
element being assigned [0, . . .] by default. We interpret that for any interval I disjoint from the
image of a diagram element, that element is not present during I. Note that associating an interval
with a pair in Z×B allows for modifications over time of the property of being shaded for a zone.

A timed-SD (d,ω) can represent a complex time-based set of constraints. However, this can
be reduced to a collection of basic timed SDs where each diagram is associated with a single
interval. This construction is possible if ω is well-defined for every element of d and the image
of any such element under ω is a single interval. Hence, for each time-valid timed SD there
is an equivalent sequence of basic timed SDs, where the intervals of consecutive diagrams are
contiguous. In Definition 10, we first define these concepts for SDs, permitting specialisation
to SD-specifications and SD-instances, and then we make use of specialisations by providing
semantics to the timed SD-specifications.

Definition 10 (1) A basic timed-SD is a tuple (d, I,X), where d is an SD, I ∈I ′ and X is a set
of linear constraints on Var(I). (2) Let 〈d〉= 〈(d1, I1,X1), . . . ,(dn, In,Xn)〉 be a sequence of basic
timed-SDs. We say that 〈d〉 is contiguous w.r.t. a joint valuation function Val over all interval
specifications I1, . . . , In, if ||Val(I j)||u ||Val(I j+1)|| for all j ∈ {1, . . . ,n−1}.

Proc. GTVMT 2011 8 / 14

ECEASST

A timed SD encapsulates complex temporal constraints. For purposes such as to allow mod-
ularisation of the constraints according to some time-line, as well as defining the semantics of
timed SD-specifications, we provide a conversion from timed-SDs to sequences of contiguous
basic timed-SDs. The following can be applied to SD-specifications or SD-instances.

Definition 11 Let dT = (d,ω,X) be a time-valid timed SD w.r.t. a valuation function Val(ω).
Let 〈d′〉 = 〈(d′1,J1,Y1) , . . . , (d′m,Jm,Ym)〉 be a sequence of basic timed SDs, and Val′ a joint
valuation function over the Ji’s s.t.: (i) 〈d′〉 is contiguous w.r.t. Val′; (ii) for each subinterval I of
‖Val′(Ji)‖, d′i consists of exactly the diagram elements x of d for which I v ‖Val(ω(x))‖. Then
d′ is a time-decomposition of dT . If m is minimal subject to (i) and (ii), then d′ is a canonical
time-decomposition of dT .

Algorithm 1 Let dT = (d,ω,X) be a time-valid timed SD, and let Val be a valuation function
over ω . Then: 1) Let I be the set of all of the interval specifications obtained as ω(x), for any
x ∈C∪Z∪ (Z×B)∪S∪F . 2) Construct J = {J1, . . . ,Jm}, the canonical non overlapping cover
of I w.r.t Val. 3) Construct 〈(d1,J1,Y1), . . . ,(dm,Jm,Y1)〉, where di is the SD consisting of the set
of diagram elements x, for all x∈C∪Z∪(Z×B)∪S∪F for which ‖Val(Ji)‖ is not disjoint from
‖Val(ω(x))‖.

Theorem 1 Let dT = (d,ω,X) be a time-valid timed-SD, and let Val be a valuation function
over ω . Then the construct 〈(d1,J1,Y1), . . . ,(dm,Jm,Y1)〉 from Algorithm 1 is a canonical time-
decomposition of dT .

Proof. Post-valuation, one can consider the set of intervals associated to each diagram element,
and decompose this into a sequence of contiguous intervals which collectively merge to yield
the whole timeline. Then, for each interval in this decomposed timeline, there is a single corre-
sponding diagram (comprising all and only the diagram elements of d that are present within that
interval); each of these is a well-defined diagram since dT is time-valid. These diagrams together
with associated intervals constitute a contiguous sequence of basic timed-SDs. It follows that
they form a canonical time-decomposition of dT , due to the construction. The argument lifts
from intervals to interval specifications.

4.1 Satisfaction and semantics of timed-SDs

We extend the notion of satisfaction of an SD-specification by an SD-instance to timed SDs.
That is, we define what it means for a timed SD-instance to satisfy a timed SD-specification. We
do this by first translating both specification and instance into distinct contiguous sequences of
basic timed SDs. Then we provide a definition of satisfaction of a sequence of contiguous basic
timed SD-specifications by a contiguous sequence of basic timed SD-instances. This is done by
checking that over every interval of the sequence of basic SD-instances, the SD-instance satisfies
the SD-specification during that interval. A sequence of contiguous basic timed SD-instances
satisfying a contiguous sequence of (basic) timed SD-specifications is called a story and the
semantics of a timed SD-specification is defined to be the set of all of its stories. This could also
be viewed as the set of all possible snapshot sequences that satisfy all of the constraints for the
corresponding intervals.

9 / 14 Volume 41 (2011)

Timed Spider Diagrams

Definition 12 Let 〈d〉 = 〈(d1, I1,X1), . . . ,(dn, In,Xn)〉 be a contiguous sequence of basic timed
SD-specifications, and let 〈d′〉= 〈(d′1,J1,Y1), . . . ,(d′m,Jm,Ym)〉 be a contiguous sequence of basic
timed SD-instances. Then, for a common valuation function Val, over I1, . . . , In,J1, . . . ,Jm and
an interval K, we say that: (i) 〈d′〉 |=K 〈d〉, if for i, j s.t. K,‖Val(Ii)‖, and ∩

∥∥Val(J j)
∥∥ are

jointly overlapping, d′j |= di; (ii) 〈d′〉 satisfies d, denoted 〈d′〉 |= 〈d〉, if ∀Ji ∈ {J1, . . . ,Jm}, we
have 〈d′〉 |=Ji 〈d〉. Let dT = (d,ω,X) be a time-valid timed-SD-specification (w.r.t. Val) and let
〈d′′〉 = 〈(d′′1 ,K1,Z1) , . . . , (d′′p,Kp,Zp)〉 be a time-decomposition of dT (w.r.t. Val′′). Then, for a
common valuation function Val′ over K1, . . . ,Kp,J1, . . . ,Jm, 〈d′〉 satisfies dT if 〈d′〉 satisfies 〈d′′〉.

Definition 13 Let dT =(d,ω,X) be a time-valid timed-SD-specification. Let 〈d〉= 〈(d1, I1,X1),
. . . , (dn, In,Xn)〉 be a contiguous sequence of basic timed SD-instances, s.t. for each valuation
function Val of ω , there is an extension of Val to Val2, a valuation of ω, I1, . . . , In with 〈d〉 |= dT ,
w.r.t. Val2. Then 〈d〉 is called a dT -story and the semantics of dT is the set of all dT -stories. We
also speak of SD-stories when dT is implicit.

Suspended

[x,x+k]{k <30}

reader

Active

[x+k+1,...]

reader

Banned

[x+31,...]

reader

Suspended

[x,x+30]

reader

Figure 4: (a) Alternative cases which are
contiguous basic timed SD-specifications
for the timed SD-specification of Figure 3.

Suspended

[21/3/2009, 21/3/2009 + 30]

John: reader

Suspended

[21/3/2009 + 31, 21/3/2009 + 34]

John: reader

Figure 4: (b) A contiguous sequence of ba-
sic timed SD-instances which is not an SD-
story for the specification of Figure 3.

Figure 4(a) shows examples of two contiguous sequences of basic timed SD-specifications that
encapsulate the alternative cases of the timed SD-specification of Figure 3. Figure 4(b) shows
an example of contiguous sequence of basic timed SD-instances which does not satisfy either of
the sequences in Figure 4(a), and is not an SD-story for Figure 4(a); note that if the Suspended
state in the second diagram were changed to a Banned state, then this would by a story for the
SD-specification in Figure 4(a).

Any SD-instance satisfying a canonical time decomposition of a timed SD-specification is an
SD-story. There could be many of these SD-instances, but there is at least one. The canonical
time decomposition of a timed-SD exists and is unique, provided we place certain restrictions on
the valuation function.

Proc. GTVMT 2011 10 / 14

ECEASST

Theorem 2 Let dT = (d,ω,X) be a time-valid timed SD-specification, w.r.t. Val, a valuation
function over ω . Let 〈d′〉 = 〈(d′1, I1,X1), . . . , (d′n, In,Xn)〉 be a contiguous sequence of basic
timed SD-instances that satisfies a canonical time decomposition of dT . Then 〈d′〉 is an SD-story
(called a canonical SD-story).

Proof. Satisfaction of a canonical time decomposition of dT implies satisfaction of dT .

Corollary 1 Each time-valid timed SD-specification dT =(d,ω,X) has a non-empty semantics.

Proof. Since dT is time-valid, there is a canonical time decomposition of dT . Any SD-instance
which realises the spider types of this canonical time decomposition as appropriate (name,type)
pairs is an SD-story, as required6.

Definition 14 An initialised canonical time decomposition of dT is a canonical time decom-
position of dT , w.r.t. a valuation function IVal, which assigns the minimal admissible value to
iexp1, with J1 = [iexp1, iexp1+ iexp2]. An initialised left-minimal canonical time decomposition
is an initialised canonical time decomposition with valuation ILMVal such that the lengths of
each Ji is minimal over all IVal valuations, miminizing in order of increasing index i.

Theorem 3 Let dT = (d,ω,X) be a time-valid timed SD, and let Val be a valuation function
over ω . Then there exists a unique initialised left-minimal canonical time decomposition.

Proof. Existence derives from Theorem 2, uniqueness from the minimization process.

Theorem 4 Let dT be a timed-SD specification. Then the time-validity of dT is decidable.

Proof. The interval specification constraints reduce to a system of linear diophantine equations
(relating end-points to start-points) under a set of constraints. That the solution, without con-
straints, is decidable is a classical result.

5 Related work

Several models of time have been proposed for formal specifications, both in relation to real-
time [GB03, AD94] or hybrid [Hen96] behaviours. Time-based extensions have been also pro-
posed for calculi or specification languages of concurrent processes (see [FOP09] or [BW03]). In
general, these models deal with intervals to model uncertainty about the actual occurrence of an
event. In Statemate, also a clock-synchronous semantics is provided where events can only occur
when a clock ticks [EJW02]. This view was adopted also in [GVH03] to integrate time in graph
transformations, by introducing a specific attribute updated by clock messages to processes.

In UML, a simple model of time is adopted, based on a notion of observation, and able to
express durations and deadlines [OMG10], whereas in the profile for real-time applications,
effects connected with latencies in observation can be taken into account [OMG05]. In both
cases, OCL constraints can incorporate conditions on time expressions.

6 We assume the set U has sufficient elements for such a realisation.

11 / 14 Volume 41 (2011)

Timed Spider Diagrams

In general, we are interested here in the persistence in a state over a period as dictated by
time-dependent policies, rather than in modeling the occurrence of specific transitions triggered
by any type of events. As a consequence, the model of time adopted here is connected to the
notion of calendar time, as adopted in the area of temporal databases and temporal rule based
access control. In particular, we adopt a model analogous to that Bertino et al. [BBF01], based
on a formalism proposed by Niezette and Stevenne [NS92], which however considered intervals
of fixed length, repeated after some time. In Bertino’s model a calendar is a set of contiguous in-
tervals, each with its own duration, containing all the instants between its extreme granules, from
the start of the first granule to the end of the second one. Based on this, they introduce periods
to express that some roles have to be granted specific access rights at recurring times. Ning et
al. exploit the notions of calendars and granules to define a calendar algebra, where operations
allow the grouping of intervals or the subdivision of granules [NWJ02]. Of interest here is the
notion that the intervals covered by distinct granules (at the same level) cannot be interleaved.
Others consider calendar times as corresponding to an instant, rather than a granule [KÖ95]. A
vast examination of the problems related to the use of different granularities is in [EM05].

The field of multimedia is another area in which the modeling of time is relevant, in particular
as sequential media (typically audio and video) may have to be synchronised with the presence
of static documents for some time. In many cases one is therefore interested in considering
durations of intervals which can start at any point in time, rather than at specific instants. As an
example, Bowman et al. have defined a formalism in which, once a starting point for the system
is set, reasoning can be performed on the occurrence, within the current interval, of a state, based
on the lengths of the current and previous intervals [BCKT03].

In addition to considering intervals, in the approach presented in the paper, the use of in-
stants in the specification of rules can provide a weak form of clock-synchronous specification,
associated with the triggering of a time-dependent transition.

In the field of SDs, to our knowledge this is the first attempt to integrate time-related as-
pects in the formalism. Moreover, we draw a more precise correspondence with object-oriented
modeling, by distinguishing specifications from instance models and providing two distinct in-
terpretations for spiders, as types and as typed individuals. A relation can be drawn with the
construction of parallel models in Z for constraint diagrams in [HS05].

The idea of representing system dynamics through sequences of EDs was introduced in [BF10],
to follow the evolution of sets (rather than the state of individuals) under the effect of a Reaction
Systems [ER07], and colour was used to assist in tracking families of sets through the sequences.

6 Discussion and conclusions

We have proposed an extension of SDs which enables them to express time-dependent policies,
in which curves indicate the permanence of individuals, modeled by spiders, in some state, over
some interval. Stories of individual evolution can then be checked against these specifications
to assess conformance to the policy, so that the semantics of a policy specification is the set of
stories conformant to that specification. We adopt a simple model of time, related to measure-
ment units rather than system clocks. The model is suitable to the expression of requirements
and constraints on system configurations, rather than of real-time behaviours.

Proc. GTVMT 2011 12 / 14

ECEASST

However, a limited form of dynamics can be provided by the use of rules enforcing modifica-
tions in the state of individuals according to a policy. In this case, we could specify rules over
timed specifications, to produce dynamic views of a specified system. To this end, we could use
rules triggered by the onset or offset of an interval (in this case making reference to the mapping
of intervals onto the fundamental granule layer). For example, given a collection of specifica-
tions 〈(d1,ω1), . . . ,(dn,ωn)〉 annotated with contiguous interval specifications, one can derive a
collection of rules as pairs ((di,ωi),di+1), together with some mapping µ from elements of di to
elements of di+1. The interpretation of such a rule would be that if a system has been described
by an SD instance satisfying di over an interval given by a valuation of ωi, then at the end of this
interval it moves to a state described by an SD instance, related to the previous one via µ , which
is a model for di+1.

We plan to extend this work in a number of directions. Firstly, standard notions and results
from the theory of (static) SDs have to be reviewed and lifted to timed SDs, taking into account
the distinction between spiders at the different levels. Secondly, the extension to real-time may
require a different basis for time, considering open intervals over the reals. Thirdly, we plan
to consider different types of dynamics, integrating event-based and time-dependent specifica-
tions, exploiting the mapping of SDs to typed attributed graphs, called Spider Graphs, presented
in [BFP10], possibly following the approach in [GVH03].

Bibliography

[AD94] R. Alur, D. L. Dill. A Theory of Timed Automata. TCS 126(2):183–235, 1994.

[AF94] J. F. Allen, G. Ferguson. Actions and Events in Interval Temporal Logic. J. Log.
Comput. 4(5):531–579, 1994.

[BBF01] E. Bertino, P. A. Bonatti, E. Ferrari. TRBAC: A temporal role-based access control
model. ACM Trans. Inf. Syst. Secur. 4(3):191–233, 2001.

[BCKT03] H. Bowman, H. Cameron, P. King, S. Thompson. Mexitl: Multimedia in Executable
Interval Temporal Logic. Formal Methods in System Design 22:5–38, January 2003.

[BF10] P. Bottoni, A. Fish. Coloured Euler diagrams: a tool for visualizing dynamic systems
and structured information. In Proc. Diagrams 2010. LNAI 6170, pp. 39–53. 2010.

[BFP10] P. Bottoni, A. Fish, F. Parisi-Presicce. Preserving constraints in horizontal model
transformations. GTVMT-2010, ECEASST 29:1–14, 2010.

[BW03] V. Bulitko, D. C. Wilkins. Qualitative simulation of temporal concurrent processes
using Time Interval Petri Nets. Artificial Intelligence 144(1-2):95 – 124, 2003.

[EJW02] R. Eshuis, D. N. Jansen, R. Wieringa. Requirements-Level Semantics and Model
Checking of Object-Oriented Statecharts. Requir. Eng. 7(4):243–263, 2002.

[EM05] J. Euzenat, A. Montanari. Chapter 3 Time granularity. In M. Fisher and Vila (eds.),
Handbook of Temporal Reasoning in Artificial Intelligence. Foundations of Artificial
Intelligence 1, pp. 59–118. Elsevier, 2005.

13 / 14 Volume 41 (2011)

Timed Spider Diagrams

[ER07] A. Ehrenfeucht, G. Rozenberg. Events and modules in reaction systems. TCS
376:316, 2007.

[FFH05] A. Fish, J. Flower, J. Howse. The Semantics of Augmented Constraint Diagrams.
JVLC 16:541–573, 2005.

[FOP09] M. Falaschi, C. Olarte, C. Palamidessi. A framework for abstract interpretation of
timed concurrent constraint programs. In Proc. PPDP ’09. Pp. 207–218. ACM,
2009.

[GB03] H. Giese, S. Burmester. Real-Time Statechart Semantics. Technical report tr-ri-03-
239, University of Paderborn, 2003.

[GVH03] S. Gyapay, D. Varro, R. Heckel. Graph Transformation with Time. Fundamenta
Informaticae 1:1–22, 2003.

[Hen96] T. A. Henzinger. The Theory of Hybrid Automata. In LICS. Pp. 278–292. 1996.

[HMT+01] J. Howse, F. Molina, J. Taylor, S. Kent, J. Gil. Spider Diagrams: A Diagrammatic
Reasoning System. JVLC 12(3):299–324, 2001.

[HS05] J. Howse, S. Schuman. Precise Visual Modelling. SoSyM 4:310–325, 2005.

[HST05] J. Howse, G. Stapleton, J. Taylor. Spider Diagrams. LMS Journal of Computation
and Mathematics 8:145–194, 2005.

[Ken97] S. Kent. Constraint Diagrams: Visualizing Invariants in Object Oriented Modelling.
In Proc. OOPSLA97. Pp. 327–341. ACM Press, October 1997.

[KÖ95] A. Kurt, Z. M. Özsoyoglu. Modeling and Querying Periodic Temporal Databases.
In Proc. DEXA Workshop. Pp. 124–133. 1995.

[NS92] M. Niezette, J. Stevenne. An efficient symbolic representation of periodic time. In
Proc. CIKM 1992. Pp. 161–168. 1992.

[NWJ02] P. Ning, X. S. Wang, S. Jajodia. An Algebraic Representation of Calendars. Annals
of Mathematics and Artificial Intelligence 36(1-2):5–38, 2002.

[OMG05] OMG. UML Profile for Schedulability, Performance, and Time Specification, Ver-
sion 1.1. Technical report formal/05-02-06, OMG, 2005. http://www.omg.org/cgi-
bin/doc?realtime/05-02-06.pdf.

[OMG10] OMG. OMG Unified Modeling Language (OMG UML), Superstruc-
ture Version 2.3. Technical report formal/2010-05-05, OMG, 2010.
http://www.omg.org/spec/UML/2.3/Superstructure.

[STHT04] G. Stapleton, S. Thompson, J. Howse, J. Taylor. The Expressiveness of Spider Dia-
grams. J. of Logic and Computation 14(6):857–880, December 2004.

Proc. GTVMT 2011 14 / 14

	Introduction
	Specialisation of SDs for modelling purposes
	Satisfaction

	Interval specifications
	Timed Spider Diagrams
	Satisfaction and semantics of timed-SDs

	Related work
	Discussion and conclusions

