
Electronic Communications of the EASST
Volume 4 (2006)

Proceedings of the
Second International Workshop on
Graph and Model Transformation

(GraMoT 2006)

Parsing of Adaptive Star Grammars

Mark Minas

15 pages

Guest Editors: Gabor Karsai, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Parsing of Adaptive Star Grammars

Mark Minas

Mark.Minas@unibw.de, http://www.unibw.de/Mark.Minas
Institut für Softwaretechnik

Universität der Bundeswehr München, Germany

Abstract: In a recent paper, adaptive star grammars have been proposed as an ex-
tension of node and hyperedge replacement grammars [DHJ+06]. A rule in an adap-
tive star grammar is actually a rule schema which, via the so-called cloning opera-
tion, yields a potentially infinite number of concrete rules. Adaptive star grammars
are motivated by application areas such as modeling and refactoring object-oriented
programs, and they are more powerful than node and hyperedge replacement gram-
mars by this mechanism. It has been shown that the membership problem is decid-
able for a reasonably large subclass of adaptive star grammars, however no parser
has been proposed. This paper describes such a parser for this subclass motivated
by the well-known string parser by Cocke, Younger, and Kasami.

Keywords: Graph parser, adaptive star grammar

1 Introduction

Refactoring is a software engineering technique that aims at enhancing the structure of object-
oriented software while preserving its behavior. Hoffmann, Janssens, and Van Eetvelde have
introduced cloning and expanding graph transformations for refactoring [HJV06]. Cloning is
used in the context of multiple nodes that may be copied (“cloned”) arbitrarily often. How-
ever, well-formedness of such graph transformations could only be specified in terms of a meta-
model. Meta-models, however, are not well suited for program syntax specifications because
of the recursive structure of program syntax. In a recent paper, adaptive star grammars have
been introduced as an extension of node and hyperedge replacement grammars and based on the
mechanism of cloning [DHJ+06]. Such grammars are well suited for specifying the language
of graphs that are used for refactoring. It has been shown that the membership problem for a
certain subclass of those grammars is decidable. However, no parser usable in practice has been
presented. This paper proposes such a parser.

The running example of this paper consists of arithmetic expressions with variables that are
used consistently with their declaration. We allow to declare arbitrarily many integer and float
variables. Expressions are either variables or the sum of two expressions. However, an integer
expression cannot be added to a float expression directly. The integer expression has to be
converted to a float expression by a conversion operator first. Graphs are used to represent
such expressions together with variable declarations. The language of such graphs cannot be
described in a context-free way. But it can be specified with an adaptive star grammar. The
example, hence, shows the usefulness of adaptive star grammars from a practical point of view,
too.

1 / 15 Volume 4 (2006)

mailto:Mark.Minas@unibw.de
http://www.unibw.de/Mark.Minas

Parsing of Adaptive Star Grammars

The next section briefly surveys other work on graph parsing. Sec. 3 then summarizes the
concept of adaptive star grammars as proposed in [DHJ+06]. More restricted versions of these
concepts better suited for parsing are used in this paper. Sec. 4 proposes a Cocke-Younger-
Kasami-style parser for adaptive star grammars without isolated nodes in their rules’ right-hand
sides. This additional restriction is dropped in Sec. 5. Sec. 6 concludes the paper.

2 Related Work

Graph parsers have been used in different application areas, but mainly in the context of visual
language parsing. Rekers and Schürr have proposed a parser for context-sensitive graph gram-
mars with an additional layering condition [RS97]. Visual language syntax is specified by such
grammars, i.e., the parser can be used for syntax checking. The paper also contains a nice survey
of other parsing approaches. More efficient extensions or modifications of this parser, also in
the context of visual language recognition, have been proposed more recently [BTS00, ZZC01].
The parser described in this paper has been motivated by the parser for hypergraph grammars
used in DIAGEN [Min02]. This parser is restricted to hypergraph grammars being context-free
with some extensions beyond context-freeness that allow for efficient parsing in practical cases.
Other work on graph parsing, e.g., covers computer linguistics [SF04] or theoretical research on
the complexity of graph parsers [Dre93].

3 Adaptive Star Grammars

Throughout the paper, let V be a set of labels partitioned into sets V̇ and V̄ of node and edge la-
bels, resp. A finite subset Σ of V is called a labeling alphabet. Its two components are Σ̇ = Σ∩ V̇
and Σ̄ = Σ∩ V̄ . Node labels V̇ are partitioned into sets N and T of nonterminal resp. terminal
labels. As usual, a graph G = 〈Ġ, Ḡ,sG, tG, ˙̀G, ¯̀G〉 consists of finite sets Ġ of nodes and Ḡ of
edges, of source and target functions sG, tG : Ḡ → Ġ, and of node and edge labeling functions
˙̀G : Ġ→ V̇ and ¯̀G : Ḡ→ V̄ . However, nonterminal nodes cannot be target of any edge, i.e., for
all edges e ∈ Ḡ, it is required that ˙̀(tG(e)) /∈ N . The set of all graphs labeled over a labeling
alphabet Σ is denoted by GΣ.

An edge is said to be incident with its source and target nodes, and makes these nodes adjacent
to each other. For n∈ Ġ, IncG(n) denotes all edges of G incident with n. For A⊆ Ġ, G\A denotes
the subgraph of G induced by Ġ \A. Morphisms and isomorphisms are defined as usual. And
Z = X ∪Y where X and Y are graphs with disjoint edge sets, i.e., X̄ ∩ Ȳ = /0, denotes the union
of X and Y with node set Ż = Ẋ ∪ Ẏ and edge set Z̄ = X̄ ∪ Ȳ .

The central notion of adaptive star grammars is the star, a generalized version of the hyper-
edges known from hyperedge replacement grammars [DHK97]. A star is a graph S that consists
of a nonterminal node x, edges incident with x (called arms of x) and its adjacent nodes (called
border nodes). By the definition of graphs, each arm points from the center node to a border
node. A star is straight if the target nodes of its arms are pairwise distinct. For a graph G and a
node x ∈ Ġ, the star G(x) denotes the subgraph of G consisting of x, all its incident edges, and
all its adjacent nodes.

Adaptive star grammars are based on star rules. A star rule p = (L ::= R) is a rule which

Proc. GraMoT 2006 2 / 15

ECEASST

replaces the star L (left-hand side) by a graph R (right-hand side). L and R share precisely the
border nodes of L. A star rule is called straight if the left-hand side and every star of the right-
hand side is straight. A graph G can be derived to graph H by p, written G⇒p H, if G has some
node x such that the left-hand side L is isomorphic to G(x). The replacement of x by R yields the
graph H which is obtained from the disjoint union of G and R by removing x and its arms, and
identifying every border node b of L in R with its image m(b) ∈ Ġ.

So far, we have used regular nodes only. So-called multiple nodes, however, may be copied
(“cloned”) arbitrarily often. A similar mechanism can be found in the PROGRES graph transfor-
mation language [SWZ99]. We use a special subset T of multiple node labels. The remaining
node labels are said to be singular ones. We assume that every singular node label l has a copy l̈
among the multiple node labels. A node is said to be singular or multiple depending on its label.
G̈ denotes the set of all multiple nodes of graph G.

Cloning is performed by the cloning operation. Using this operation, a multiple node is turned
into any number of singular nodes, its clones. Thus, we define G x

n to be obtained from G by
replacing the multiple node x of G with n≥ 0 singular clones in the following way: Let G′(x) be
obtained from G(x) by replacing the label l̈ of x by l. Then take the disjoint union of the graph
G\{x} and n copies of G′(x). Finally, identify the n+1 copies of each node in Ġ(x)\{x} with
each other.

The result obtained by cloning a number of nodes is independent of the order in which
those nodes are treated as shown in [DHJ+06]. We define a cloning operation for the set
of multiple nodes in a graph. For each multiple node in the set, the necessary information
about the number of desired clones is given by a so-called multiplicity function µ : G̈ → N.
If G̈ = {x1,x2, . . . ,xk} (where x1, . . . ,xk are pairwise distinct), then Gµ is the graph defined by
Gµ = (. . .((G x1

µ(x1)
) x2

µ(x2)
) . . . xk

µ(xk)
).

Note that this definition of cloning is a variation of the definition in [DHJ+06] where clones of
multiple nodes can be multiple nodes again. However, as shown in [DHJ+06], this more general
concept is not required for parsing.

Finally an adaptive star grammar Γ = 〈Σ,N,P,Z〉 consists of a labeling alphabet Σ containing
only terminal labels, a finite set N ⊆N of nonterminals, a finite set P of straight star rules over
Σ∪N, and an initial nonterminal Z ∈ N. Star rules may contain multiple nodes and, hence,
cannot be used directly for derivation. Instead, star rule clones have to be created first. A star
rule clone of a rule p = (L ::= R) ∈ P is a star rule p′ = (Lµ ::= Rµ) where µ is a multiplicity
function for L and R, and Rµ does not contain multiple nodes. Clearly, every star rule clone is a
star rule. The (in general infinite) set of all star rule clones of the set P is denoted by P∆. This
allows to define the language generated by Γ as the set of all terminal graphs without multiple
nodes that can be derived by star rule clones in a finite number of steps from a graph consisting
of a single node labeled Z, i.e, L (Γ) = {G ∈ G

Σ\Σ̈
| Z ⇒+

P∆ G}.
Note that this definition of adaptive star grammars is different from [DHJ+06]. The definition

in this paper actually corresponds to the notion of so-called straight adaptive star grammars
in [DHJ+06], that is the sub-class of adaptive star grammars whose membership problem is
decidable.

As an example, we consider graphs that represent arithmetic expressions with variables that
are used consistently with their declaration as described in Sec. 1. Graph G6 in Fig. 2 shows how

3 / 15 Volume 4 (2006)

Parsing of Adaptive Star Grammars

Z ::=

VV VV

x

D

Ef

r

i f

i f

P1|P2

VV VV

x

D

Ei

r

i f

i f

P3

::=

1

f

2

ii f

ra
br r

3 x

+

VV VV

x x

Ei Ei

r

i f

1 2

3

VV VV

x

Ei

r

P4|P5

::=

x

IF

VV VV

x
r

3

i f

1 2

ar
Ei

r

i f

1 2

3

VV VV

x

Ef

r

1

f

2

ii f

ra
br r

3 x

+

VV VV

x x

Ef Ef

4x
i f

r
Ei

1 VV V2 VV3

4 x

1 VV VVV2 3

v::=

P6

i

4x
i f

r
Ef

1 VV V2 VV3

4 x

1 VV VVV2 3

v::=

P7

f

Z ::=

VV VV

x

D

Ef

r

i f

P1|P2

VV VV

x

D

Ei

r

i f

P3

::=

1

f

2

ii f

ra
br r

3 x

+

VV VV

x x

Ei Ei

r

i f

1 2

3

VV VV

x

Ei

r

i fi f

P4|P5

::=

x

IF

VV VV

x
r

3

i f

1 2

ar
Ei

r

i f

1 2

3

VV VV

x

Ef

r

1

f

2

ii f

ra
br r

3 x

+

VV VV

x x

Ef Ef

4x
i f

r
Ei

1 VV V2 VV3

4 x

1 VV VVV2 3

v::=

P6

i

4x
i f

r
Ef

1 VV V2 VV3

4 x

1 VV VVV2 3

v::=

P7

f

Figure 1: Star rules of an adaptive star grammar for the running example.

b
r

IF

x

x

xx +

VV V

D

r

v

v

a

a

f f i

1

3

2

4

5

6

9

8

7

10

Z
r

x

VV V

D
f f i

1

987

10

Eff
f i

b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i

987

10

Ef Ef

r

f f
f

f
i

i

b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i

987

10

Efv f
f i

P5P2 P4 P7 P6b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i

987

10

Ei
v

f f i

IFx a
56

r

Z b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i 9

8

7

10

Ef Ef

r

f f
f

f
i

i

P5P2 P4 P7 P6b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i

8

10

Efv f
f i

97

b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i

8

10

Ei
v

f f i

IFx a

5

6

r

97

r

x

VV V

D
f f i

1

8

10

Eff
f i

97

b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i

8

10

v

IF

x
a

5

6

v

97

Z b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i 9

8
7

10

Ef Ef

r

f f
f

f
i

i

P5P2 P4 P7 P6b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i

8

10

Efv f
f i

97

b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i

8

10

Ei
v

f f i

IFx a

5

6

r

97

r

x

VV V

D
f f i

1

8

10

Eff
f i

97

b
r

x

xx +
r

a

1

3

2

4

VV V

D
f f i

8

10

v

IF

x
a

5

6

v

97

G1 G2 G3 G4 G5 G6

Figure 2: Sample derivation using the grammar in Fig. 1.

declarations and expressions are represented by a graph: Three variable are declared, represented
by V nodes adjacent to the declaration node D. The label of the connection indicates whether it
is an integer variable (i) or a float variable (f). Expressions are represented by x nodes. An x
node, if it is a variable access, is connected by a v edge with a V node. Otherwise, it is connected
by an r edge with the operator (+ or IF for integer-float conversion). Arguments of an operator
are indicated by a and b edges. G6 in Fig. 2 represents the expression v7 + IF(v9) with integer
variable v9 and float variables v7 and v8.

Fig. 1 shows the rules of an adaptive star grammar for our running example. Terminal nodes
are drawn as circles, nonterminal ones as squares. Multiple nodes (e.g., nodes 1 and 2 in rule P4)
are drawn with a shadow. L ::= R1|R2 is a shorthand notation for two rules L ::= R1 and L ::= R2.
Border nodes are indicated by integers, corresponding border nodes of the left-hand side and the
right-hand side carry the same integers.

Nonterminals Ei and E f represent an integer resp. float expression. The resulting x is con-
nected by an r edge, and all accessible variables are connected by i and f edges indicating
integer resp. float variables. Productions P1 and P2 create an integer resp. a float expression to-
gether with variable declarations from the initial graph. The sets of all integer and float variables
are indicated by the multiple V nodes being connected by an i-labeled resp. f -labeled edge with
the D node. P3 and P4 create a sum expression of type integer resp. float, whereas P5 creates a

Proc. GraMoT 2006 4 / 15

ECEASST

VV
f

2
VVD‘

i

1 2
VV

f
VV

i

1
D::=

P3
Z ::=

VV VV

x

D’

Ef
r

i f

i f

P1|P2

VV VV

x

D’

Ei
r

i f

i f

::=

1

f

2

ii f

b
r r

3 x

VV VV

x

Pi Ei

r

i f

1 2

3

VV VV

x

Ei

r

P4

::=

r

i f

1 2

3

VV VV

x

Ef

r

1

f

2

ii f

b
r r

3 x

VV VV

x

Pf Ef

VV VV

x

i f

1 2

r
Ei

3

r
xC

a
P5|P6

::=
i f

1 2VV VV

b xPi

3x
r

2

4

i f

r

1 2VV VV

Ei

3 x

a bx xT
r 4

P8

::=

r

3 x

a bx xT
1 2

a b+x x

r

3 x

1 2

P9

x
r

2
xC

a

1 2
x

r
x

a

1
IF::=

P10

::=
i f

1 2VV VV

b xPf

3x
r

2

4

i f

r

1 2VV VV

Ef

3 x

a bx xT
r 4

P7

4x
i f

r
Ei

1 VV V2 VV3

4 x

1 VV VVV2 3

v::=

P11

i

4x
i f

r
Ef

1 VV V2 VV3

4 x

1 VV VVV2 3

v::=

P12

f

Figure 3: Star rules of the sample grammar in Fig. 1 transformed into ACNF

type conversion expression that converts an integer expression to a float expression. P6 and P7
create expressions that consists of just an access to an integer resp. float variable. Note that P6
contains two V nodes (node 1 and 2) representing integer variables (P7 is similar but with float
variables). Node 1 is multiple whereas node 2 singular. That way, node 2 matches the variable
being accessed whereas node 2 matches the set of all other integer variables. Therefore, it is
essential that a parser must not try to match only the maximum number of all “fitting” nodes
when a production contains a multiple node.

Fig. 2 shows a derivation of a graph (G6) representing the sample expression v7 + IF(v9) as
described above. The derivation shows that the expression is well-typed and that its result is of
type float. Note that the derivation does not contain any graph with multiple nodes. Multiple
nodes in productions are cloned as soon as a production is applied.

4 Parsing without Isolated Nodes

The parser considered in this paper requires adaptive star grammars to be in a certain normalform,
inspired by the Chomsky normalform for context-free string grammars [HU90]:

Definition 1 (Adaptive Chomsky normal form) An adaptive star grammar Γ = 〈Σ,N,P,Z〉 is in
adaptive Chomsky normal form (ACNF) iff each rule p = (L ::= R)∈ P is of one of the following
three forms: (1) Terminal rule: every node n ∈ Ṙ has a terminal label ˙̀R(n) ∈ Σ̇. (2) Nonterminal
rule: R = S1∪S2 consists of two stars S1 and S2 that do not share their center nodes. (3) Chain
rule: R is a star.

An example of a grammar in ACNF is shown in Fig. 3. Rules P3, P9, P10, P11, and P12 are
terminal rules. The other rules are nonterminal. Fig. 3 does not contain chain rules.

Obviously, each adaptive star grammar can be transformed into ACNF. The transformation

5 / 15 Volume 4 (2006)

Parsing of Adaptive Star Grammars

is similar as for context-free string grammars that are transformed into Chomsky normal form
(CNF). Fig. 3 actually shows the rules after transforming the grammar in Fig. 1 into ACNF. Note
that context-free string grammars in CNF contain terminal and nonterminal rules only. Chain
rules are not allowed; it is always possible to transform a context-free string grammar with chain
rules into an equivalent one without. It can be shown that this is not possible for every adaptive
star grammar with chain rules. Therefore, ACNF has to allow chain rules.

Before parsing adaptive star grammars in ACNF that may contain rules with isolated nodes
in their right-hand sides, we consider a sub-class of adaptive star grammars in ACNF in this
section:

Definition 2 (Restricted adaptive Chomsky normal form) An adaptive star grammar Γ =
〈Σ,N,P,Z〉 is in restricted adaptive Chomsky normal form (RACNF) iff Γ is in ACNF and P does
not contain any terminal rule with an isolated node in its right-hand side.

The grammar with rules shown in Fig. 3 is not in RACNF since rules P11 and P12 contain
isolated nodes in their right-hand sides (nodes 1 and 3).

The parsing algorithm in Fig. 4 (called ∗-parser in the following) requires an adaptive star
grammar Γ = 〈Σ,N,P,Z〉 in RACNF and parses a terminal graph G ∈ G

Σ\Σ̈
without isolated

nodes and with a number n = |Ḡ| of edges. The algorithm uses as global data structures n
“levels” L1,L2, . . . ,Ln and a working set Q ⊆

⋃n
i=1 Li at every point of time. Each element of a

level Li is a pair 〈S,E〉 consisting of a star S and a set E ⊆ Ḡ with i edges of G. Each border node
of S is a node of G.

The parsing algorithm is inspired by the parsing algorithm by Cocke, Younger, and Kasami
(CYK) for context-free string grammars in Chomsky normalform [You67, Kas65]. Given a string
w = a1a2 · · ·an, the CYK-parser uses an n× n-matrix M = (mi j)i, j as a global data structure;
however, only those matrix elements mi j with i + j ≤ n + 1 are used. Each matrix element
mi j, after the parser has finished, contains those nonterminal symbols that can be derived to the
substring a ja j+1 · · ·a j+i−1, i.e., the substring starting at character j and having length i. The
levels (Li)i of the ∗-parser correspond to the matrix elements (mi j)i, j: The CYK-parser classifies
substrings by their length and the index of their first character and assigns them to corresponding
matrix elements. Graphs, other than strings, do not have a linear structure that allows to classify
substrings by the index of their first character. Hence, the ∗-parser classifies subgraphs by the
number of their edges only and, therefore, maintains an array L1, . . . ,Ln of sets instead of a matrix
of sets. Each level Li, after the parser has finished, contains those stars (together with a set of
edges) that can be derived to a subgraph of G containing i edges. The specific subgraph of G that
can be derived from a star in one of the levels is encoded by the set of edges that, together with
the star, is actually stored in the level. Note that, if G is a member of the language of Γ, each
subset E ⊆ G uniquely identifies a subgraph of G since Γ is in RACNF, i.e., G must not contain
isolated nodes.

The structure of the ∗-parser in Fig. 4 is similar to the structure of the CYK-parser. Step 1
creates those stars (together with their sets of edges) that can be derived to the corresponding
subgraph in a single derivation step. This derivation step must use a terminal rule because non-
terminal rules and chain rules produce nonterminal nodes that are not contained in G. Step 2
then fills the array of levels by combining pairs of stars and reducing them by nonterminal and

Proc. GraMoT 2006 6 / 15

ECEASST

Step 1:
1 for each terminal rule (L ::= R) ∈ P do
2 for each multiplicity function µ and injective morphism m : Rµ → G do
3 H := m(Rµ) and k = |H̄|;
4 if IncG(m(n))⊆ H̄ for each non-border node n of Rµ then
5 let m′ be an extension of m that maps the center node of Lµ to a fresh node;
6 call procedure add(m′(Lµ), H̄)
7 end if
8 end do
9 end do

Step 2:
10 while Q 6= /0 do
11 select a pair 〈X ,EX〉 ∈ Q and remove 〈X ,EX〉 from Q;
12 for i := 1 to n−|EX | do
13 for each pair 〈Y,EY 〉 ∈ Li such that EX ∩EY = /0 do
14 for each nonterminal rule (L ::= R) ∈ P, multiplicity function µ , and
15 isomorphism m : Rµ → X ∪Y do
16 if IncG(m(x))⊆ EX ∪EY for each non-border node x of Rµ then
17 let m′ be an extension of m that maps the center node of Lµ to a fresh node;
18 call procedure add(m′(Lµ),EX ∪EY)
19 end if
20 end do
21 end do
22 end do
23 end do

24 procedure add(X ,E)
25 { X is a star; each border node of X is a node of G; E ⊆ Ḡ is a set of edges }
26 begin
27 k := |E|;
28 if Lk does not contain a pair 〈S,E〉 such that S ∼= X then
29 add 〈X ,E〉 to Lk and Q;
30 for each chain rule (L ::= R) ∈ P, multiplicity function µ ,
31 and isomorphism m : Rµ → X do
32 let m′ be an extension of m that maps the center node of Lµ to a fresh node;
33 call procedure add(m′(Lµ),E)
34 end do
35 end if
36 end

Figure 4: ∗-parser

7 / 15 Volume 4 (2006)

Parsing of Adaptive Star Grammars

chain rules.
In detail, the algorithm in Fig. 4 works as follows: Lines 1–9 try every terminal rule that may

have created a subgraph of G. Such a subgraph must be isomorphic to a clone of the terminal
rule’s right-hand side. Lines 2–8 iterate over each of those clones (specified by its multiplicity
function µ) and each subgraph H (specified by the image of morphism m). Line 4 checks whether
H is correctly connected to the rest of G, i.e., that there is no edge from a node that does not
belong to H to a node created by this rule. Parsing, i.e., applying this rule in reverse direction,
would produce dangling edges otherwise. Morphism m maps Rµ and, hence, border nodes of Lµ

to G. Line 5 extends morphism m to m′ such that m′ maps border nodes of Lµ in the same way
as m, but additionally maps the center node of Lµ to a fresh, new node. The m′-image of Lµ is
the star that can be derived to H by applying the current rule clone.

Procedure add(X ,E) (line 24–36) is responsible of adding this star to its corresponding level
if the level does not yet contain an isomorphic star that derives to the same subgraph H (line 28).
Moreover, add(X ,E) recursively follows all chain rules that may be applied deriving m′(Lµ)
and, hence, H (line 30–34). Note that we need not check for dangling edges as in line 4 since the
right-hand side of a chain rule is a star and, therefore, cannot have non-border nodes. And since
chain rules do not create new terminal edges, all results from this process must be added to the
same level Lk.

If procedure add(X ,E) adds a new pair to a level Li, this pair is added to working set Q, too. Q,
therefore, contains exactly those pairs that have not yet been considered. Hence, step 2 iterates
over Q as long as Q is not yet empty (line 10-23). 〈X ,EX〉 is the current pair. If the star of the
current pair is contained in a derivation of G and derived by application of a nonterminal rule1,
it must be combined with another star Y that derives to a subgraph of G that does not have any
edges in common with the subgraph that is derived from the current star X . Dangling edges
would be created otherwise. This condition is checked by EX ∩EY = /0 in line 13. In a CYK-
like manner, the combination of X and Y must be isomorphic to some clone of a nonterminal
rule’s right-hand side. Since the border nodes of X and Y are nodes of G, too, X ∪Y denotes
this combination. Like in step 1, the clone of the rule is represented by a multiplicity function.
Again, dangling edges must be avoided. This is checked in line 16. The star that derives to X ∪Y
is the m′-image of Lµ where morphism m′ is the extension of the isomorphism m such that the
border nodes of Lµ are mapped in the same way as by m, but the center node of Lµ is mapped
to a fresh new node. Procedure add(X ,E), again, takes care of adding the star with its set of
eventually derived edges, i.e., the disjoint union of those sets associated with the stars X and Y ,
to the corresponding level and considering chain rules.

Correctness of the ∗-parser can be shown (see appendix). Because of these results, a graph G
without isolated nodes belongs to the language of an adaptive star grammar in RACNF iff the
∗-parser, applied to G, terminates with a pair 〈Z, Ḡ〉 in level L|Ḡ|.

The ∗-parser would actually work with adaptive star grammars in plain ACNF, too, i.e., with
grammars that may have isolated nodes in some of its rules’ right-hand sides. However, parsing
would be really expensive because of line 2 in Fig. 4. If the right-hand side R of a rule L ::= R
contains an isolated singular node, any node of G with a suitable label has to be considered.
The number of possible morphisms, therefore, grows exponentially with the number of isolated

1 The case that this star is derived by a chain rule is handled by procedure add(X ,E).

Proc. GraMoT 2006 8 / 15

ECEASST

singular nodes. The situation gets even worse if R contains an isolated multiple node. This node
can be cloned arbitrarily, i.e., any subset of G nodes with a suitable label must be considered. As
a consequence, the number of pairs 〈X ,E〉 grows exponentially in the number of isolated nodes
and exponentially in the number of G nodes.

A slight modification of the parser in the following section allows to avoid this combinatorial
explosion by avoiding to explicitly consider each possibility and avoiding to create each possible
pair 〈X ,E〉.

5 Parsing with Isolated Nodes

We now drop the requirement of an adaptive star grammar to be in RACNF. However, we still
require the grammar to be in ACNF. It can be shown that the class of adaptive star grammars in
RACNF is less powerful than the class of all adaptive star grammars which is the same as the
ones in ACNF. Hence, transformation of a grammar in ACNF into an equivalent one in RACNF
is not possible in general. Instead, we follow the idea of avoiding the combinatorial explosion
by encoding all possibilities in a single graph and dealing with such graphs instead of plain stars
in the ∗-parser. This will require another transformation of the grammar. However, the encoding
may be imprecise; graphs may represent proper supersets of all possibilities. The bottom-up
∗-parser, hence, will find derivations that are not correct. A subsequent top-down phase has to
filter out those wrong derivations.

If a terminal rule L ::= R contains isolated nodes in its right-hand side R, we consider the
maximal sub-graph R′ of R without isolated nodes and search for multiplicity functions µ and
morphisms m as shown in line 2 of Fig. 4, however based on R′ instead of R. These µ and m
are called core multiplicity functions resp. core morphisms. In order to take into account the
isolated nodes in R, µ and m must then be extended. We obtain different stars m′(Lµ) with the
same set H̄. However, the set of all those stars based on the same core multiplicity function and
core morphism have a common subgraph S with common center node x (up to isomorphism).
The stars differ in nodes of G that may be or may be not present in the star. If a node is present,
it is adjacent to the center node. We encode the set of all those stars by adding to S all nodes
that are present in one of those stars and connect them with x in the same way. If the same node
may be connected to x by edges with different labels in different stars, we add different copies of
the node to S. Each copy is connected with x by an edge with one of these different edge labels.
Each node that does not belong to the common subgraph and its incident edge are marked as
optional. The other nodes and labels are called mandatory in the following.

As an example, let the graph G6 in Fig. 2 be graph G, and P11 in Fig. 3 be the terminal rule.
R′ consists of nodes 2 and 4 with their incident edge labeled v. A possible core morphism maps
node 2 and 4 of P11 to node 7 resp. 3 of G. The set of all possible stars has those nodes 7 and 3
as well as a new nonterminal center node with label Ei as common subgraphs. Nodes 8 and 9 of
G are optional, and they can be connected with the center node either by an i or an f edge. The
encoding of all of those stars is shown as star S4 in Fig. 6. Nodes marked optional are drawn as
diamonds, and edges marked optional by dashed arrows. Note that nodes 8 and 9 are contained
twice each as 81 and 82 resp. 91 and 92 since both nodes can be connected with the center nodes
by edges with different labels.

9 / 15 Volume 4 (2006)

Parsing of Adaptive Star Grammars

1
::=

i

r

x x

VVVV VV VVVVVVVVVV x VVVV VV VVVVVVVVVV

Ef

Ef Pf

r

i i bf f f i f

r

i i if f f i f

i i if f f i f
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

9 9

1
::=

i

r

x x

VVVV VV VVVVVVVVVV x VVVV VV VVVVVVVVVV

Ef

Ef Pf

r

i i bf f f i f

r

i i if f f i f

i i if f f i f
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

9 9

::=

i

r

1
VV x

Efi if f f i f

VV
2

VV
3

VV
4

VV
5

VV
6

VV
7

VV
8

x9

i

r

1
VV

Pfi if f f i f

VV
2

VV
3

VV
4

VV
5

VV
6

VV
7

VV
8

x9

b

Ef

i i if f f i fr

Figure 5: Transformed rule P5 of Fig. 3.

It is clear that this encoding may represent a proper superset of all possible stars because
the encoding is the same for isolated singular and multiple nodes, i.e., we cannot tell from the
encoding how many of the optional nodes have to be selected to obtain a member of the set of
all possible stars. This problem is solved by a subsequent top-down phase after the bottom-up
∗-parser (see below).

Step 2 of the ∗-parser has to deal with those star encodings that may contain nodes and edges
marked optional. And step 2 has to create new stars that encode possibly large sets of stars, too,
without explicitly creating all represented stars. This is done by transforming each nonterminal
rule into a rule that can be immediately applied to such encoding graphs. Step 2 then uses those
transformed rules instead of the original nonterminal ones.

The transformation is explained for rule P5 in Fig. 3. The result is shown in Fig. 5. When using
P5 (or its transformed version) in step 2, two stars X and Y are combined to X ∪Y . Without loss
of generality, let X have a center node labeled Pf and Y a center node labeled E f . Each V node
adjacent to the center nodes may be marked optional. And each node, optional or mandatory,
can be connected with the center node by an i edge or an f edge. Each V node in the right-
hand side of P5 is connected to both nonterminal nodes by edges with the same labels. The
transformed rule must be applicable to combinations of stars X ∪Y where a node is optional in
X and Y , or mandatory in X and Y , or optional in either X or Y , and mandatory in the other star.
This is reflected in the right-hand side in Fig. 5: Instead of two multiple nodes labeled V in the
original rule P5, there are eight of them. For i and f edges, each of those four combinations of
optional/mandatory are represented. The left-hand side contains those eight multiple V nodes as
border nodes, too. However, only those nodes resp. edges that are optional in X and Y remain
optional after creating the new star from the left-hand side (node 7 and 8). This is so because a
node that is mandatory in X or Y has to mandatory in the combination X ∪Y , too.

Note that no nodes in Fig. 5 are drawn as optional since this may cause conflicts for a combi-
nation of a node being optional and mandatory at the same time.

Step 2 now uses such transformed nonterminal rules. However, combinations of X and Y need
not be isomorphic to a clone Rµ of a rule’s right-hand side because X ∪Y may contain optional
nodes and edges that cannot be matched with Rµ . When searching for an isomorphism, the parser
may drop optional components, but no mandatory ones.

When the ∗-parser terminates and a pair 〈Z, Ḡ〉 is contained in L|Ḡ|, we must check whether
this really indicates that G belongs to the grammar’s language. This can be checked top-down by
following the rules from Z to G. The ∗-parser must keep track of all derivations for that purpose.
This is easily done by not only storing pairs 〈X ,E〉, but also the stars that have been used when
creating 〈X ,E〉.

Fig. 6 shows the ∗-parser working on G6 in Fig. 2. Actually, it shows what stars the ∗-parser

Proc. GraMoT 2006 10 / 15

ECEASST

VV V

D
f f i

9

8

7

10

VV V

D’
f f i

9

8

7
P3

S1

b
r

x

xx +a

1

3

2

4 b
r

x

xx Ta

1

3 4
P9

S2

r xx Ca6 4
P10r xx IFa6

5

4

S3

P2 Z

S12

VV V

D’
f f i

98
7

1

r
x

Eff
f

i

S11

S1

x

VV V

v

3

7 8 9

P11

S4

VV

i

7
81

3

r

V

x

i f
f

i

V V

Ei

82 91 92

x

VV V

v

3

7 8 9

P12

S5

VV

f

7
81

3

r

V

x

i f
f

i

V V

Ef

82 91 92

P11

VV V7 8 9

x

v

6

S6

i

971

6

r
x

i f fi

V VVV V

Ei

72 81 82

P12

VV V7 8 9

x

v

6

S7

f

971

6

r
x

i f fi

V VVV V

Ef

72 81 82

b

x1 x

r

4

P7

S8b
r

x

xTa

1

43 x
S5

S2

VV

f

7
81

r

V

i f
f

i

V V

Ef

82 91 92
VV

f

7
81

V

i f
f

i

V V
82 91 92

Pf

b

x1 x

r

4

P8

S9b
r

x

xTa

1

43 x
S4

S2

VV

i

7
81

r

V

i f
f

i

V V

Ei

82 91 92
VV

i

7
81

V

i f
f

i

V V
82 91 92

Pi

6

r
x r xCa 4 4

r
x

P6

S10S6
S3

i

971

i f fi

V VVV V
72 81 82

i

971

i f fi

V VVV V
72 81 82

Ei Ef

i f
f i

b
r r

1 x

V V

x

Pf Ef

4

7 9

f
i f

i

1 x
r

f

7 9V V

i
P5

S11

S8

S10

VV
81 82

VV
81 82

Ef

i f

reductions2

Figure 6: Reductions performed by the ∗-parser when parsing G6 in Fig. 2.

creates, organized as pairs U Pi=⇒ S. The left column depicts the (maximal) subgraphs U of G
matched by right-hand sides of terminal rules. The rule is indicated by Pi. S shows the created
star. The right column depicts the results of step 2. Dashed areas in U indicate which stars are
combined. Levels Li that contain those stars have been omitted to avoid cluttering of the figure.
The bottom right pair that contains Z as a star proves (after the top-down check) that G6 belongs
into the grammar’s language.

6 Conclusions

This paper has outlined a parsing algorithm for adaptive star grammars, an extension of node and
hyperedge replacement grammars. A previous paper had shown that the membership problem for
a certain subclass of adaptive star grammars is decidable, however, no efficient parser had been
proposed [DHJ+06]. This subclass of adaptive star grammars can be analyzed by the proposed

11 / 15 Volume 4 (2006)

Parsing of Adaptive Star Grammars

parser that is based on the ideas of the well-known parser by Cocke, Younger, and Kasami for
context-free string grammars.

The parser has been implemented in Java like the parser for hyperedge replacement grammars
in DIAGEN [Min02]. The DIAGEN parser generally runs in super-polynomial time, and so
does the ∗-parser. But for applications in practice, the DIAGEN parser runs in polynomial time.
Experiments with the ∗-parser implementation suggest a similar behavior, too. E.g., it has been
applied to the running example of this paper. On a Pentium M computer with 1.6GHz, the sample
graph in Fig. 2 (10 nodes and edges) required 1.5ms, and a larger expression with 400 nodes and
more than 500 edges 1.4s. The measured running time was quadratic on the number of edges of
the graph.

The parser will then become a component in the planned implementation of the program-
ming language DIAPLAN [DHKM05] for shape analysis, and likewise for refactoring of object-
oriented programs [HJV06].

Bibliography

[BTS00] P. Bottoni, G. Taentzer, A. Schürr. Efficient Parsing of Visual Languages based
on Critical Pair Analysis and Contextual Layered Graph Transformation. In VL
’00: Proceedings of the 2000 IEEE International Symposium on Visual Languages
(VL’00). Pp. 59–60. IEEE Computer Society, Washington, DC, USA, 2000.

[DHJ+06] F. Drewes, B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde. Adaptive Star
Grammars. In Corradini et al. (eds.), Graph Transformations, Third International
Conference, ICGT 2006, Natal, Rio Grande do Norte, Brazil, Sept. 17–23, 2006.
LNCS 4178, pp. 77–91. Springer-Verlag, Sept. 2006.

[DHK97] F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replacement Graph Grammars. In
Rozenberg (ed.), Handbook of Graph Grammars and Computing by Graph Trans-
formation. Vol. I: Foundations. Chapter 2, pp. 95–162. World Scientific, Singapore,
1997.

[DHKM05] F. Drewes, B. Hoffmann, R. Klein, M. Minas. Rule-Based Programming with Dia-
Plan. ENTCS 117(1), 2005. Proc. International Workshop on Graph-Based Tools
(GRABATS’04).

[Dre93] F. Drewes. Recognising k–connected hypergraphs in cubic time. Theoretical Com-
puter Science 109:83–122, 1993.

[HJV06] B. Hoffmann, D. Janssens, N. Van Eetvelde. Cloning and Expanding Graph Trans-
formation Rules for Refactoring. ENTCS 152(4), 2006. Proc. Graph and Model
Transformation Workshop (GRAMOT’05).

[HU90] J. E. Hopcroft, J. D. Ullman. Introduction To Automata Theory, Languages, And
Computation. Addison-Wesley, Boston, MA, USA, 1990.

Proc. GraMoT 2006 12 / 15

ECEASST

[Kas65] T. Kasami. An efficient recognition and syntax analysis algorithm for context-free
languages. Technical report AFCRL-65-758, Air Force Cambridge Research Labo-
ratory, Bedford Mass., 1965.

[Min02] M. Minas. Concepts and Realization of a Diagram Editor Generator Based on Hy-
pergraph Transformation. Science of Computer Programming 44(2):157–180, 2002.

[RS97] J. Rekers, A. Schürr. Defining and Parsing visual Languages with Layered Graph
Grammars. Journal of Visual Languages and Computing 7(3), 1996/97.

[SF04] S. Seifert, I. Fischer. Parsing String Generating Hypergraph Grammars. In Ehrig
et al. (eds.), Graph Transformations. LNCS 3256, pp. 352 – 267. Springer-Verlag,
Berlin, 2004.

[SWZ99] A. Schürr, A. Winter, A. Zündorf. The PROGRES Approach: Language and Envi-
ronment. In Engels et al. (eds.), Handbook of Graph Grammars and Computing
by Graph Transformation. Vol. II: Applications, Languages, and Tools. Chapter 13,
pp. 487–550. World Scientific, Singapore, 1999.

[You67] D. Younger. Recognition and parsing of context-free Languages in Time n3. Infor-
mation and Control 10(2):189–208, 1967.

[ZZC01] D.-Q. Zhang, K. Zhang, J. Cao. A Context-sensitive Graph Grammar Formalism
for the Specification of Visual Languages. The Computer Journal 44(3):186–200,
2001.

13 / 15 Volume 4 (2006)

Parsing of Adaptive Star Grammars

A Appendix

Lemma 1 (Termination) Given an adaptive star grammar Γ = 〈Σ,N,P,Z〉 in RACNF and a
terminal graph G ∈ G

Σ\Σ̈
without isolated nodes, the ∗-parser always terminates.

Proof. The algorithm computes stars m′(Lµ) whose border nodes are nodes of the original graph
G. Hence, the numbers of members of each set Li is finite, and each recursive invocation of
procedure add must terminate. The union of all levels Li is a superset of Q, and no member is
added to Q twice. Hence, the number of cycles of the while-loop in step 2 must be finite, too.
The proposition now follows from the fact that each for-loop iterates over finite domains.

Lemma 2 (Partial correctness) Let Γ = 〈Σ,N,P,Z〉 be an adaptive star grammar in RACNF
and G ∈ G

Σ\Σ̈
a terminal graph with a number n = |Ḡ| of edges, but without isolated nodes. The

following proposition holds after termination of the ∗-parser for every star S without multiple
nodes:

S ∗=⇒
P∆

G ⇔ 〈S, Ḡ〉 ∈ Ln

In order to proof this lemma, we make use of the following two elementary lemmata:

Lemma 3 (Independence of derivations 1) Let Γ = 〈Σ,N,P,Z〉 be an adaptive star grammar,
X1,X2 stars with disjoint edge sets and different center nodes, and G a graph such that X1 ∪
X2 ⇒k

P∆ G. Then G has two subgraphs G1 and G2 that do not share any nonterminal node,
G = G1∪G2, such that X1 ⇒k1

P∆ G1, X2 ⇒k2
P∆ G2, and k = k1 + k2.

Proof. We proof the lemma by induction over k. The proposition is true for k = 0. For k > 0,
we assume X1∪X2 ⇒k−1

P∆ G′ ⇒P∆ G. By the induction hypothesis, there are two graphs G1 and
G2 that do not share any nonterminal node, G′ = G1 ∪G2, such that X1 ⇒k1

P∆ G1, X2 ⇒k2
P∆ G2,

and k− 1 = k1 + k2. G′ ⇒P∆ G is defined by replacing a star in G′ by a graph. As G1 and G2
do not share any nonterminal node, either G1 ⇒P∆ G′

1 and G = G′
1 ∪G2, or G2 ⇒P∆ G′

2 and
G = G1∪G′

2.

Lemma 4 (Independence of derivations 2) Let Γ = 〈Σ,N,P,Z〉 be an adaptive star grammar,
X1,X2 stars with disjoint edge sets and different center nodes, and G1,G2 arbitrary graphs such
that X1 ⇒∗

P∆ G1 and X2 ⇒∗
P∆ G2. Then X1∪X2 ⇒∗

P∆ G1∪G2.

Proof. We proof the lemma by induction over n = n1 + n2 in X1 ⇒n1
P∆ G1 and X2 ⇒n2

P∆ G2. The
proposition is true for n = 0. Without loss of generality, assume n1 > 0 if n > 0, and X1 ⇒n1−1

P∆

G′
1 ⇒P∆ G1, X2 ⇒n2

P∆ G2. X1∪X2 ⇒∗
P∆ G′

1∪G2 follows from the induction hypothesis, and G′
1∪

G2 ⇒P∆ G1∪G2 from the definition of star replacements.

Proof of Lemma 2. We assume S ⇒k
P∆ G for some k ≥ 1 first and prove 〈S, Ḡ〉 ∈ Ln by induction

over k. If k = 1, 〈S, Ḡ〉 is added to Ln in step 1. For k > 1, consider the derivation sequence

S=⇒
P∆

G′ k−1=⇒
P∆

G. (1)

Proc. GraMoT 2006 14 / 15

ECEASST

The first step in (1) cannot use a terminal rule as k− 1 > 0 and, hence, G′ must contain a non-
terminal node. If the first step in (1) uses a nonterminal rule, there are two stars X1 and X2 that
do not share their center nodes such that G′ = X1 ∪X2. By lemma 3, there are two graphs G1
and G2, such that G = G1∪G2, X1 ⇒k1

P∆ G1, X2 ⇒k2
P∆ G2, and k1 + k2 = k− 1. By the induction

hypothesis, 〈X1, Ḡ1〉 ∈ L|Ḡ1| and 〈X2, Ḡ2〉 ∈ L|Ḡ2|. Without loss of generality, 〈X1, Ḡ1〉 has been
added to Q when 〈X2, Ḡ2〉was already member of L|Ḡ2|. Therefore, 〈S, Ḡ〉 is added to Ln in step 2.
If, however, the first step in (1) uses a chain rule, G′ is a star, and by the induction hypothesis,
〈G′, Ḡ〉 ∈ Ln. Hence, 〈S, Ḡ〉 is added to Ln in the procedure invocation add(G′, Ḡ).

We now assume 〈S, Ḡ〉 ∈ Ln and prove S ⇒∗
P∆ G by induction over n = |Ḡ|. Since G does

not have isolated nodes, n > 0. If n = 1, 〈S, Ḡ〉 must have been added to Ln by invocation of
add(S, Ḡ) that has been recursively invoked by the first non-recursive invocation of add(S′, Ḡ) in
step 1. Hence, S ⇒∗

P∆ S′⇒P∆ G. If n > 1, 〈S, Ḡ〉 has been added to Ln either in the same way as
described for n = 1, and hence S ⇒∗

P∆ G, or by invocation of add(S, Ḡ) that has been recursively
invoked by the first non-recursive invocation of add(S′, Ḡ) in step 2. In the latter case, there are
〈X1,E1〉 ∈ L|E1| and 〈X2,E2〉 ∈ L|E2| such that E1∩E2 = /0, |E1|+ |E2| = n, and S′ ⇒P∆ X1∪X2.
By the induction hypothesis, there are graphs G1 and G2 with Ḡ1 = E1, Ḡ2 = E2, X1 ⇒∗

P∆ G1, and
X2 ⇒∗

P∆ G2. And by lemma 4, X1 ∪X2 ⇒∗
P∆ G1 ∪G2 where Ḡ′ = E1 ∪E2 = Ḡ. G = G′ follows

from the fact that G does not have isolated nodes.

15 / 15 Volume 4 (2006)

	Introduction
	Related Work
	Adaptive Star Grammars
	Parsing without Isolated Nodes
	Parsing with Isolated Nodes
	Conclusions
	Appendix

