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Abstract: SPACE is a technique for model-driven engineering of reactive dis-
tributed systems. One of the strengths of its tool-set Arctis is that the system en-
gineer can formally analyze the models for design errors such that these can be
corrected early in the development process. In this paper, we go a step further and
introduce a technique that refines the fault detection and, in addition, offers a highly
automatic mechanism to remedy the errors. For that, we combine model checking,
the already existing analysis method of Arctis, with graph transformation. Using
graph rewriting rules, we can analyze the state space graph of a system for the exact
reason of an error as well as remove the erroneous parts of a model by changing the
model description. We exemplify the approach by envisaging the detection and rem-
edy of mixed initiatives, a quite common cause for faulty behavior in event-driven
systems that often is overlooked in system development.

Keywords: graph transformation, model driven engineering, mixed initiative.

1 Introduction

New application domains like sensor networks, smart grids, and machine to machine cooper-
ation call for novel networked services and applications. To engineer these often reactive and
embedded distributed systems, we provide the development method SPACE and its tool-set Arc-
tis [KSH09, KH09]. System behavior is modeled by UML activities [Obj10] that use a token
semantics close to Petri nets. The activities have been provided with a new reactive formal
semantics [KH10] that enables to analyze the models formally [KSH09] and to create code au-
tomatically [KH07]. The technique is scalable since we can enclose partial behavior into UML
call behavior actions that we call blocks. On the one hand, a block embraces an activity and,
on the other, it can be used as an element in another one. So, it links both activities together.
The static role-binding of the blocks is modeled by UML collaborations while we use External
State Machines (ESMs, [KH09]) to define the interface behavior of a block. Furthermore, the
block structure enables a high degree of reuse of system models which is in average 70% in our
models [KH09].

Arctis enables the formal analysis of desirable system properties (e.g., verifying that the ac-
tivity embraced in a block fulfills its ESM) by model checking [KSH09]. Since model checking
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can be executed in a non-interactive way and the traces towards detected errors are animated on
the UML activities, the Arctis user does not need a deeper understanding of the formalism used.
The state explosion problem of model checking is mitigated by compositional verification since
the ESMs allow to prove every activity in the system model separately [KSH09].

Up to now, the Arctis analysis has not supported automatic remedy of detected errors which
has to be provided manually by the system engineer. This paper describes a solution to support
the Arctis user further. In particular, we introduce a way to analyze the state graph of an erro-
neous model and to correct the specification with a high degree of automation. For that, we ap-
ply graph transformation that already proved helpful for the model transformation of flow-global
choreographies, a more abstract way to specify reactive systems, to Arctis models [HKL+11].
Graph transformation is suitable since UML activities, collaborations and state machines all are
graphical description techniques which can be directly accessed by graph rewriting rules.

For the error detection, we align graph transformation with model checking in Arctis. In
particular, we analyze the state space of an activity generated by the model checker to find out if
the detected errors belong to a particular class. Thereafter, we use rules to correct the erroneous
part of the activity. We illustrate our approach with a mechanism for the detection and remedy
of mixed initiatives between two parties.

2 Mixed Initiatives

Mixed initiatives [GY84, BH93, SDW08] are a special form of race conditions that is often
overseen when developing reactive distributed systems. A mixed initiative conflict may occur
whenever two (or more) distributed components can trigger an interaction with each other at
the same time (see [Flo03]). Due to the asynchronous communication between the two parties,
both can start own initiatives before being notified that also the partner triggered one. Of course,
this behavior can be mitigated but that often demands for a complex new functionality. While
mixed initiatives in practice are often overlooked, the Arctis model checker detects that a system
contains faulty behavior (see [KSH07]). By the methods introduced in this paper, we can find
out if a mixed initiative is indeed the reason of an error. Further, we introduce a graph-based
approach to correct mixed initiatives between two entities. The only condition for the remedy
mechanism is that the system behavior contains an interaction between the entities before the
mixed initiative can take place.

2.1 Arctis

The Arctis block Button Game depicted in Figure 1 (a) describes a simple game with two players
which is won by the one who manages first to push a button. The players are represented by
two technical components, e.g., two Android devices. As mentioned in the introduction, we
model behavior by UML activities which are based on token flow semantics (see [KH10]). The
activity shown in Figure 1 (a) is collaborative since it models the combined interaction of the
two components component 1 and component 2 participating in the button game. To distinguish
in which component a certain behavioral step takes place, the activity comprises two partitions
marked by the component names.
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Figure 1: Arctis building block Button Game and its ESM

A UML activity [Obj10] is a directed graph and, due to the token flow semantics, behavior is
modeled as tokens walking across the nodes of the graph following its edges. The edges may
either stay within a partition, specifying local behavior of the corresponding component, or cross
the partition borders (e.g., M1, M2, M3). In the latter case, they model asynchronous interaction
between two components. Activities offer a set of general node types enabling to start, stop, or
interrupt token flows as well as nodes for routing and handling parallel flows respective for the
execution of certain operations. An example are forks of which four copies are used in Figure 1
(a). They are expressed by bold bars in right angle to the linked edges. A fork contains one
incoming edge and at least two outgoing edges and models that an incoming token is duplicated
and a copy is sent via each of the downstream edges. Thus, forks enable to specify parallel flows.

Another node type used in the activity Button Game are call behavior actions describing the
Arctis building blocks. A block represents an own activity that is linked with the one including
it by means of pins1 which are depicted as small rectangles on the edge of a block respective
an activity and filled with in- or outgoing arrows. The interface behavior of a block is specified
by External State Machines (ESM, [KH09]) that are simple UML state machines describing in
which order flows may pass the various pins.

Figure 1 (a) includes the two blocks b1 and b2 of the type Button which are taken from an Arc-
tis library for Android devices (see [Kra11]). This block type describes the logic when pushing a
certain button of an Android device which initially is inactive. The button is armed by sending a
token flow through its pin start on the top of the block. Thereafter, pushing the button leads to a
flow via the pin pushed which, in addition, terminates and disarms the block. Further, the block
can be disarmed from its environment by a token passing pin stop, too.

The Arctis semantics [KH10] defines so-called activity steps describing the sub-graph passed
by a token in an atomic transition. In short, a token may rest only on nodes or edges describing
places where it has to wait for a stimulus. An example are the crossing edges. To model the
asynchronous communications between the partitions, a token passing a crossing edge has to
wait on it until it is passed on in a new activity step. After being triggered by an internal or

1 Formally, UML distinguishes between parameter nodes laying on the outer edge of an activity (e.g., remoteWins1)
and pins on the edge of a block included in an activity (e.g., stop).
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Figure 2: Activity steps of Button Game

external event, e.g., the reception of the transmitted data, tokens pass all nodes and edges of the
activity step in run-to-completion fashion until they reach nodes and edges on which they have
to wait for new triggers.

Figure 2 shows the six activity steps of the UML activity in Figure 1 (a). Activity step (1)
describes the start of the game. It is triggered by a token passing the parameter node start at the
edge of the block Button Game which is duplicated at the fork node and copies are sent to both
block b1 and to the crossing edge M1. Activity step (2) forwards the token to block b2 such that
both buttons are armed. Pushing a button leads to the activity steps (3) and (4) respective (5)
and (6) which disarm the other button and notify the environment of the button game about the
winner via the parameter nodes localWins and remoteWins.2

Figure 1 (b) shows the External State Machine (ESM, [KH09]) of the block Button Game.
The block is started by a token passing pin start. Thereafter, it terminates either by a token
arriving at remoteWins1 or by one at localWins1 followed by another one at remoteWins2. In
the transition markings, the “/” behind a pin designator refers to tokens heading towards the
block while positioning “/” in front refers to tokens coming from the block and going towards
its environment.

2.2 A Mixed Initiative Error

It is easy to see that the system renders unexpected behavior if both buttons are pushed at the
same time. Then due to the asynchronous communication between the components, the buttons
will be terminated too late and tokens leave the pins pushed of both block b1 and b2. In conse-
quence, all the activity steps (3) to (6) are executed and the ESM in Figure 1 (b) is violated as all
localWins1, remoteWins1 and remoteWins2 are fired. This will be detected by the Arctis analyzer
using model checking. Figure 3 (a) depicts the state space generated by the Arctis analyzer. To
facilitate the understanding of the state graph, we added the identifiers of the edges crossing the
partition borders. One can see that the traces towards the states 8 and 9 contain a sequence of
pins violating the ESM.

2 For simplicity, we only notify component 1, that takes the role of the game manager, fully about the result while
component 2 is just informed if it lost.
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Figure 3: State spaces of the original and the modified block Button Game

3 Mixed Initiative Detection

To identify that a mixed initiative is the actual cause for property violations detected by the
Arctis model checker, we investigate the state space further using graph rewriting. According
to Floch [Flo03], a mixed initiative is indicated by so-called mixed initiative states in which a
component may both send and consume signals. The danger of a mixed initiative exists if two
interacting components are both in a mixed initiative state at the same time.

In a first step, we label the edges with send and receive labels using the technique explained
in [Kra09]. In our example that are M1, M2 and M3 referring to the three partition crossing edges
in the activity depicted in Figure 1 (a). By the “!” we describe the sending and by “?” the recep-
tion of a communication between the two components. Since M1 and M3 show communication
from component 1 to component 2 and M2 the other way around, one can see that the states 3 and
11 of the state graph refer to mixed initiative states according to the definition of Floch. In state
3, component 2 may both send M2 and receive M3 while in state 11 component 1 may send M3
and receive M2. By executing the corresponding send actions, both mixed initiative states lead to
state 6 which expresses that the two signals forwarding the conflicting initiatives just pass each
other. We call it a conflict state.

Thereafter, we can check if the traces from the initial node towards the states violating a
property always lead via a conflict state. To avoid false positives, we only assume a mixed
initiative as the source of errors if all traces to all error states pass at least one conflict state. In
our example, the violation of the ESM is detected when reaching the states 8 or 9 and it is easy
to see that all traces from the initial state 0 to them pass the conflict state 6.

Technically, we export the state graph created by the Arctis model checker and label the states
using the graph transformation tool AGG [Tae04] according to the following rules:

1. Initially, the subgraph contains the error states of the state graph.

2. For any vertex in the subgraph that is not a conflict state, we add all its incoming edges as
well as their source states to the subgraph.

3. We terminate if we either added the initial state to the subgraph or if all states not yet
treated in step 2 are conflict states.
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Figure 4: The Arctis block Mixed Initiative 2

Thus, if the initial node is not in the resulting subgraph, we know that all traces from it to the
error states pass a conflict state which gives us advice that an improperly handled mixed initiative
might be the source of the errors. For example, in Figure 3 (a) the subgraph consists of the states
6 to 9 and the edges linking them but not the initial state 0 showing that the mixed initiative
between the crossing edges M2 and M3 are the likely reason for the problem.

The AGG rules use the state space generated by the Arctis model checker as input and are
executed automatically without further human intervention. Thus, it is also possible to integrate
the algorithm into the Arctis model checker which would enable a seamless detection of mixed
initiatives already during the analysis. The integration is planned for one of the next revisions of
the model checker.

4 Mixed Initiative Remedy

An established way to deal with errors caused by mixed initiatives is to use prioritization [GY84].
Here, the two conflicting initiatives are marked as primary respective secondary and, in the case
of a conflict, only the primary initiative will take place while the secondary is stopped during
communication. In our example, we decided that the initiative M2 leaving component 2 shall be
the primary one, such that it will always be forwarded to component 1 while M3 will be stopped
in the case of a conflict. Of course, this prioritization scheme demands a somehow complex logic
which, however, can be hidden in a reusable Arctis block as we point out in the following.

4.1 Arctis Blocks handling Mixed Initiatives

Since mixed initiatives are a recurrent phenomenon in reactive distributed software, we created
two building blocks providing remedy by prioritization (see [KSH07]) which are available in one
of the Arctis libraries. Figure 4 (a) shows one of them. It supports two participants primary and
secondary and arranges that an initiative from the primary one is prioritized against the one of
the secondary.

The five pins on the left side of the block are allocated to the secondary and the three on the
right to the primary participant. The ESM in Figure 4 (b) describes the behavior realized by the
block. It is started from the secondary component by a flow through pin start which enables this
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participant to send its secondary initiative via pin secI. Eventually, the start is notified via pin
started to the primary party who is afterwards enabled to start an own initiative via pin primI as
long as no secondary initiative passes pin secA. If the secondary initiative arrives without being
interfered by the primary one, the secondary participant is notified about that via a flow leaving
the block through pin secAc. If only a primary initiative takes place, the secondary receives it
via pin primA. If both participants send parallel initiatives via primI and secI, the secondary is
never delivered while the primary one is handed over to the secondary participant via pin secOv
notifying it that the own one was overridden. The other block in the Arctis library is similar but
started from the side of the primary component.

4.2 Adding the Arctis Blocks

It is demanded that the two Arctis blocks introduced above, have to be started using the pins start
and started before they may handle a mixed initiative. Thus, the system needs a crossing edge
between the two partitions that may be redirected in order to act as a starter. To find such an edge,
we first analyze the subgraph derived by the algorithm in Sect. 3 and check if there is a crossing
edge on all traces towards the mixed initiative that can take that role. Thus, in integrating a mixed
initiative block, we have to consider three crossing edges as depicted in the pattern description in
Fig. 5. This pattern for the Arctis block Mixed Initiative 2 (and except of the partition designators
also of the other available block) consists of a crossing edge called St describing the starter while
Is and Ip refer to the crossing edges which may cause the mixed initiative error.

In order to allow an adaptation according to the needs of the system engineer, the transfor-
mation process is started by asking the engineer for two decisions depending on which a certain
group of AGG graph rewrite rules is selected:

1. The engineer has to determine which component should take the role of the primary party
in order to identify which of the two mixed initiative blocks needs to be built in.

2. A principle decision about the strategy to handle detected mixed initiatives has to be taken.
This reflects, that the two blocks make the occurrence of a mixed initiative visible to the
secondary participant and additional functionality handling this case has to be added. Here,
we see two different strategies:

(a) Delete both signals passing each other after transmission. This strategy is sensible
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when the behavior to be performed by a component is the same irrespective of which
party triggered the initiative. In this case, we only have to prevent that this behavior
is carried out twice.

(b) Let the primary initiative prevail and neglect the impact of the secondary one. This
solution is useful if both initiatives lead to a different behavior of the involved com-
ponents.

According to the two decisions, a particular set of AGG graph rewrite rules is selected which
execute the integration of a mixed initiative block automatically. If we decide for the strategy
to let the primary initiative prevail, however, we face the problem that we need additional func-
tionality to neglect the secondary initiative in case of a conflict. This, however, depends on the
particular model, and it is beyond the capabilities of a graph transformation system to decide
if any operation executed before passing Is should also be executed in case of a conflict. To
elude this problem, we selected a graph transformation mechanism that renders a correct solu-
tion for most functionalities. Nevertheless, it demands that the system engineer looks on the
system model resulting from the graph transformation since it is possible that some of the op-
erations have to be rearranged on the local side of the secondary participant. Thus, the graph
transformation does not create the correct solution automatically in all cases but we think that
it is nevertheless helpful since it reduces a possible manual post-processing to the purely local
reordering of single operations which is much easier than the integration of a complex distributed
solution from scratch.

At first, the crossing edges corresponding St , Is and Ip in the pattern model are removed and the
Arctis mixed initiative block mi is added to the model. The remainder of the graph transformation
is the connection of the sources respective targets of the removed edges with the pins of mi by
new edges. For brevity, we describe this process only for the block Mixed Initiative 2 listed in
Fig. 4 as this procedure is similar for the other block. At first Source St, i.e., the source node of
edge St, will be linked with the pin start of mi while pin started is connected to Target St.

On the primary partition, the new wiring of the two conflicting edges Ip and Is is straightfor-
ward since the mixed initiative block disburdens the primary component from any error correc-
tion handling. Source Ip is coupled with the pin primI and pin secA with Target Is.

The wiring of the secondary component, however, differs depending on the treatment strategy
selected. If both conflicting signals shall be deleted, Source Is is connected with pin secI and pin
PrimA with Target Ip. The pins SecOv and SecAc are not linked at all which according to the
robust Arctis semantics means that tokens passing them are deleted.

For the strategy to let the primary initiative prevail, the particular wiring affords to link the pin
primA with Target Ip since this pin reflects that there was no conflict at all. A token passing pin
secOv contains the data of the primary initiative in the case of a mixed initiative conflict. Since
this initiative should prevail, there has also to be made a connection from this pin to Target Ip.
Actually, the graph transformation rules link both pins primA and secOv with a newly created
merge, i.e., an activity node with at least two ingoing edges but only one outgoing edge to which
all incoming tokens are routed. The merge is further connected downstream with Target Ip.

The wiring of the vertices and edges specifying the secondary initiative Is has to consider that
its token flow may contain operations necessary for a functionally correct behavior. Operations
are another type of UML activities. In Arctis, they are carriers of Java methods which are exe-
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cuted when a token passes. For instance, an operation towards a crossing edge may prepare the
transfer format readable by the primary component. After the model modification, such oper-
ations shall still be on the path leading to the pin secI. Other actions, however, shall only take
effect if a conflict does not occur3 such that they should be linked to the pin secAc.

While, as already stated, a general solution to decide about where to place the operations
resting on the secondary component before the crossing edge Is is not possible, we can automate
the case that Source Is is a fork node. Here, it is evident that all downstream edges of the fork
except for the crossing edge are not relevant for a correct transmission of the secondary initiative.
Thus, we can propose a wiring as follows:

1. If Source Is is not a fork, it will be connected with pin secI and pin secAc will not be linked
at all.

2. If Source Is is a fork with two outgoing edges in total, it will be deleted. The source node
of its incoming edge will be linked with pin secI and pin secAc will be connected with the
target node of the outgoing edge that is not the crossing edge.

3. If the source node is a fork with three or more outgoing edges, the source node of its
incoming edge will also be linked with the pin secI. Moreover, we connect the pin secAc
to the fork such that it is only passed in the case of a successful secondary initiative.

For our button game example, we selected component 1 as the secondary and component 2 as
the primary partition. Further, we decided to let the primary initiative prevail since, otherwise
the pin remoteWins1 would not be executed in the case of conflict which would violate the ESM
of block Button Game (see Fig. 1). The result of the graph transformation is depicted in Fig. 6.
The modified model produces the state space shown in Fig. 3 (b) such that the ESM of the
surrounding block Button Game is obeyed. One should mention that the analyzer issues no error

3 In the button game example, that holds for activity step (5) in Fig. 2 leaving the overall block Button Game via the
parameter node localWins1 that should only be triggered if there is no primary initiative at all.
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Figure 7: Rule inserting the block Mixed Initiative 2

but a warning since in the case of a mixed initiative a flow leads to the pin stop of block b1 which
is already terminated. This flaw is of no practical relevance as Arctis simply removes tokens in
this case what is exactly what we want. So, we do not need any manual re-orderings.

5 Graph Transformation Rules

In this section, we briefly introduce the concept of graph rewriting rules used for the various
mixed initiative detection and remedy steps discussed above. As tool-set for the graph transfor-
mation we use the Attributed Graph Grammar System4 (AGG) [Tae04] that, in a flexible way,
allows the visually supported creation of rules. Since AGG offers Java APIs, it could be easily
integrated into Arctis that is also Java-based.

The transformation rules mainly consist of two parts. A pre-pattern describes a graph pattern
that has to be replaced while the corresponding post-pattern models the result of the replacement.
Moreover, a rule may contain additional conditions to constrain when it may be applied. The
input to a rule is a so-called host-graph which, by replacing the part matching the pre-pattern by
the post-pattern, will be transformed to a post-graph.

Altogether 22 rules are used to detect mixed initiatives and to add one of the two Arctis mixed
initiative blocks to a UML activity-based system model. For the sake of brevity, we list only the
different categories of rules and provide a closer description of only one rule while the others
can be looked at on the WWW.5 The rules can be structured in three groups:

1. Label the states of an Arctis state graph to detect a mixed initiative as discussed in Sect. 3.

2. Search for the pattern described in Fig. 5 of the state graph to create a subgraph with labels.
During this stage the crossing edges Ip, Is and St are marked.

3. Insert the selected Arctis mixed initiative block and wire it with its environment as de-
scribed in Sect. 4.2.

Figure 7 shows a rule of group 3 that is used to add the block Mixed Initiative 2 to an activity.
On the left side, the pre-pattern is depicted. It contains the classes 3 and 4 of type role which refer

4 We currently replace AGG by Henshin [ABJ+10] which is more flexible and supports the Eclipse Modeling Frame-
work (EMF) also used by Arctis.
5 http://www.item.ntnu.no/people/personalpages/phd/simon/start
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to the two partitions of the activity. These two constructs are applied to enhance the collaboration
description used in Arctis to model the relation between blocks and particular components. The
other constructs refer to the activities to be amended. In particular, the three labeled cycles refer
to the crossing edges involved while label 1:f describes the one to be used to start the block.
Label 7:f refers to the primary and 8:f to the secondary initiative. The post-pattern is shown
on the right side. The collaboration is extended by a new collaboration use that corresponds to
the added mixed initiative block as well as to the links to the two components. The activity is
supplemented by a call behavior action, i.e., an Arctis block, as well as references to its pins. The
various edges of the pre-pattern are now replaced by others linking the original source respective
target nodes with the appropriate pins of the mixed initiative blocks. This rule is used for both
strategies mentioned in Sect. 4.2. It renders the final result if we want to delete both mixed
initiatives. If we like to let the primary initiative prevail and neglect the secondary one, it creates
an intermediate system model which will be further amended by other rules.

6 Related work

In visual language-based specification techniques like the UML, graph grammar techniques are
more and more utilized. For instance, in [WTEK08] Winkelmann et al. translate restricted OCL
constraints into equivalent graph constraints which enables an automatic generation of instance
models from the OCL meta-models. Gronmo and Møller-Pedersen propose so-called aspect
activity diagrams that extend activity models by aspect-oriented weaving [GM08]. Likewise,
Mussbacher et al. use an extension of the User Requirement Notation (URN) to weave in as-
pects [MWA10]. A difference to our approach is that both techniques demand for explicit syntax
extensions to define aspect orientation concepts like point cuts, which makes the understanding
of the models more complicated. In [HHR+11], Hegedüs et al. use graph grammars as the fun-
damental technique of the framework to generate quick fixes of business flows specified in the
Business Process Model and Notation (BPMN). Like our work, this approach uses graph trans-
formation for the remedy of errors, albeit on a more abstract modeling level. Our work is also
similar with [LK10] who use graph transformation rules to slice UML models using transforma-
tion rules. The difference is that Lano and Kolahdouz-Rahimi concentrate on the slicing of state
machines.

Graph grammar systems are further used to support system development in specific domains.
Mens et al. [MVDJ05] use graph transformation to formalize refactorings of software. Buc-
chiarone et al. [BPVR09] give a formal definition of self-adaptiveness and self repair systems
based on the T-typed hyper-graph grammar system. They also use AGG to model and verify
the hyper-graphs. In [JWEG07], critical pair analysis is used to detect the dependencies and
conflicts between features of a Software Product Line (SPL). Domain specific concerns are also
addressed by particular patterns. For instance, in [JPW02] security patterns are abstracted from
model-based system development and specially treated in security-critical systems.
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7 Concluding Remarks

We introduced the use of graph transformation for the detection and remedy of mixed initiative
conflicts, a particular kind of development errors in distributed systems. The approach is highly
automatic and promises to support the engineer significantly in error recovery and remedy. The
set of rules was also applied to a wake-up call scenario [KSH07] as it is used in hotels. Again
we received a correct result that did not need further manual corrections.

To generalize this experience, we have also to guarantee that the model transformation does not
introduce new errors. In particular, we must assure that the new wiring complies with the proper-
ties of the integrated mixed initiative block. Further, we have to prove that the transformed model
is consistent with the original one. Of course, as desired, the model transformation changes the
system behavior to solve the conflict but it should not be changed in the ordinary case that only
one initiative takes place at a time. These two questions can be verified in temporal logic which,
however, cannot be shown here due to the space limit.

There are other system layouts which might lead to mixed initiatives, e.g., three or more
components may use ring-shaped communication such that there are no conflicting crossing
edges between any two of them. We want to find out more system patterns that indicate mixed
initiatives and create corresponding graph transformation rules to alleviate them. Further, we
intend to use the approach for the detection and remedy of other kinds of errors.

Graph transformation seems also promising to add security protection against malicious at-
tacks. While the integration of counter-measures, in general, is complex and tedious, in some
cases it can be done with limited human guidance such that graph transformation is the ap-
propriate means. An example is [GKH11] introducing the structured integration of security
mechanisms to protect sensible communications against wiretapping.

The work introduced above was the second approach utilizing graph transformation in SPACE.
Before, we used this technique to transform flow-global choreographies, a more abstract model-
ing technique, to Arctis models [HKL+11]. Both approaches profit from the fact that it is much
easier to create and change a set of graph rewrite rules than to develop a model transformation
tool doing the same model changes manually. This allows for an easy adaptation of engineering
tools for visual languages to new challenges arising during deployment.

A strength of Arctis is that it supports reuse of sub-models in certain application domains. In
average, 70% of a system model consist of building blocks reused from previous projects (see
[KH09]). Utilizing the flexibility of graph rewriting, one can complement the domain-specific
libraries of Arctis blocks with sets of graph transformation rules such that an engineer is not only
provided with suitable sub-models but also with a convenient functionality to deal with them.
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